
Chapter 8 <1> 

Digital Design and Computer Architecture, 2nd Edition

Chapter 8

David Money Harris and Sarah L. Harris



Chapter 8 <2> 

Chapter 8 :: Topics

• Introduction

• Memory System Performance 
Analysis

• Caches

• Virtual Memory

• Memory-Mapped I/O

• Summary



Chapter 8 <3> 

Processor Memory
Address

MemWrite

WriteData

ReadData

WE

CLKCLK

• Computer performance depends on:
– Processor performance

– Memory system performance

Memory Interface

Introduction



Chapter 8 <4> 

In prior chapters, assumed access memory in 1 clock 
cycle – but hasn’t been true since the 1980’s

Processor-Memory Gap



Chapter 8 <5> 

• Make memory system appear as fast as 
processor

• Use hierarchy of memories

• Ideal memory:
– Fast

– Cheap (inexpensive)

– Large (capacity)

But can only choose two!

Memory System Challenge



Chapter 8 <6> 

Memory Hierarchy

Technology Price / GB
Access

Time (ns)

Bandwidth

(GB/s)

Cache

Main Memory

Virtual Memory

Capacity

S
p
e
e
d

SRAM $10,000 1

DRAM $10 10 - 50

SSD $1 100,000

25+

10

0.5

0.1HDD $0.1 10,000,000



Chapter 8 <7> 

Exploit locality to make memory accesses fast

• Temporal Locality:
– Locality in time

– If data used recently, likely to use it again soon

– How to exploit: keep recently accessed data in higher 
levels of memory hierarchy

• Spatial Locality:
– Locality in space

– If data used recently, likely to use nearby data soon

– How to exploit: when access data, bring nearby data 
into higher levels of memory hierarchy too

Locality



Chapter 8 <8> 

• Hit: data found in that level of memory hierarchy

• Miss: data not found (must go to next level)

Hit Rate = # hits / # memory accesses

= 1 – Miss Rate

Miss Rate = # misses / # memory accesses

= 1 – Hit Rate

• Average memory access time (AMAT): average time 
for processor to access data

AMAT = tcache + MRcache[tMM + MRMM(tVM)]

Memory Performance



Chapter 8 <9> 

• A program has 2,000 loads and stores

• 1,250 of these data values in cache

• Rest supplied by other levels of memory 
hierarchy

• What are the hit and miss rates for the cache?

Memory Performance Example 1



Chapter 8 <10> 

• A program has 2,000 loads and stores

• 1,250 of these data values in cache

• Rest supplied by other levels of memory 
hierarchy

• What are the hit and miss rates for the cache?

Hit Rate = 1250/2000 = 0.625

Miss Rate = 750/2000 = 0.375 = 1 – Hit Rate

Memory Performance Example 1



Chapter 8 <11> 

• Suppose processor has 2 levels of hierarchy: 
cache and main memory

• tcache = 1 cycle, tMM = 100 cycles

• What is the AMAT of the program from 
Example 1?

Memory Performance Example 2



Chapter 8 <12> 

• Suppose processor has 2 levels of hierarchy: 
cache and main memory

• tcache = 1 cycle, tMM = 100 cycles

• What is the AMAT of the program from 
Example 1?

AMAT = tcache + MRcache(tMM)

= [1 + 0.375(100)] cycles

= 38.5 cycles

Memory Performance Example 2



Chapter 8 <13> 

• Amdahl’s Law: the 
effort spent increasing the 
performance of a 
subsystem is wasted 
unless the subsystem 
affects a large percentage 
of overall performance

• Co-founded 3 companies, 
including one called 
Amdahl Corporation in 
1970

Gene Amdahl, 1922-



Chapter 8 <14> 

• Highest level in memory hierarchy

• Fast (typically ~ 1 cycle access time)

• Ideally supplies most data to processor

• Usually holds most recently accessed data

Cache



Chapter 8 <15> 

• What data is held in the cache?

• How is data found?

• What data is replaced?

