
 1 © 2012 David Money Harris and Sarah L. Harris

Introduction

In this lab and the next, you will design and build your own multicycle MIPS processor.

You will be much more on your own to complete these labs than you have been in the

past, but you may reuse any of your hardware (SystemVerilog modules) from previous

labs.

Your multicycle processor should match the design from the text, which is reprinted in

Figure 1 for your convenience. It should handle the following instructions: add, sub,

and, or, slt, lw, sw, beq, addi, and j. The multicycle processor is divided into

three units: the controller, datapath, and mem (memory) units. Note that the mem

unit contains the shared memory used to hold both data and instructions. Also note that

the controller unit comprises both the Main Decoder that takes OP5:0 as inputs

and the ALU Decoder that takes as inputs ALUOp1:0 and the Funct5:0 code from the 6

least significant bits of the instruction. The controller unit also includes the gates

needed to produce the write enable signal, PCEn, for the PC register.

In this lab you will design and test the controller.

Digital Design and Computer Architecture

Lab 10: Multicycle Processor (Part 1)

 2 © 2012 David Money Harris and Sarah L. Harris

datapath

mem

control

ImmExt

CLK

A
RD

Instr / Data
Memory

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0

1

0

1PC
0

1

PC' Instr
25:21

20:16

15:0

SrcB20:16

15:11

<<2

ALUResult

SrcA

ALUOut

Zero

CLK

A
L
U

WD

WE

CLK

Adr

0

1
Data

CLK

CLK

A

B
00

01

10

11

4

CLK

ENEN

00

01

10

<<2

25:0 (jump)

31:28

27:0

PCJump

5:0

31:26

Branch

MemWrite

ALUSrcA

RegWrite
Op

Funct

Control
Unit

PCSrc1:0

CLK

ALUControl2:0

ALUSrcB1:0IRWrite

IorD

PCWrite

PCEn

R
e

g
D

s
t

M
e

m
to

R
e
g

Figure 1. Multicycle Processor

 3 © 2012 David Money Harris and Sarah L. Harris

Unit Overview

The three units have the following inputs and outputs. Although the signal names are in

upper case here to match the diagram, remember to use lower case for all names in your

SystemVerilog files.

CLK Input

Reset Input

Op [5:0] Input

Funct [5:0] Input

Zero Input

IorD Output

MemWrite Output

IRWrite Output

RegDst Output

MemtoReg Output

RegWrite Output

ALUSrcA Output

ALUSrcB [1:0] Output

ALUControl [2:0] Output

PCSrc [1:0] Output

PCEn Output

Table 1. Controller

Note that PCWrite and Branch are

internal signals (wires) within the

controller.

CLK Input

Reset Input

PCEn Input

IorD Input

IRWrite Input

RegDst Input

MemtoReg Input

RegWrite Input

ALUSrcA Input

ALUSrcB [1:0] Input

ALUControl [2:0] Input

PCSrc [1:0] Input

ReadData [31:0] Input

Op [5:0] Output

Funct [5:0] Output

Zero Output

Adr [5:0] Output

WriteData [31:0] Output

Table 2. Datapath

CLK Input

Reset Input

MemWrite Input

Adr [5:0] Input

WriteData [31:0] Input

ReadData [31:0] Output

Table 3. Memory (mem)

 4 © 2012 David Money Harris and Sarah L. Harris

Generating Control Signals

Before you begin developing the hardware for your MIPS multicycle processor, you’ll

need to determine the correct control signals for each state in the multicycle processor’s

state transition diagram. This state transition diagram is shown in Figure 7.42 in the book.

Complete the output table of the Main Decoder in Table 4 at the end of this handout.

Give the FSM control word in hexadecimal for each state. The first two rows are filled in

as examples. Be careful with this step. It takes much longer to debug an erroneous circuit

than to design it correctly the first time.

Overall Design

Now you will begin the hardware implementation of your multicycle processor. First,

copy mipsmulti.sv from the E85 Lab 10 directory on Charlie to your own directory

and rename it mipsmulti_xx.sv.

The mips module instantiates both the datapath and control unit (called the

controller module). The controller module in turn instantiates the main decoder

module (maindec) and the ALU decoder module (aludec). You will design the

controller in this lab. In the next lab, you will design the datapath. The memory is

essentially identical to the data memory from Lab 9 and will be provided for you.

