Question 2: Multicycle CPU implementation

We would like to add a “scaled” addressing mode to the MIPS multicycle architecture:

Iws 1d, 1s, 1t # rd = Mem[rt + (4 x 13)]

For example, if $a0 contains 1000 and $al contains 10, then “Iws $t0, Sal, $a0” loads $t0 with the value at
address 1040 (1000 + 4x10).

You need to show the correct control signals necessary to implement the Iws instruction, by either:
* completing the finite state machine diagram on page 4, or

« filling in the microprogramming table on page 5.

You only need to do one or the other, not both.

The multicycle datapath from lecture is shown below, with one important change: the AL UOut register is
connected to the AL USrcA mux (shown with a dotted line), which now has three inputs instead of two. No
other changes to the datapath are needed.

You may assume that ALUOp = 100 performs an integer multiplication, and 010 performs an addition.

Finally, here is the instruction format, for your reference (shamt and func are not used):

Field op IS It rd shamt | func
Bits 31-26 | 25-21 | 20-16 | 15-11 10-6 50
PCWrite
|
P —— [— -
: H
* ALUSIcA =
- -
lorD : H
| ; i
RegDst RegWrite H H
0 MemRead T : H
M | »| Read Read A H :
u P Address reg1 datal :
X H
- Read
1 Memory IRWrite reg 2 Read
wie 93122 0
) [31-26] : 4 el 1
[20-16] Wiite pegisters 3
. [15-11] data O
MemWrite [15-0]
Instr ALUSIcB
register
Memory
data

register

MemToReg

Question 2 continued

Complete this finite state machine diagram for the lws instruction, or fill in the microprogramming table on

the next page, but not both!

You can show the control values in either binary or decimal, whichever is more convenient for you.

Instruction fetch
and PC increment

Register fetch and
branch computation

Op=LWS

ALUSICA =10
ALUSKcB =00
ALUOp =010

Branch
ALUSICA = 1 completion
Op=BEQ ALUSIKcB =00
ALUOp=110 P,
PCSource = 1
PCWrite = Zero
Write-
Op = R-type back
Effective address
computation
LW/SW [ALUSrcA=1 \Op=SW
ALUSIcB =10
ALUOp=010
Op=LW
Iw register
Memory -
read write

See the comments on the next page.

Question 2 continued

Fill in this microprogramming table for the lws instruction, or complete the finite state machine diagram on
the previous page, but not both!

You may need to make up new values for some of these fields, but just make sure your intentions are clear.

ALU Register PCWrite
Label | Control | Srcl Src2 control Memory control Next
Fetch Add PC 4 Read PC ALU Seq
Add PC Extshift | Read Dispatch 1
BEQI Sub A B Al U-Zero | Fetch
Rtypel Func A B Seq
Write ALU Fetch
Meml Add A Extend Dispatch 2
SW2 Write ALU Fetch
LW2 Read ALU Seq
Write MDR Fetch
LWS1 Multiply | A 4 Seq
AlLU
Add Out B Seq
Read ALU Seq
Write .MDR Fetch
to register rd

You should only need to add a few symbols such as “Multiply” to get the ALU to multiply, and “ALUOut” to
set the value of the expanded ALUSrcA mux.

Otherwise, the solution here is basically the same as the one on the previous page. The “lws” instruction has
a more complicated addressing mode, so two cycles are required to compute the effective address. The first
new cycle computes (4 * rs), and the second computes (4 * rs) + rt. The final two stages of the “lws” are
almost the same as for the original “lw” instruction, but we need to store in register rd instead of rt.

Since we’ve split this datapath into five distinct parts, you cannot combine any of the stages of the “Iws”
instruction together. For example, “Write MDR to register rd” in the microprogram requires an address to
be supplied from the ALUOut register, but that must be produced in the previous clock cycle.

Finally, we said that the intermediate registers A, B, ALUOut and MDR are implicitly written to on every
clock cycle. In this situation it’s all right to use B (in “Add ALUOut B") two cycles after it’s written (in the
Register control “Read” stage)—within those two cycles, IR does not change, so none of the inputs to the
register file change, so the register file outputs will not change either.