Focus on data loads, but stores follow same principles

Cache Design Questions



Chapter 8 <16> 

• Ideally, cache anticipates needed data and 
puts it in cache

• But impossible to predict future

• Use past to predict future – temporal and 
spatial locality:
– Temporal locality: copy newly accessed data 

into cache

– Spatial locality: copy neighboring data into 
cache too

What data is held in the cache?



Chapter 8 <17> 

• Capacity (C): 
– number of data bytes in cache

• Block size (b): 
– bytes of data brought into cache at once

• Number of blocks (B = C/b): 
– number of blocks in cache: B = C/b

• Degree of associativity (N): 
– number of blocks in a set

• Number of sets (S = B/N): 
– each memory address maps to exactly one cache set 

Cache Terminology



Chapter 8 <18> 

• Cache organized into S sets

• Each memory address maps to exactly one set

• Caches categorized by # of blocks in a set:

–Direct mapped: 1 block per set

–N-way set associative: N blocks per set

– Fully associative: all cache blocks in 1 set

• Examine each organization for a cache with:
– Capacity (C = 8 words)

– Block size (b = 1 word)

– So, number of blocks (B = 8)

How is data found?



Chapter 8 <19> 

• C = 8 words (capacity)

• b = 1 word (block size)

• So, B = 8 (# of blocks)

Ridiculously small, but will illustrate organizations

Example Cache Parameters



Chapter 8 <20> 

7 (111)

00...00010000

230 Word Main Memory

mem[0x00...00]

mem[0x00...04]

mem[0x00...08]

mem[0x00...0C]

mem[0x00...10]

mem[0x00...14]

mem[0x00...18]

mem[0x00..1C]

mem[0x00..20]

mem[0x00...24]

mem[0xFF...E0]

mem[0xFF...E4]

mem[0xFF...E8]

mem[0xFF...EC]

mem[0xFF...F0]

mem[0xFF...F4]

mem[0xFF...F8]

mem[0xFF...FC]

23 Word Cache

Set Number

Address

00...00000000

00...00000100

00...00001000

00...00001100

00...00010100

00...00011000

00...00011100

00...00100000

00...00100100

11...11110000

11...11100000

11...11100100

11...11101000

11...11101100

11...11110100

11...11111000

11...11111100

6 (110)

5 (101)

4 (100)

3 (011)

2 (010)

1 (001)

0 (000)

Direct Mapped Cache



Chapter 8 <21> 

DataTag

00
Tag Set

Byte

OffsetMemory

Address

DataHit

V

=

27 3

27 32

8-entry x

(1+27+32)-bit

SRAM

Direct Mapped Cache Hardware



Chapter 8 <22> 

# MIPS assembly code

addi $t0, $0, 5

loop: beq $t0, $0, done

lw $t1, 0x4($0)

lw $t2, 0xC($0)

lw $t3, 0x8($0)

addi $t0, $t0, -1

j    loop

done:

DataTagV

00...001 mem[0x00...04]

0

0

0

0

0

00
Tag Set

Byte

Offset
Memory

Address

V
3

00100...00

1

00...00

00...00

1

mem[0x00...0C]

mem[0x00...08]

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

Miss Rate = ?

Direct Mapped Cache Performance



Chapter 8 <23> 

# MIPS assembly code

addi $t0, $0, 5

loop: beq $t0, $0, done

lw $t1, 0x4($0)

lw $t2, 0xC($0)

lw $t3, 0x8($0)

addi $t0, $t0, -1

j    loop

done:

DataTagV

00...001 mem[0x00...04]

0

0

0

0

0

00
Tag Set

Byte

Offset
Memory

Address

V
3

00100...00

1

00...00

00...00

1

mem[0x00...0C]

mem[0x00...08]

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

Miss Rate = 3/15

= 20%

Temporal Locality

Compulsory Misses

Direct Mapped Cache Performance



Chapter 8 <24> 

# MIPS assembly code

addi $t0, $0, 5

loop: beq $t0, $0, done

lw $t1, 0x4($0)

lw $t2, 0x24($0)

addi $t0, $t0, -1

j    loop

done:

DataTagV

00...001
mem[0x00...04]

0

0

0

0

0

00
Tag Set

Byte

Offset
Memory

Address

V
3

00100...01

0

0

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

mem[0x00...24]

Miss Rate = ?