Control Unit Design

The control unit is the most complex part of the multicycle processor. It consists of two

modules, the Main Decoder and the ALU Decoder. The Main Decoder, maindec,

should take the Opcode input and produce the outputs described in Table 4. On reset, the

control unit should start at State 0. The control unit should support the instructions from

Figure 7.42 in the text. The state transition diagram is also given at the end of this

handout.

Design your controller using an FSM for the Main Decoder and combinational logic for

the ALU Decoder. Also include any additional logic needed to compute PCEn from the

internal signals PCWrite, Branch, and Zero. The controller, maindec, and

aludec headers are given showing the inputs and outputs for each module. A portion of

the SystemVerilog code for the control unit has been given to you. Complete the

SystemVerilog code to completely design the hardware of the controller and its

submodules.

Create a controllertest_xx testbench for the controller module. Test each of

the instructions that the processor should support (add, sub, and, or, slt, lw, sw,

beq, addi, and j). Be sure to test both taken and nontaken branches. Remember that

the controller inputs are: clk, Reset, OP, Funct, and Zero. Your test bench

should apply the inputs. Visually inspect the states and outputs to verify that they match

your expectations from Table 4. Also verify that PCEn performs correctly. If you find

any errors, debug your circuit and correct the errors. Save a copy of your waveforms

showing the inputs, state, and control outputs, and PCEn at each state.

 5 © 2012 David Money Harris and Sarah L. Harris

What to Turn In

Submit the following elements in the following order. Clearly label each part by

number. Poorly organized submissions will lose points.

1. Please indicate how many hours you spent on this lab. This will not affect your

grade, but will be helpful for calibrating the workload for next semester’s labs.

2. A completed Main Decoder output table (Table 4).

3. The SystemVerilog for your controller, maindec, and aludec modules.

4. Your controllertest_xx testbench.

5. Simulation waveforms of the controller module showing (in the given order): CLK,

Reset, OP, Funct, Zero, the state (this is an internal registered signal), ALUControl,

PCEn, and the entire control word (i.e. the 4-nibble word you entered in Table 4)

demonstrating each instruction (including taken and non-taken branches). Display all

signals in hexadecimal. Does it match your expectations?

 6 © 2012 David Money Harris and Sarah L. Harris

S
t
a
t
e

(
N
a
m
e
)

P
C
W
r
i
t
e

M
e
m
W
r
i
t
e

I
R
W
r
i
t
e

R
e
g
W
r
i
t
e

A
L
U
S
r
c
A

B
r
a
n
c
h

I
o
r
D

M
e
m
t
o
R
e
g

R
e
g
D
s
t

A
L
U
S
r
c
B
[
1
:
0
]

P
C
R
s
c
[
1
:
0
]

A
L
U
O
p
[
1
:
0
]

F
S
M

C
o
n
t
r
o
l

W
o
r
d

0 (Fetch) 1 0 1 0 0 0 0 0 0 01 00 00 0x5010

1 (Decode) 0 0 0 0 0 0 0 0 0 11 00 00 0x0030

2 (MemAdr)

3 (MemRd)

4 (MemWB)

5 (MemWr)

6 (RtypeEx)

7 (RtypeWB)

8 (BeqEx)

9 (AddiEx)

10 (AddiWB)

11 (JEx)

Table 4. Main Decoder Control output

IorD = 0

AluSrcA = 0

ALUSrcB = 01

ALUOp = 00

PCSrc = 00

IRWrite

PCWrite

ALUSrcA = 0

ALUSrcB = 11

ALUOp = 00

ALUSrcA = 1

ALUSrcB = 10

ALUOp = 00

IorD = 1

RegDst = 1

MemtoReg = 0

RegWrite

IorD = 1

MemWrite

ALUSrcA = 1

ALUSrcB = 00

ALUOp = 10

ALUSrcA = 1

ALUSrcB = 00

ALUOp = 01

PCSrc = 01

Branch

Reset

S0: Fetch

S2: MemAdr

S1: Decode

S3: MemRead
S5: MemWrite

S6: Execute

S7: ALU

Writeback

S8: Branch

Op = LW

or

Op = SW

Op = R-type

Op = BEQ

Op = LW

Op = SW

RegDst = 0

MemtoReg = 1

RegWrite

S4: Mem

Writeback

ALUSrcA = 1

ALUSrcB = 10

ALUOp = 00

RegDst = 0

MemtoReg = 0

RegWrite

Op = ADDI

S9: ADDI

Execute

S10: ADDI

Writeback

PCSrc = 10

PCWrite

Op = J

S11: Jump

