
Alexandria University

Faculty of Engineering
Division of Communications & Electronics

CC322 Computer Architecture
Sheet 1: MIPS Instruction Set Architecture

Exercises 1-16 from the reference book: “Digital design
and computer Architecture by David Harris, 2nd Edition”

Exercises 17-22 from the exercises of: “Architecture des
Ordinateurs Course, 2014, EPFL”

1. Consider memory storage of a 32-bit word stored at memory
word 42 in a byte addressable memory.

(a) What is the byte address of memory word 42?
(b) What are the byte addresses that memory word 42 spans?
(c) Draw the number 0xFF223344 stored at word 42 in both big-
endian and little-endian machines. Clearly label the byte address
corresponding to each data byte value.

2. Repeat Exercise 1 for memory storage of a 32-bit word stored
at memory word 15 in a byte-addressable memory.

3. Explain how the following program can be used to determine
whether a computer is big-endian or little-endian:

4. The nori instruction is not part of the MIPS instruction set,
because the same functionality can be implemented using
existing instructions. Write a short assembly code snippet that

has the following functionality: $t0 = $t1 NOR 0xF234. Use as
few instructions as possible.

5. Implement the following high-level code segments using the
slt instruction. Assume the integer variables g and h are in
registers $s0 and $s1, respectively.

6. Write a function in a high-level language for int find42(int
array[], int size). size specifies the number of elements in array,
and array specifies the base address of the array. The function
should return the index number of the first array entry that holds
the value 42. If no array entry is 42, it should return the value –1.

7. The high-level function strcpy copies the character string src
to the character string dst (see page 360).

(a) Implement the strcpy function in MIPS assembly code. Use
$s0 for i.

(b) Draw a picture of the stack before, during, and after the
strcpy function call. Assume $sp = 0x7FFFFF00 just before
strcpy is called.

8. Consider the MIPS assembly code below. func1, func2, and
func3 are non-leaf functions. func4 is a leaf function. The code is
not shown for each function, but the comments indicate which
registers are used within each function.

9. Each number in the Fibonacci series is the sum of the previous
two numbers. The following table lists the first few numbers in
the series, fib(n).

(a) What is fib(n) for n = 0 and n = –1?

(b) Write a function called fib in a high-level language that
returns the Fibonacci number for any nonnegative value of n.
Hint: You probably will want to use a loop. Clearly comment your
code.

(c) Convert the high-level function of part (b) into MIPS assembly
code. Add comments after every line of code that explain clearly
what it does. Use the SPIM simulator to test your code on fib(9).

10. Consider C Code Example 6.27. For this exercise, assume
factorial is called with input argument n = 5.

(a) What value is in $v0 when factorial returns to the calling
function?

(b) Suppose you delete the instructions at addresses 0x98 and
0xBC that save and restore $ra. Will the program (1) enter an
infinite loop but not crash; (2) crash (cause the stack to grow
beyond the dynamic data segment or the PC to jump to a
location outside the program); (3) produce an incorrect value in
$v0 when the program returns to loop (if so, what value?), or (4)
run correctly despite the deleted lines?

(c)Repeat part (b) when the instructions at the following
instruction addresses are deleted:

(i) 0x94 and 0xC0 (instructions that save and restore $a0)

(ii) 0x90 and 0xC4 (instructions that save and restore $sp). Note:
the factorial label is not deleted

(iii) 0xAC (an instruction that restores $sp)

11. Ben Bitdiddle is trying to compute the function f(a, b) = 2a +
3b for nonnegative b. He goes overboard in the use of function
calls and recursion and produces the following high-level code for
functions f and f2.

Ben then translates the two functions into assembly language as
follows. He also writes a function, test, that calls the function f(5,
3).

You will probably find it useful to make drawings of the stack
similar to the one in Figure 6.26 of the reference book to help
you answer the following questions.

(a)If the code runs starting at test, what value is in $v0 when the
program gets to loop ? Does his program correctly compute 2a +
3b?