Direct Mapped Cache: Conflict



Chapter 8 <25> 

# MIPS assembly code

addi $t0, $0, 5

loop: beq $t0, $0, done

lw $t1, 0x4($0)

lw $t2, 0x24($0)

addi $t0, $t0, -1

j    loop

done:

DataTagV

00...001
mem[0x00...04]

0

0

0

0

0

00
Tag Set

Byte

Offset
Memory

Address

V
3

00100...01

0

0

Set 7 (111)
Set 6 (110)
Set 5 (101)
Set 4 (100)
Set 3 (011)
Set 2 (010)
Set 1 (001)
Set 0 (000)

mem[0x00...24]

Miss Rate = 10/10

= 100%

Conflict Misses

Direct Mapped Cache: Conflict



Chapter 8 <26> 

DataTag

Tag Set

Byte

OffsetMemory

Address

Data

Hit
1

V

=

01

00

32 32

32

DataTagV

=

Hit
1Hit

0

Hit

28 2

28 28

Way 1 Way 0

N-Way Set Associative Cache



Chapter 8 <27> 

# MIPS assembly code

addi $t0, $0, 5

loop: beq $t0, $0, done

lw $t1, 0x4($0)

lw $t2, 0x24($0)

addi $t0, $t0, -1

j    loop

done:

DataTagV DataTagV

0 0

0

0

0

0

0

0

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0

Miss Rate = ?

N-Way Set Associative Performance



Chapter 8 <28> 

# MIPS assembly code

addi $t0, $0, 5

loop: beq $t0, $0, done

lw $t1, 0x4($0)

lw $t2, 0x24($0)

addi $t0, $t0, -1

j    loop

done:

DataTagV DataTagV

00...001 mem[0x00...04]00...10 1mem[0x00...24]

0

0

0

0

0

0

Way 1 Way 0

Set 3
Set 2
Set 1
Set 0

Miss Rate = 2/10 

= 20%

Associativity reduces

conflict misses

N-Way Set Associative Performance



Chapter 8 <29> 

DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV DataTagV

Reduces conflict misses

Expensive to build

Fully Associative Cache



Chapter 8 <30> 

• Increase block size:
– Block size, b = 4 words

– C = 8 words

– Direct mapped (1 block per set)

– Number of blocks, B = 2 (C/b = 8/4 = 2)

DataTag

00
Tag

Byte

OffsetMemory

Address

Data

V

0
0

0
1

1
0

1
1

Block

Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 0

Spatial Locality?



Chapter 8 <31> 

DataTag

00
Tag

Byte

OffsetMemory

Address

Data

V

0
0

0
1

1
0

1
1

Block

Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 0

Cache with Larger Block Size



Chapter 8 <32> 

addi $t0, $0, 5

loop: beq $t0, $0, done

lw $t1, 0x4($0)

lw $t2, 0xC($0)

lw $t3, 0x8($0)

addi $t0, $t0, -1

j    loop

done:

Miss Rate = ?

Direct Mapped Cache Performance



Chapter 8 <33> 

addi $t0, $0, 5

loop: beq $t0, $0, done

lw $t1, 0x4($0)

lw $t2, 0xC($0)

lw $t3, 0x8($0)

addi $t0, $t0, -1

j    loop

done:

00...00 0 11

DataTag

00
Tag

Byte

OffsetMemory

Address

Data

V

0
0

0
1

1
0

1
1

Block

Offset

32 32 32 32

32

Hit

=

Set

27

27 2

Set 1
Set 000...001 mem[0x00...0C]

0

mem[0x00...08] mem[0x00...04] mem[0x00...00]

Miss Rate = 1/15 

= 6.67%

Larger blocks

reduce compulsory misses

through spatial locality

Direct Mapped Cache Performance



Chapter 8 <34> 

• Capacity: C 

• Block size: b

• Number of blocks in cache: B = C/b

• Number of blocks in a set: N

• Number of sets: S = B/N

Organization

Number of Ways 

(N)

Number of Sets 

(S = B/N)

