Alexandria University Faculty of Engineering Communications and Computers Department Mid-term Exam, April 2016

قسم هندسة الإتصالات والحاسبات امتحان نصف الفصل الدراسي الثاني (إبريل ٢٠١٦)

تصميم الدو ائر المتكاملة الر قميةُ (CC401)

الزمن: ساعة واحدة

Course Title and Code Number:

Digital Integrated Circuits Design (CC401)

Time Allowed: 1 Hours

Answer all questions:

(20 marks)

(10 marks) **Question 1:**

Consider a CMOS inverter, with the following device parameters:

NMOS $V_{T0n} = 0.6 V$ $V_{T0p} = -0.6 V$ **PMOS**

 $\mu n Cox = 50 \mu A/V^2$ $\mu p Cox = 20 \mu A/V^2$

 $V_{DD} = 3.3 \ V$ and

- a) Determine the (W/L) ratios of the nMOS and pMOS transistors for a symmetric inverter.
- b) Plot the VTC of the CMOS inverter and indicate the values of V_{OH} , V_{OL} , V_{th} , V_{IL} , and VIH.
- c) Plot the VTC of two cascaded inverters, and calculate the output voltage for an input voltage V_i of 1 V. What is this circuit called?

Ouestion 2: (10 marks)

For the symmetric CMOS inverter described in Question 1:

- a) Calculate the propagation time τ_{PHL} and τ_{PLH} of the inverter for an output load capacitance of 1.5 pF.
- b) Determine the maximum frequency of a periodic square-wave input signal so that the output voltage can still exhibit a full logic swing from 0 V to 3.3 V in each cycle. Calculate the dynamic power dissipation at this frequency.
- c) How do the inverter switching threshold V_{th} and the delay times change if the power supply voltage is increased from 3.3 V to 5 V.
- d) Calculate the frequency of a ring oscillator designed using three instances of the above inverter and plot the output of each inverter as a function of time.

Good Luck

Examiner: **Dr. Mohammed Morsy**