Question 2: Multicycle CPU implementation

MIPS is a register-register architecture, where arithmetic source and destinations must be registers. But let’s
say we wanted to add a register-memory instruction:

addm rd, 1s, 1t # rd =15 + Mem|[rt]
Here is the instruction format, for your reference (shamt and func are not used):

Fleld op IS It rd shamt | func
Bits 31-26 | 25-21 | 20-16 | 15-11 | 10-6 5-0

The multicycle datapath from lecture is shown below. You may assume that AL UOp = 010 performs an
addition.

Part (a)
On the next page, show what changes are needed to support addm in the multicycle datapath. (10 points)

On the next page, we’ve connected the intermediate register B to the memory unit so we can read from
address rt. We also feed MDR (which will contain Mem(rt]) into the ALU, for addition with register rs.
These are probably the simplest set of changes; the control unit on the next page shows the details of how to
get this to work.

PCWirite
|
PC ALUSrcA
lorD
|
J\ RegDst RegWrite
o MemRead
»| Read Read
1 mip(Address register 1 data 1
) »| Read
2 Memory IHVT'“E o register 2 Read
Write 2
Write Mem (31-26) oy register
[25-21) u 9!
data Data x
[20-16) Wite pegisters
| [15-11] 1 data
MemWrite [15-0)
Instruction|
register
Memory
data
register

MemToReg

Question 2 continued

Part (b)
Complete this finite state machine diagram for the addm instruction. Be sure to include any new control
signals you may have added. (15 points)

Instruction fetch Bmm
and PC increment ALUSIcA =1
Register fetch and Op=BEQ ALUSKcB =00
IorD=0 branch computation ALUOp=110
MemRead =1 PCSource =1
IRWrite = 1 PCWrite = Zero
ALUSICA =0 ALUSIcA =0
ALUSIcB =01 ALUSIcB =11
ALUOp =010 ALUOp =010
PCSource =0
PCWrite = 1 Op =R-type / ALUSIcA =1

ALUSIcB =00

1 Op = ADDM

LW/ISW
ALUSIcB =10
ALUOp=010

ALUSKcA=1
ALUSIcB = 100
ALUOp =010

With the new datapath buses shown on the previous page,
the addm instruction isn’t hard to implement. The first two
cycles progress as for any other instruction: fetch the
instruction and read the registers. In the third cycle, we can
use B (which contains data from register rs) as the memory
address to read from. The value Mem(rt] can then be added
fo register rs in the next cycle. Notice that A still contains
the data from rs, since we haven’t changed the register
file’s inputs. Finally, the result is written back just as for an
R-type instruction.

RegDst =1
MemToReg =0
RegWrite =1

Question 1: Multicycle CPU implementation (50 points)

Consider extending the MIPS architecture with the instruction below, which adds three registers together and
stores the result in a register.

add3 rd, 1s, 1t, TU #rd=rs+rt+m

This will use the same format as R-type instructions---shown here for reference-—-where the shamt field is used
to hold ru.

Field [op | i | = | 1d | shamtu| fune |
Bits 31-26 25-21 20-16 15-11 10-6 5-0

An example of the usage of the add3 instruction is shown in part (c) of question 1.

Part (a)

The multicycle datapath from lecture appears below. Show what changes are needed to support add3. You
should only add wires and muxes to the datapath; do not modify the main functional units themselves (the
memory, register file and ALU). Try to keep your diagram neat! (15 points)

Note: While we're primarily concerned about correctness, full points will only be rewarded to solutions that

use a minimal number of cycles and do not lengthen the clock cycle. Assume that the ALU, Memory and
Register file all take 2ns, and everything else is instantaneous.

PCWrite
|
ALUSICA
oD RegSrcB = o)
| 0
RegDst ReTwme M
M y»| Read Read N M
u | Address 1| [reg1 datal A ! Auéero u
X IRWjite R x
ead ALU
1 Memory r“ 0 reg 2 d':eag | B N Resul Qut P 1
ta
M Write
. [31-26] h 4 »|1 rc
o pan) | 2L Jf | ¥] | b2 |~ Aop
- Write :
| [15-11] 1 r’ data edisters >3
MemWrite [15-0]
i ALUScB
register
Memory)|
data
register

MemToReg

Question 1 continued

Part (b)

Complete this finite state machine diagram for the add3 instruction. Control values not shown in each stage are
assumed to be 0. Remember to account for any control signals that you added or modified in the previous part

of the question! (20 points)

Instruction fetch
and PC increment
Register fetch and
IotD=0 branch computation
MemRead = 1

