Alexandria University
Faculty of Engineering

Electrical Engineering Department

CS 322: Computer Architecture
Course Design Project

Overview:

In this projects you will implement a subset of the pipelined MIPS architecture in HDL.
You will implement a functioning outline of the pipelined processor for a small set of
instructions, including: decoding all the instructions you will encounter in this project,
implementing most of the MIPS pipeline, correct implementation of arithmetic and
logic operations, and implementing a hazard detection and avoidance unit for these
instructions.

Academic Integrity. As one of the most widely studied architectures, MIPS has a
wealth of information available on the web and in textbooks. You may consult any
MIPS documentation available to you in order to learn about the instruction set, what
each instruction does, etc. But we expect your design to be entirely your own, and your
submission should cite any significant sources of information you used. Plagiarism in
any form will not be tolerated. It is also your responsibility to make sure your sources
match the material we describe here (warning: the top Google hit for "MIPS reference"
contains several inaccuracies).

Requirements:
You will implement a five-stage MIPS pipeline, which is the most common
organization for MIPS and is similar to what is described in the book and in class:

1. Fetch

2. Decode
3. Execute
Memory
. Writeback

o

Your design should contain a program counter, a separate data and code memories, a
register file, an ALU, and any other components needed, along with the instruction
decode and control circuits and a hazard unit. The pipeline should: fetch instructions to
execute from the code memory and increment the program counter by 4; decode each
instruction; select arguments from the register file; compute results; do nothing in the
memory stage; and store results back in the register file. Your processor must correctly
execute all of the highlighted instructions in Table 1.

Table 1: MIPS Instruction Set

‘ Opcodes ‘ Example Assembly ‘ Semantics

add add $1, $2, $3 $1 = $2 + $3

sub sub $1, $2, $3 $1 = $2 - $3

add immediate addi $1, $2, 100 $1 = $2 + 100

add unsigned addu $1, $2, $3 $1 = $2 + $3

subtract unsigned subu $1, $2, $3 $1 = $2 - $3

add imm. Unsigned addiu $1, $2, 100 | $1 = $2 + 100

multiply mult $2, $3 hi, 1o = $2 * $3

multiply unsigned multu $2, $3 hi, lo = $2 * $3

divide div $2, $3 lo = $2/$3, hi = $2 mod $3
divide unsigned divu $2, $3 lo = $2/%$3, hi = $2 mod $3

move from hi mfhi $1 $1 = hi

move from low mflo $1 $1 = 1o

and and $1, $2, $3 $1 = $2 & $3

or or $1, $2, 33 $1 = $2 | $3

and immediate andi $1, $2, 100 $1 = $2 & 100

or immediate ori $1, $2, 100 $1 = $2 | 100

shift left logical s11 $1, $2, 10 $1 = $2 << 10

shift right logical srl $1, $2, 10 $1 = $2 >> 10

load word 1w $1, $2(100) $1 = ReadMem32($2 + 100)

store word sw $1, $2(100) WriteMem32($2 + 100, $1)

load halfword 1h $1, $2(100) $1 = SignExt (ReadMem16($2 + 100))
store halfword sh $1, $2(100) WriteMem16($2 + 100, $1)

load byte 1b $1, $2(100) $1 = SignExt(ReadMem8($2 + 100))
store byte sb $1, $2(100) WriteMem8($2 + 100, $1)

load upper immediate lui $1, 100 $1 = 100 << 16

branch on equal beq $1, $2, Label | if ($1 == $2) goto Label

branch on not equal bne $1, $2, Label | if ($1 != $2) goto Label

set on less than slt $1, $2, $3 if ($2 < $3) $1 = 1 else $1 = 0
set on less than immediate | s1ti $1, $2, 100 if ($2 < 100) $1 = 1 else $1 = 0
set on less than unsigned sltu $1, $2, $3 if ($2 < $3) $1 =1 else $1 =0
set on less than immediate | s1tui $1, $2, 100 | if ($2 < 100) $1 = 1 else $1 = 0
jump j Label goto Label

jump register jr $31 goto $31

jump and link jal Label $31 = PC + 4; goto Label

Build your MIPS processor suing your preferred HDL language and you can use any
component implemented in the course textbook. The pipelined MIPS architecture and
main components you should build in your design are shown in Figure 1. In this project,
the instruction and data memories are separated from the main processor and connected
by address and data busses. You only need to modify the processor architecture to
support the highlighted instructions given in Table 1.