Direct Mapped 1 B

N-Way Set Associative 1 < N < B B / N

Fully Associative B 1

Cache Organization Recap



Chapter 8 <35> 

• Cache is too small to hold all data of interest at once
• If cache full: program accesses data X & evicts data Y
• Capacity miss when access Y again
• How to choose Y to minimize chance of needing it again? 
• Least recently used (LRU) replacement: the least recently 

used block in a set evicted

Capacity Misses



Chapter 8 <36> 

• Compulsory: first time data accessed

• Capacity: cache too small to hold all data of 
interest

• Conflict: data of interest maps to same 
location in cache

Miss penalty: time it takes to retrieve a block from 
lower level of hierarchy

Types of Misses



Chapter 8 <37> 

DataTagV

0

DataTagV

0

0

0

0

0

U

0 0

0

0

0

0

Way 1 Way 0

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)

# MIPS assembly

lw $t0, 0x04($0)

lw $t1, 0x24($0)

lw $t2, 0x54($0)

LRU Replacement



Chapter 8 <38> 

DataTagV

0

DataTagV

0

0

0

0

0

U

mem[0x00...04]1 00...000mem[0x00...24] 100...010

0

0

0

0

DataTagV

0

DataTagV

0

0

0

0

0

U

mem[0x00...54]1 00...101mem[0x00...24] 100...010

0

0

0

1

(a)

(b)

Way 1 Way 0

Way 1 Way 0

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)

Set 3 (11)
Set 2 (10)
Set 1 (01)
Set 0 (00)

# MIPS assembly

lw $t0, 0x04($0)

lw $t1, 0x24($0)

lw $t2, 0x54($0)

LRU Replacement



Chapter 8 <39> 

• What data is held in the cache?

– Recently used data (temporal locality)

– Nearby data (spatial locality)

• How is data found?

– Set is determined by address of data

– Word within block also determined by address

– In associative caches, data could be in one of several 
ways

• What data is replaced?

– Least-recently used way in the set

Cache Summary



Chapter 8 <40> 

• Bigger caches reduce  capacity misses

• Greater associativity reduces conflict misses

Adapted from Patterson & Hennessy, Computer Architecture: A Quantitative Approach, 

2011

Miss Rate Trends



Chapter 8 <41> 

• Bigger blocks reduce compulsory misses

• Bigger blocks increase conflict misses

Miss Rate Trends



Chapter 8 <42> 

• Larger caches have lower miss rates, longer 
access times

• Expand memory hierarchy to multiple levels of 
caches

• Level 1: small and fast (e.g. 16 KB, 1 cycle)

• Level 2: larger and slower (e.g. 256 KB, 2-6 
cycles)

• Most modern PCs have L1, L2, and L3 cache

Multilevel Caches



Chapter 8 <43> 

Intel Pentium III Die



Chapter 8 <44> 

• Gives the illusion of bigger memory

• Main memory (DRAM) acts as cache for hard 
disk

Virtual Memory



Chapter 8 <45> 

• Physical Memory: DRAM (Main Memory)

• Virtual Memory: Hard drive

– Slow, Large, Cheap

Memory Hierarchy

Technology Price / GB
Access

Time (ns)

Bandwidth

(GB/s)

Cache

Main Memory

Virtual Memory

Capacity

S
p
e
e
d

SRAM $10,000 1

DRAM $10 10 - 50

SSD $1 100,000

25+

10

0.5

0.1HDD $0.1 10,000,000



Chapter 8 <46> 

Read/Write

Head

Magnetic

Disks

Takes milliseconds to seek correct location on disk

Hard Disk



Chapter 8 <47> 

• Virtual addresses
– Programs use virtual addresses

– Entire virtual address space stored on a hard drive

– Subset of virtual address data in DRAM

– CPU translates virtual addresses into physical addresses 
(DRAM addresses)