(b)Suppose Ben deletes the instructions at addresses
0x0040001C and 0x00400044 that save and restore $ra. Will the
program (1) enter an infinite loop but not crash; (2) crash (cause
the stack to grow beyond the dynamic data segment or the PC to
jump to a location outside the program); (3) produce an incorrect
value in $v0 when the program returns to loop (if so, what
value?), or (4) run correctly despite the deleted lines?

(c)Repeat part (b) when the instructions at the following
instruction addresses are deleted. Note that labels aren’t
deleted, only instructions.

(i) 0x00400018 and 0x00400030 (instructions that save and
restore $a0)

(ii) 0x00400014 and 0x00400034 (instructions that save and
restore $a1)

(iii) 0x00400020 and 0x00400040 (instructions that save and
restore $s0)

(iv) 0x00400050 and 0x00400088 (instructions that save and
restore $sp)

(v) 0x0040005C and 0x00400080 (instructions that save and
restore $s0)

(vi) 0x00400058 and 0x00400084 (instructions that save and
restore $ra)

(vii) 0x00400054 and 0x00400078 (instructions that save and
restore $a0)

12. Consider the following C code snippet.

(a)Implement the C code snippet in MIPS assembly language.
Use $s0 to hold the variable i. Be sure to handle the stack pointer
appropriately. The array is stored on the stack of the setArray
function (see Section 6.4.6 of the reference).

(b)Assume setArray is the first function called. Draw the status of
the stack before calling setArray and during each function call.
Indicate the names of registers and variables stored on the stack,
mark the location of $sp, and clearly mark each stack frame.

(c) How would your code function if you failed to store $ra on the
stack?

13. Consider the following high-level function.

(a)Translate the high-level function f into MIPS assembly
language. Pay particular attention to properly saving and
restoring registers across function calls and using the MIPS
preserved register conventions. Clearly comment your code. You
can use the MIPS mul instruction. The function starts at
instruction address 0x00400100. Keep local variable b in $s0.

(b) Step through your function from part (a) by hand for the case
of f(2, 4). Draw a picture of the stack similar to the one in Figure
6.26(c) of the reference book. Write the register name and data
value stored at each location in the stack and keep track of the
stack pointer value ($sp). Clearly mark each stack frame. You
might also find it useful to keep track of the values in $a0, $a1,
$v0, and $s0 throughout execution. Assume that when f is called,
$s0 = 0xABCD and $ra = 0x400004. What is the final value of
$v0?

14. The following questions examine the limitations of the jump
instruction, j. Give your answer in number of instructions relative
to the jump instruction.

(a) In the worst case, how far can the jump instruction (j) jump
forward (i.e., to higher addresses)? (The worst case is when the
jump instruction cannot jump far.) Explain using words and
examples, as needed.

(b) In the best case, how far can the jump instruction (j) jump
forward? (The best case is when the jump instruction can jump
the farthest.) Explain.

(c) In the worst case, how far can the jump instruction (j) jump
backward (to lower addresses)? Explain.

(d) In the best case, how far can the jump instruction (j) jump
backward? Explain.

15. Write a function in high-level code that takes a 10-entry
array of 32-bit integers stored in little-endian format and
converts it to big-endian format. After writing the high-level code,
convert it to MIPS assembly code. Comment all your code and
use a minimum number of instructions.

16. Consider two strings: string1 and string2.

(a)Write high-level code for a function called concat that
concatenates (joins together) the two strings: void concat(char
string1[], char string2[], char stringconcat[]). The function does
not return a value. It concatenates string1 and string2 and places
the resulting string in stringconcat. You may assume that the
character array stringconcat is large enough to accommodate
the concatenated string.

