
Overview:
In this projects you will implement a subset of the multicycle MIPS architecture in

HDL. You will implement a functioning outline of the multicycle processor for a small

set of instructions, including: decoding all the instructions you will encounter in the

projects, implementing most of the datapath, correct implementation of arithmetic and

logic operations, and FSM control for these instructions.

Requirements:
Write HDL code for the multicycle MIPS processor. The processor should be

compatible with the following top-level module. The mem module is used to hold both

instructions and data. Test your processor using the testbench that will be given in this

document.

module top(input logic clk, reset,

output logic [31:0] writedata, adr,

output logic memwrite);

logic [31:0] readdata;

// instantiate processor and memories

mips mips(clk, reset, adr, writedata, memwrite, readdata);

mem mem(clk, memwrite, adr, writedata, readdata);

endmodule

module mem(input logic clk, we,

input logic [31:0] a, wd,

output logic [31:0] rd);

logic [31:0] RAM[63:0];

initial

begin

$readmemh("memfile.dat", RAM);

end

assign rd = RAM[a[31:2]]; // word aligned

always @(posedge clk)

if (we)

RAM[a[31:2]] <= wd;

endmodule

Your design should contain a program counter, a combined data and code memories, a

register file, an ALU, and any other components needed, along with the instruction

Alexandria University

Faculty of Engineering
Electrical Engineering Department

CS 322: Computer Architecture
Bonus Design Project

decode and control circuits. Each instruction will be executed in an arbitrary number of

clock cycles as needed by the instruction. Your processor must correctly execute all of

the highlighted instructions in Table 1.

Table 1: MIPS Instruction Set

Build your MIPS processor suing your preferred HDL language and you can use any

component implemented in the course textbook. The multicycle MIPS architecture and

main components you should build in your design are shown in Figure 1. You only need

to modify the processor architecture to support the instructions highlighted in Table 1.

ImmExt

CLK

A
RD

Instr / Data

Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register

File

0

1

0

1PC
0

1

PC' Instr
25:21

20:16

15:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

Zero

CLK

A
LU

WD

WE

CLK

Adr

0

1
Data

CLK

CLK

A

B
00

01

10

11

4

CLK

ENEN

00

01

10

<<2

25:0 (Addr)

31:28

27:0

PCJump

5:0

31:26

Branch

MemWrite

ALUSrcA

RegWrite
Op

Funct

Control

Unit

PCSrc

CLK

ALUControl2:0

ALUSrcB1:0IRWrite

IorD

PCWrite

PCEn

R
e

g
D

s
t

M
e

m
to

R
e

g

IorD = 0

AluSrcA = 0

ALUSrcB = 01

ALUOp = 00

PCSrc = 00

IRWrite

PCWrite

ALUSrcA = 0

ALUSrcB = 11

ALUOp = 00

ALUSrcA = 1

ALUSrcB = 10

ALUOp = 00

IorD = 1

RegDst = 1

MemtoReg = 0

RegWrite

IorD = 1

MemWrite

ALUSrcA = 1

ALUSrcB = 00

ALUOp = 10

ALUSrcA = 1

ALUSrcB = 00

ALUOp = 01

PCSrc = 01

Branch

Reset

S0: Fetch

S2: MemAdr

S1:

Decode

S3:

MemRead

S5: MemWrite

S6:

Execute

S7: ALU

Writeback

S8: Branch

Op = LW

or

Op = SW

Op = R-type

Op = BEQ

Op = LW

Op = SW

RegDst = 0

MemtoReg = 1

RegWrite

S4: Mem

Writeback

ALUSrcA = 1

ALUSrcB = 10

ALUOp = 00

RegDst = 0

MemtoReg = 0

RegWrite

Op = ADDI

S9: ADDI

Execute

S10: ADDI

Writeback

PCSrc = 10

PCWrite

Op = J

S11: Jump

Figure 1: Multicycle MIPS Processor Architecture and controller’s FSM

Testing
Write a test program in MIPS assembly that fully tests all of the features you have

implemented. Our testing programs for this project will include a mixture of instructions

from Table 1. This is a critical step, and you will use the MIPS testbench given by the

textbook and shown in this section. The MIPS testbench loads a program into the

memories. The program in Figure 3 exercises some of the instructions by performing a

computation that should produce the correct answer only if all of the instructions are

functioning properly. Specifically, the program will write the value 7 to address 84 if it

runs correctly, and is unlikely to do so if the hardware is buggy. This is an example of

ad hoc testing. The machine code is stored in a hexadecimal file called memfile.dat,

which is loaded by the testbench during simulation. The file consists of the machine

code for the instructions, one instruction per line.

Figure 2: Assembly and machine code for MIPS test program

Documentation
The design document should include a block diagram showing all the major changes in

the given architecture. You need not completely draw wires for control logic signals,

but should indicate which components take control inputs, and give names to all control

signals. Also include a description of your control and instruction decoding logic. For

each control logic signal (or group of related control logic signals) you should provide

(a) a brief description of what the signal does, e.g. what the values of the control signal

mean; and (b) a truth table showing what value the signal takes for each possible

opcode.