– Data not in DRAM fetched from hard drive

• Memory Protection
– Each program has own virtual to physical mapping

– Two programs can use same virtual address for different data

– Programs don’t need to be aware others are running

– One program (or virus) can’t corrupt memory used by 
another 

Virtual Memory



Chapter 8 <48> 

Cache Virtual Memory

Block Page

Block Size Page Size

Block Offset Page Offset

Miss Page Fault

Tag Virtual Page Number

Physical memory acts as cache for virtual memory

Cache/Virtual Memory Analogues



Chapter 8 <49> 

• Page size: amount of memory transferred 
from hard disk to DRAM at once

• Address translation: determining physical 
address from virtual address

• Page table: lookup table used to translate 
virtual addresses to physical addresses

Virtual Memory Definitions



Chapter 8 <50> 

Most accesses hit in physical memory

But programs have the large capacity of virtual memory

Virtual & Physical Addresses



Chapter 8 <51> 

Address Translation



Chapter 8 <52> 

• System:

– Virtual memory size: 2 GB = 231 bytes

– Physical memory size: 128 MB = 227 bytes

– Page size: 4 KB = 212 bytes

Virtual Memory Example



Chapter 8 <53> 

• System:
– Virtual memory size: 2 GB = 231 bytes

– Physical memory size: 128 MB = 227 bytes

– Page size: 4 KB = 212 bytes

• Organization:
– Virtual address: 31 bits

– Physical address: 27 bits

– Page offset: 12 bits

– # Virtual pages = 231/212 = 219 (VPN = 19 bits)

– # Physical pages = 227/212 = 215 (PPN = 15 bits)

Virtual Memory Example



Chapter 8 <54> 

• 19-bit virtual page numbers

• 15-bit physical page numbers

Virtual Memory Example



Chapter 8 <55> 

Virtual Memory Example

What is the physical address 
of virtual address 0x247C?



Chapter 8 <56> 

Virtual Memory Example

What is the physical address 
of virtual address 0x247C?
– VPN = 0x2

– VPN 0x2 maps to PPN 0x7FFF

– 12-bit page offset: 0x47C

– Physical address = 0x7FFF47C



Chapter 8 <57> 

• Page table

– Entry for each virtual page

– Entry fields:

• Valid bit: 1 if page in physical memory

• Physical page number: where the page is located

How to perform translation?



Chapter 8 <58> 

0
0
1         0x0000
1         0x7FFE
0
0

0
0
1         0x0001
0
0
1         0x7FFF
0
0

V

Virtual

Address
0x00002       47C

Hit

Physical

Page Number

1219

15 12

Virtual

Page Number

P
a
g
e
 T

a
b
le

Page

Offset

Physical

Address
0x7FFF       47C

VPN is index 

into page table

Page Table Example



Chapter 8 <59> 

0
0
1         0x0000
1         0x7FFE
0
0

0
0
1         0x0001
0
0
1         0x7FFF
0
0

V

Physical

Page Number

P
a
g
e
 T

a
b
le

What is the physical 

address of virtual 

address 0x5F20?

Page Table Example 1



Chapter 8 <60> 

0
0
1         0x0000
1         0x7FFE
0
0

0
0
1         0x0001
0
0
1         0x7FFF
0
0

V

Virtual

Address
0x00005       F20

Hit

Physical

Page Number

1219

15 12

Virtual

Page Number

P
a
g
e
 T

a
b
le

Page

Offset

Physical

Address
0x0001       F20

What is the physical 

address of virtual 

address 0x5F20?

– VPN = 5

– Entry 5 in page table 

VPN 5 => physical 

page 1

– Physical address: 

0x1F20

Page Table Example 1



Chapter 8 <61> 

0
0
1         0x0000
1         0x7FFE
0
0

0
0
1         0x0001
0
0
1         0x7FFF
0
0

V

Virtual

Address
0x00007       3E0

Hit

Physical

Page Number

19

15

Virtual

Page Number

P
a
g
e
 T

a
b
le

Page

Offset

What is the physical 

address of virtual 

address 0x73E0?

Page Table Example 2



Chapter 8 <62> 

0
0
1         0x0000
1         0x7FFE
0
0

0
0
1         0x0001
0
0
1         0x7FFF
0
0

V

Virtual

Address
0x00007       3E0

Hit

Physical

Page Number

19

15

Virtual

Page Number

P
a
g
e
 T

a
b
le

Page

Offset

What is the physical 

address of virtual 

address 0x73E0?