(b) Convert the function from part (a) into MIPS assembly
language

17. Consider the following MIPS program.

a) Describe the function (purpose) of the program in one
sentence.

b) Is it necessary to use the two instructions sltu/beq for the loop
test, and is it possible to use one instruction instead? If so,
simplify the program.

c) Mark the instruction(s) that can cause an overflow (ignoring
the instructions that compute addresses and indices).

d) Correct the program in order to take into account a possible
overflow and return ’-1’ instead of the result if an overflow occurs
(again, ignore the instructions that compute addresses and
indexes).

e) Is it possible to modify the program and minimize the number
of times the internal loop is being executed? Show the eventual
modifications of the program (an idea: the loop counter is not
necessary).

18. Consider the following MIPS program:

a) The program inputs are given in registers $a0 and $a1. The
program outputs are returned via registers $v0 and $v1. What
does this program do (in a sentence)? What are the values
returned in $v0 and $v1?

b) What type of quantities are stored in the array (explain the
answer)?

c) Adapt the program (1): make it a procedure (the values of $a0
and $a1 should be preserved).

d) Adapt the program (2): keep its functionality but let it operate
on an array of unsigned bytes (avoid using the lb instruction!).
Assume a little-endian machine.

e) Adapt the program resulting from the previous point,
considering that the words in memory have been previously
stored in big-endian.

19.

a) The following instructions, in MIPS assembly, represent a
control structure very common in high-level programming
languages (Java, Ada, C,. . .). Which structure is it?

b) Write a MIPS assembly program equivalent to the following
pseudo-instructions. If necessary, you can use register $t0 to
memorize intermediary values. No other register can be used.

i) add ($s0),$s1,($s2) #mem[$s0]=$s1+mem[$s2]

This MIPS instruction does not exist, because it uses an
addressing mode not supported by RISC processors.

ii) SWAP $s0 # bits 31-16 <-> bits 15-0

This instruction allows us to swap the 16 most significant bits
with the 16 least significant ones of a 32-bit word.

iii) PUSH $s0

This instruction is not a MIPS instruction either. It decrements the
stack pointer (SP), then saves $s0 at this address.

c) Decode the following two MIPS instructions:

20. Analyse the following
program, supposing that initially
(at the beginning of the execution)
the registers of the processor
have the following values:

$a0 contains the address of a
matrix of unsigned 8-bit numbers.

$a1 contains the number of rows
of this matrix.

$a2 contains the number of
columns of this matrix.

$a3 contains an unsigned 8-bit
value.

a) Describe in one sentence what this program does(suppose
there is no overflow). In particular, give the values of registers
$v0 and $v1 at the end of the execution if $a3=0 and the matrix
is:

b) If the previous matrix is stored starting from address 1000,
give the memory contents of addresses 1000 to 1008.

c) i) Can the instruction add $t2, $t2, $a3 generate a result that
cannot be represented using 32 bits?

ii) Can it give a result that is not representable using 8 bits?

iii) Take into account the possible overflows and modify the
program to saturate the result in case of an overflow (if the result
is not representable, replace it by the greatest possible value).

21. Consider the following MIPS program:

Assume that initially registers $a0 and $a1 store addresses in
memory and register $a2 stores an integer N. Registers $t0 to
$t5 are used to store temporary values and $zero is a register
that always has the value zero.

a) Briefly comment each line of the code.

b) Describe in one sentence what this program does (its
purpose).

c) Why did the instruction addi add 4 to registers $t0 and $t1?

d) Why is the instruction sltu (set less than unsigned) used
instead of the instruction slt?

22. Analyze the following MIPS function:

When the function is called, $a0 contains the memory address of
a vector of 32-bit numbers and $a1 contains an integer.

a) Describe in a sentence what the program does.

b) Must the numbers contained in the vector be either signed or
unsigned? Or is it possible to have both signed and unsigned
numbers in the vector ? Briefly explain your answer.

c) We would like to change this program so that it can process
(handle) bytes. To this effect we need a function that receives
four bytes in $a0 and returns the same four bytes in the reverse
order in $v0: byte B3 (bits 32-24) is swapped with byte B0 and
B2 with B1. Write such a function respecting ordinary MIPS
conventions.