IRWrite =1
ALUSICA=0
ALUSIcB =01 ALUSIcB=11
ALUOp =ADD A
PCSource =0

PCWrite = 1

ALUSIcA=0

h

Op = ADD3

ALUSIrcA =0
ALUSrcB =00
ALUOp = ADD
RegSrcB=1

LW/ISW

ALUSrcA=10

ALUSrcB =00

Branch
completion

ALUSIcA =1
ALUSIcB =00
ALUOp=SUB

PCSource = 1
PCWrite = Zero

Write-
back

R-type
execution

RegDst =1
MemToReg =0
RegWrite =1

Memory

write
TorD =1

MemWrite = 1

Iw register
write

Memory
read RegDst=0

MemToReg =1

RegWrite =1

Question 1: Multicycle CPU implementation (35 points)

Consider extending the MIPS architecture with the instruction below, which loads fwo consecutive words of
data from memory and stores them into two destination registers.

1d rt, xd, rs # rt = Mem[rs]; rd = Mem[rs + 4]

This will use the same format as R-fype instructions, shown here for reference (shamt and func are not used).

Field [op | = | o | rd | shamt | func |
Bits 31-26 25-21 20-16 15-11 10-6 5-0

Part (a)

The multicycle datapath from lecture appears below. Show what changes are needed to support /d. You should
not need to modify the main functional units (the memory. register file and ALU). but you can make any other
changes or additions necessary. Try to keep your diagram neat! (10 points)

The ld instruction can be split into several smaller single-cycle operations: fetch and decode the instruction
(as usual), read Mem|[rs] and store it into register rt, compute rs + 4, and read Mem|rs + 4] and store that
into rd. There are a few possible solutions, so we’ll just show one of them. The sole datapath change we’ll
make is to connect A, which contains the value of register rs, to the memory’s address imput to let us read
Mem[rs]. The IorD mux is expanded appropriately.

PCWrite
I
PC ALUSrcA
L lorD
0
M
MemRead u » 0
| x .
M
s 1
Address v ALU u
Zero x
o ™ ALU 5
M ry IRWrite (o Result " out » 1
. [31-26] 1 PCSrc
— e Mem) | s2n) 2 ALUOP
[20-18] 3
[15-11] i
MemWrite [15-0]
Instr ALUSrcB
register
Memory
data
register

MemToReg

Question 1 continued

Part (b)
Complete this finite state machine diagram for the /4 instruction. Control values not shown in each stage are

assumed to be 0. Remember to account for any control signals that you added or modified in the previous part
of the question! (25 points)

. Branch
Instruction fetch .
and PC increment ALUSrcA=1 completion
Register fetch and Op =BEQ ALUSrcB =00
IotD =0 branch computation ALUOp =110
MemRead =1 PCSource =1
IRWrite =1 PCWrite = Zero
ALUSrcA=0 ALUSrcA=0
ALUSrcB =01 ALUSrcB=11
ALUOp=010 ALUOp =010 R-type Write-
PCSource =lo execution RegDst=1 back
PCWrite = =
MemToReg =0
3 Op=L1D RegWnte=1
" IaD=2 \"‘~.._ Effective address
i MemRead=1 \ computat:ion
ALUSrcA =1
ALUSrcB =01)
\ALUOp =010 Op=5W
e
/._.i.w Op=LW
/ RegWrite=1 Iw register
/' RegDst=0 Memeny eebaeo \
| MemToReg=1 | rea gDst =
i =4
H H MemToReg =1
\ JeD=1 / RegWrite =1
%, MemRead=1 / -
g 4
e,
o "--\\ The dotted nodes are the ones we added. We reduced the
_,./ number of cycles by doing both a read of Mem[rs] and the
{ ReeWnte=1 %\ gddition rs + 4 in the third cycle of the LD execution, and
\ MgTI:;';l_l ; by doing both a read of Mem|[rs + 4] and a write to rt in
\ €=/ the fourth cycle. All that’s left for the fifth cycle is to store
", ~--..-,..// avalue to register rd.