– VPN = 7

– Entry 7 is invalid

– Virtual page must be 

paged into physical 

memory from disk

Page Table Example 2



Chapter 8 <63> 

• Page table is large

– usually located in physical memory

• Load/store requires 2 main memory accesses:

– one for translation (page table read)

– one to access data (after translation)

• Cuts memory performance in half

– Unless we get clever…

Page Table Challenges



Chapter 8 <64> 

• Small cache of most recent translations

• Reduces # of memory accesses for most
loads/stores from 2 to 1

Translation Lookaside Buffer (TLB)



Chapter 8 <65> 

• Page table accesses: high temporal locality
– Large page size, so consecutive loads/stores likely to 

access same page

• TLB
– Small: accessed in < 1 cycle

– Typically 16 - 512 entries

– Fully associative

– > 99 % hit rates typical

– Reduces # of memory accesses for most loads/stores 
from 2 to 1

TLB



Chapter 8 <66> 

Hit
1

V

=

01

15 15

15

=

Hit
1Hit

0

Hit

19 19

19

Virtual

Page Number

Physical

Page Number

Entry 1

1    0x7FFFD     0x0000     1    0x00002     0x7FFF

Virtual

Address
0x00002       47C

1219

Virtual

Page Number

Page

Offset

V

Virtual

Page Number

Physical

Page Number

Entry 0

12
Physical

Address 0x7FFF       47C

TLB

Example 2-Entry TLB



Chapter 8 <67> 

• Multiple processes (programs) run at once

• Each process has its own page table

• Each process can use entire virtual address 
space

• A process can only access physical pages 
mapped in its own page table

Memory Protection



Chapter 8 <68> 

• Virtual memory increases capacity

• A subset of virtual pages in physical memory

• Page table maps virtual pages to physical 
pages – address translation

• A TLB speeds up address translation

• Different page tables for different programs 
provides memory protection

Virtual Memory Summary



Chapter 8 <69> 

• Processor accesses I/O devices just like 
memory (like keyboards, monitors, printers)

• Each I/O device assigned one or more 
address

• When that address is detected, data 
read/written to I/O device instead of 
memory

• A portion of the address space dedicated to 
I/O devices

Memory-Mapped I/O



Chapter 8 <70> 

• Address Decoder:

– Looks at address to determine which 
device/memory communicates with the 
processor

• I/O Registers:

– Hold values written to the I/O devices

• ReadData Multiplexer:

– Selects between memory and I/O devices as 
source of data sent to the processor

Memory-Mapped I/O Hardware



Chapter 8 <71> 

Processor Memory
Address

MemWrite

WriteData

ReadData

WE

CLK

The Memory Interface



Chapter 8 <72> 

Processor Memory
Address

MemWrite

WriteData

ReadDataI/O

Device 1

I/O

Device 2

CLK

EN

EN

Address Decoder

WE

W
E

M

R
D

s
e

l1
:0

W
E

2

W
E

1 CLK

00

01

10

CLK

Memory-Mapped I/O Hardware



Chapter 8 <73> 

• Suppose I/O Device 1 is assigned the address 
0xFFFFFFF4

– Write the value 42 to I/O Device 1

– Read value from I/O Device 1 and place in $t3

Memory-Mapped I/O Code



Chapter 8 <74> 

• Write the value 42 to I/O Device 1 (0xFFFFFFF4)
addi $t0, $0, 42

sw $t0, 0xFFF4($0)

Processor Memory
Address

MemWrite

WriteData

ReadDataI/O

Device 1

I/O

Device 2

CLK

EN

EN

Address Decoder

WE

W
E

M

R
D

s
e

l1
:0

W
E

2

W
E

1
 =

 1

CLK

00

01

10

CLK

Memory-Mapped I/O Code



Chapter 8 <75> 

• Read the value from I/O Device 1 and place in $t3
lw $t3, 0xFFF4($0)

Processor Memory
Address

MemWrite

WriteData

ReadDataI/O

Device 1

I/O

Device 2

CLK

EN

EN

Address Decoder

WE

W
E

M

R
D

s
e

l1
:0  =

 0
1

W
E

2

W
E

1 CLK

00

01

10

CLK

Memory-Mapped I/O Code



Chapter 8 <76> 

• Embedded I/O Systems

– Toasters, LEDs, etc.