Testing

Write a test program in MIPS assembly that fully tests all of the features you have
implemented. Our testing programs for this project will include a mixture of instructions
from Table 1. This is a critical step, and you will use the MIPS testbench given by the
textbook and shown in this section. The MIPS testbench loads a program into the
memories. The program in Figure 3 exercises some of the instructions by performing a
computation that should produce the correct answer only if all of the instructions are
functioning properly. Specifically, the program will write the value 7 to address 84 if it
runs correctly, and is unlikely to do so if the hardware is buggy. This is an example of
ad hoc testing. The machine code is stored in a hexadecimal file called memfile.dat,
which is loaded by the testbench during simulation. The file consists of the machine
code for the instructions, one instruction per line.

CLK CLK CLK
RegWriteD % RegWriteE 6 RegWriteM 6 RegWriteW

Control|

nit MemtoRegD MemtoRegE MemtoRegM MemtoRegW
ni

MemWriteD MemWriteE MemWriteM

ALUControlD,. ALUControlE

26

—or ALUSrcD ALUSIcE
50

1 Funct RegDstD RegDstE

| | BranchD
—
CLK CLK EqualD| PCsrcD}
CLK 67 I - | |
WE3 —
. ns =24 A1 RD1

0
A RD H 1 ALUOUtM ReadDataW

. J_I A RD H
e m P 5=
A3 . 111 Memory
wD3 Regillséter WriteDataE WriteDataM WD
2521 RsD RSE ALUOuthj—
2016

RtD RtE

|,

WriteRegEso WriteRegMao WriteRegW.,
RdD RAE I

1511
- SignimmD Signimme
150 Sign
Extend
<<2
+
PCPlus4F o PCPlus4D
£ L= L] L]
oLl PCBranchD
Resultw

5 H
[Hazard Unit J

Figure 1: Pipelined MIPS Processor

15

ForwardAD
ForwardBD
ForwardAE
FowardBE
MemtoRegE
RegWriteE
RegWriteW

BranchD
RegWriteM

StalF
StalD
FlushE

Documentation

The design document should include a block diagram showing all the major changes in
the given architecture. You need not completely draw wires for control logic signals,
but should indicate which components take control inputs, and give names to all control
signals. Also include a description of your control and instruction decoding logic. For
each control logic signal (or group of related control logic signals) you should provide
(a) a brief description of what the signal does, e.g. what the values of the control signal

mean; and (b) a truth table showing what value the signal takes for each possible
opcode.

#mipstest.asm

David_Harris@hmc.edu, Sarah_Harris@hmc.edu 31 March 2012
i

i Test the MIPS processor.

#f add, sub, and, or, slt, addi, 1w, sw, beq, j

If successful, it should write the value 7 to address 84

¥ Assembly Description Address Machine

main: addi $2, $0, 5 #initialize $2=5 0 20020005 20020005
addi $3, $0, 12 #initialize $3 =12 4 2003000¢c 2003000¢
addi $7, $3, -9 #initialize $7 =3 8 2067 fff7 2067 fFff7
or $4, %7, %2 #$4=(30R5)=7 C 00e22025 00e22025
and $5, $3, $4 #$5=(12AND7) =4 10 00642824 00642824
add $5, $5, $4 Fs5=4+7=11 14 00a42820 00a42820
beq $5, $7, end # shouldn't be taken 18 10a7000a 10a7000a
st $4, $3, $4 #F$4=12<7=0 1c 0064202a 0064202a
beq $4, $0, around # should be taken 20 10800001 10800001
addi $5, $0, 0 # shouldn’t happen 24 20050000 20050000

around: slt $4, $7, %2 #3$4=3<5=1 28 00e2202a 00e2202a
add $7, $4, $5 f$7=1+11=12 2c 00853820 00853820
sub $7, $7, $2 f$7=12-5=7 30 00e23822 00e23822
sw $7, 68(%3) #0801=7 34 ac670044 ac670044
Tw $2, 80(%0) #$2=1[80]=7 38 8c020050 8c020050
j end # should be taken 3c 08000011 08000011
addi $2, $0, 1 # shouldn't happen 40 20020001 20020001

end: sw o $2, 84(%0) Fwrite mem[84] =7 44 ac020054 ac020054

Figure 2: Assembly and machine code for MIPS test program

