
Overview:
In this projects you will implement a subset of the pipelined MIPS architecture in HDL.

You will implement a functioning outline of the pipelined processor for a small set of

instructions, including: decoding all the instructions you will encounter in this project,

implementing most of the MIPS pipeline, correct implementation of arithmetic and

logic operations, and implementing a hazard detection and avoidance unit for these

instructions.

Academic Integrity. As one of the most widely studied architectures, MIPS has a

wealth of information available on the web and in textbooks. You may consult any

MIPS documentation available to you in order to learn about the instruction set, what

each instruction does, etc. But we expect your design to be entirely your own, and your

submission should cite any significant sources of information you used. Plagiarism in

any form will not be tolerated. It is also your responsibility to make sure your sources

match the material we describe here (warning: the top Google hit for "MIPS reference"

contains several inaccuracies).

Requirements:
You will implement a five-stage MIPS pipeline, which is the most common

organization for MIPS and is similar to what is described in the book and in class:

1. Fetch

2. Decode

3. Execute

4. Memory

5. Writeback

Your design should contain a program counter, a separate data and code memories, a

register file, an ALU, and any other components needed, along with the instruction

decode and control circuits and a hazard unit. The pipeline should: fetch instructions to

execute from the code memory and increment the program counter by 4; decode each

instruction; select arguments from the register file; compute results; do nothing in the

memory stage; and store results back in the register file. Your processor must correctly

execute all of the highlighted instructions in Table 1.

Alexandria University

Faculty of Engineering
Electrical Engineering Department

CS 322: Computer Architecture
 Course Design Project

Table 1: MIPS Instruction Set

Build your MIPS processor suing your preferred HDL language and you can use any

component implemented in the course textbook. The pipelined MIPS architecture and

main components you should build in your design are shown in Figure 1. In this project,

the instruction and data memories are separated from the main processor and connected

by address and data busses. You only need to modify the processor architecture to

support the highlighted instructions given in Table 1.

Testing
Write a test program in MIPS assembly that fully tests all of the features you have

implemented. Our testing programs for this project will include a mixture of instructions

from Table 1. This is a critical step, and you will use the MIPS testbench given by the

textbook and shown in this section. The MIPS testbench loads a program into the

memories. The program in Figure 3 exercises some of the instructions by performing a

computation that should produce the correct answer only if all of the instructions are

functioning properly. Specifically, the program will write the value 7 to address 84 if it

runs correctly, and is unlikely to do so if the hardware is buggy. This is an example of

ad hoc testing. The machine code is stored in a hexadecimal file called memfile.dat,

which is loaded by the testbench during simulation. The file consists of the machine

code for the instructions, one instruction per line.

EqualD

SignImmE

CLK

A RD

Instruction

Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign
Extend

Register

File

0

1

0

1

A RD

Data

Memory

WD

WE

1

0

PCF0

1

PC' InstrD
25:21

20:16

15:0

5:0

SrcBE

25:21

15:11

RsE

RdE

<<2

+

ALUOutM

ALUOutW

ReadDataW

WriteDataE WriteDataM

SrcAE

PCPlus4D

PCBranchD

WriteRegM4:0

ResultW

PCPlus4F

31:26

RegDstD

BranchD

MemWriteD

MemtoRegD

ALUControlD2:0

ALUSrcD

RegWriteD

Op

Func t

Control

Unit

PCSrcD

CLK CLK CLK

CLK CLK

WriteRegW4:0

ALUControlE2:0

A
LU

RegWriteE RegWriteM RegWriteW

MemtoRegE MemtoRegM MemtoRegW

MemWriteE MemWriteM

RegDstE

ALUSrcE

WriteRegE4:0

00
01
10

00
01
10

0

1

0

1

=

SignImmD

S
ta

llF

S
ta

llD

F
o

rw
a
rd

A
E

F
o

rw
a
rd

B
E

F
o

rw
a
rd

A
D

F
o

rw
a
rd

B
D

20:16 RtE

RsD

RdD

RtD

R
e

g
W

ri
te

E

R
e

g
W

ri
te

M

R
e

g
W

ri
te

W

M
e

m
to

R
e

g
E

B
ra

n
c
h
D

Hazard Unit

F
lu

s
h
E

E
N

E
N

C
L

R

C
L

R

Figure 1: Pipelined MIPS Processor

Documentation
The design document should include a block diagram showing all the major changes in

the given architecture. You need not completely draw wires for control logic signals,

but should indicate which components take control inputs, and give names to all control

signals. Also include a description of your control and instruction decoding logic. For

each control logic signal (or group of related control logic signals) you should provide

(a) a brief description of what the signal does, e.g. what the values of the control signal

mean; and (b) a truth table showing what value the signal takes for each possible

opcode.

Figure 2: Assembly and machine code for MIPS test program