Question 2: Multi-cycle CPU implementation and its performance (50 points)

Assume that the ALU can perform the max2 operation (i.¢., return the greater of 2 inputs):
alu _result = (A_input > B_imput) 7 A input : B_input;
ALUOp for this instruction is MAX2.
Given this improved ALU, implement the max4 instruction that writes into register rd the largest value of 4
registers:
max4 rs, rt, rd, rm # rd = max(rs, rt, rd, rm)

Note that register rd is both an input and an output. Instruction max4 has the following format:

Field [op | IS [It [| m | func |
Bits 31-26 25-21 20-16 15-11 10-6 50

Part (a)

The multicycle datapath from lecture appears below. Show what changes are needed to support max4. You
should only add wires and muxes to the datapath; do not modify the main functional units themselves (the
memory, register file, and ALU). Try to keep your diagram neat! (10 points)

Note: While we're primarily concerned about correctness, full points will only be rewarded to solutions that use
a minimal number of cycles and do not lengthen the clock cycle. Assume that the ALU, Memory and Register
file all take 2ns, and everything else is instantaneous.

ICWrite
PC
lorD
|
0 MemRead
I
—P{ Address
1 Mem
ory
Write Mem

P data Data

MemWrite

MemToReg

Question 2 continued

Part (b)
Complete this finite state machine diagram for the max4 instruction. Control values not shown in each stage

are assumed to be 0. Remember to account for any control signals that you added or modified in the previous
part of the question! (15 points)

Instruction fetch Branch
and PC increment ALUSIcA =01 \-Ompletion
Register fetch and Op=BEQ ALUSIcB =00
IotD=0 branch computation ALUOp = SUB
MemRead =1 PCSource =1
RWrite = 1 PCWrite = Zero
ALUSIcA =0
ALUSIcB =01
ALUOp = ADD
PCSource =0
PCWrite = 1 Op =R-type
* Op = MAX4
_ Memory
LW/SW e

ALUSIcB=10
ALUOp=ADD

Op=LW

Iw regi
Memor e

read

ALUSIcA =10
ALUSIcB =0

Question 2, Multi-cycle implementation (40 points)

The (imaginary) jump memory (jmem) instruction is like a jump-and-link (jal) instruction, except both the target
is loaded from memory and the return address is saved to memory. The i-type format is used, as shown below.
You can assume that R[rt] and (R[rs] + offset) are distinct (non-overlapping) addresses.

jmem (rt), offset(rs) # Memory[R[rs]+offset] = PC+4;
PC = Memory[R[rt]]

Field [op | s | o | imm |
Bits 31-26 25-21 20-16 15-0

Part (a)

The multicycle datapath from lecture appears below. Show what changes are needed to support jmem. You
should only add wires and muxes to the datapath; do not modify the main functional units themselves (the
memory, register file, and ALU). Try to keep your diagram neat! (15 points)

Note: While we're primarily concerned about correctness, five (5) of the points will only be rewarded to
solutions that use a minimal number of cycles and do not lengthen the clock cycle. Assume that everything
besides the ALU, Memory and Register File is instantaneous.

Obviously there are many ways to implement this instruction. We show a solution that accomplishes it in
4 cycles. All solutions are going to require adding datapath from the PC register to the Write data port

on the memory and from the MemData port on the memory to the PC.
PCWrite

ALUSrcA
lorD J\
| 0
Ld
RegDst RegWrite
0 MemRead eT
»| Read Read A 1
1 |-)| Address reg1 datal
|RW['ile »| Read
2 Memory 0 reg 2 Read) | B)
w92 0
)y Write Mem &g?} 4 b 1 A0
data Data i 2 PCSrc
[20-16]
| le 3
MemWrite Y
0 ALUSrcB

jmem

MemToReg

Question 2, continued

Part (b)

Complete this finite state machine diagram for the jmem instruction. Control values not shown in each stage
are assumed to be 0. Remember to account for any control signals that you added or modified in the previous

part of the question! (25 points)

Instruction fetch
and PC mcrement

IotD=0

IRWnte=1
ALUSrcA=0
ALUSreB=01
ALUOp=ADD
PCSource =0
PCWnte=1

Register fetch and Op=
branch computati

Op=JMEM

jmem]l=1
IoD=1
MemWnte =1

PCSource =2

PCWrite =

Lw/isw

Because the store address has an immediate, we need to use the
ALU (in cycle 3) before doing the store (in cycle 4). PC + 4 was
stored in the PC register in cycle 1, so it can be stored any time after
the address is generated.

To complete this operation in 4 cycles, the load must be performed in
cycle 3, which is possible if we add a datapath from the B register to
the memory address port since no immediate is added. Doing the
load before the store is possible since the two addresses are
guaranteed to be non-overiapping. To avoid overwriting PC+4, the
loaded value is held in the MDR register and written back in cycle 4.