• PC I/O Systems

Input/Output (I/O) Systems



Chapter 8 <77> 

• Example microcontroller: PIC32

– microcontroller

– 32-bit MIPS processor

– low-level peripherals include:

• serial ports

• timers

• A/D converters

Embedded I/O Systems



Chapter 8 <78> 

// C Code

#include <p3xxxx.h>

int main(void) {

int switches;

TRISD = 0xFF00;      // RD[7:0] outputs 

// RD[11:8] inputs

while (1) {

// read & mask switches, RD[11:8]

switches = (PORTD >> 8) & 0xF;

PORTD = switches;  // display on LEDs

}

}

Digital I/O



Chapter 8 <79> 

• Example serial protocols

– SPI: Serial Peripheral Interface

– UART: Universal Asynchronous 
Receiver/Transmitter

– Also: I2C, USB, Ethernet, etc.

Serial I/O



Chapter 8 <80> 

SPI: Serial Peripheral Interface

• Master initiates communication to slave by sending 
pulses on SCK

• Master sends SDO (Serial Data Out) to slave, msb first
• Slave may send data (SDI) to master, msb first



Chapter 8 <81> 

UART: Universal Asynchronous Rx/Tx

• Configuration:
– start bit (0), 7-8 data bits, parity bit (optional), 1+ stop bits (1)
– data rate: 300, 1200, 2400, 9600, …115200 baud

• Line idles HIGH (1)
• Common configuration: 

– 8 data bits, no parity, 1 stop bit, 9600 baud



Chapter 8 <82> 

// Create specified ms/us of delay using built-in timer

#include <P32xxxx.h>

void delaymicros(int micros) {

if (micros > 1000) {     // avoid timer overflow    

delaymicros(1000);    

delaymicros(micros-1000);

}  

else if (micros > 6){

TMR1 = 0;              // reset timer to 0    

T1CONbits.ON = 1;        // turn timer on

PR1 = (micros-6)*20;     // 20 clocks per microsecond 

// Function has overhead of ~6 us    

IFS0bits.T1IF = 0;     // clear overflow flag

while (!IFS0bits.T1IF);   // wait until overflow flag set 

}

}

void delaymillis(int millis) {

while (millis--) delaymicros(1000); // repeatedly delay 1 ms

}                                     // until done

Timers



Chapter 8 <83> 

• Needed to interface with outside world

• Analog input: Analog-to-digital (A/D) conversion 

– Often included in microcontroller

– N-bit: converts analog input from Vref--Vref+ to 0-2N-1

• Analog output:

– Digital-to-analog (D/A) conversion

• Typically need external chip (e.g., AD558 or LTC1257)

• N-bit: converts digital signal from 0-2N-1 to Vref--Vref+

– Pulse-width modulation

Analog I/O



Chapter 8 <84> 

Pulse-Width Modulation (PWM)

• Average value proportional to duty cycle

• Add high-pass filter on output to deliver average 
value



Chapter 8 <85> 

Other Microcontroller Peripherals

• Examples
– Character LCD

– VGA monitor

– Bluetooth wireless

– Motors



Chapter 8 <86> 

Personal Computer (PC) I/O Systems

• USB: Universal Serial Bus
– USB 1.0 released in 1996

– standardized cables/software for peripherals

• PCI/PCIe: Peripheral Component 
Interconnect/PCI Express
– developed by Intel, widespread around 1994

– 32-bit parallel bus

– used for expansion cards (i.e., sound cards, video 
cards, etc.)

• DDR: double-data rate memory



Chapter 8 <87> 

Personal Computer (PC) I/O Systems

• TCP/IP: Transmission Control Protocol and 
Internet Protocol
– physical connection: Ethernet cable or Wi-Fi

• SATA: hard drive interface

• Input/Output (sensors, actuators, 
microcontrollers, etc.)
– Data Acquisition Systems (DAQs) 

– USB Links


