
 1 © 2012 David Money Harris and Sarah L. Harris

Introduction

In this lab you will build a simplified MIPS single-cycle processor using SystemVerilog. You

will combine your ALU from Lab 5 with the code for the rest of the processor taken from the

textbook. Then you will load a test program and confirm that the system works. Next, you will

implement two new instructions, and then write a new test program that confirms the new

instructions work as well. By the end of this lab, you should thoroughly understand the internal

operation of the MIPS single-cycle processor.

Please read and follow the instructions in this lab carefully. In the past, many students have lost

points for silly errors like not printing all the signals requested.

Before starting this lab, you should be very familiar with the single-cycle implementation of the

MIPS processor described in Section 7.3 of your text, Digital Design and Computer

Architecture. The single-cycle processor schematic from the text is repeated at the end of this lab

assignment for your convenience. This version of the MIPS single-cycle processor can execute

the following instructions: add, sub, and, or, slt, lw, sw, beq, addi, and j.

Our model of the single-cycle MIPS processor divides the machine into two major units: the

control and the datapath. Each unit is constructed from various functional blocks. For example,

as shown in the figure on the last page of this lab, the datapath contains the 32-bit ALU that you

designed in Lab 5, the register file, the sign extension logic, and five multiplexers to choose

appropriate operands.

1. MIPS Single-Cycle Processor

The SystemVerilog single-cycle MIPS module is given in Section 7.6 of the text. Use the

electronic versions of all these files are in the class directory. Copy them to your own lab9_xx

folder.

Study the files until you are familiar with their contents. Look in mips.sv at the mips module,

which instantiates two sub-modules, controller and datapath. Then take a look at the

controller module and its submodules. It contains two sub-modules: maindec and aludec.

The maindec module produces all control signals except those for the ALU. The aludec

module produces the control signal, alucontrol[2:0], for the ALU. Make sure you

thoroughly understand the controller module. Correlate signal names in the SystemVerilog code

with the wires on the schematic.

Digital Design and Computer Architecture

Lab 9: MIPS Single-Cycle Processor

 2 © 2012 David Money Harris and Sarah L. Harris

After you thoroughly understand the controller module, take a look at the datapath

SystemVerilog module. The datapath has quite a few submodules. Make sure you understand

why each submodule is there and where each is located on the MIPS single-cycle processor

schematic. You’ll notice that the alu module is not defined. Copy your ALU from Lab 5 into

your lab9_xx directory. Be sure the module name matches the instance module name (alu), and

make sure the inputs and outputs are in the same order as in they are expected in the datapath

module.

The highest-level module, top, includes the instruction and data memories as well as the

processors. Each of the memories is a 64-word × 32-bit array. The instruction memory needs to

contain some initial values representing the program. The test program is given in Figure 7.60 of

the textbook. Study the program until you understand what it does. The machine language code

for the program is stored in memfile.dat.

2. Testing the single-cycle MIPS processor

In this section, you will test the processor with your ALU.

In a complex system, if you don’t know what to expect the answer should be, you are unlikely to

get the right answer. Begin by predicting what should happen on each cycle when running the

program. Complete the chart in Table 1 at the end of the lab with your predictions. What address

will the final sw instruction write to and what value will it write?

Simulate your processor with ModelSim. Refer to your earlier lab handouts if you need a

refresher on how to use ModelSim. Be sure to add all of the .sv files, including the one

containing your ALU. Add all of the signals from Table 1 to your waves window. (Note that

many are not at the top level; you’ll have to drill down into the appropriate part of the hierarchy

to find them.)

Run the simulation. If all goes well, the testbench will print “Simulation succeeded.” Look at the

waveforms and check that they match your predictions in Table 1. If they don’t, the problem is

likely in your ALU or because you didn’t properly add all of the files.

If you need to debug, you’ll likely want to view more internal signals. However, on the final

waveform that you turn in, show ONLY the following signals in this order: clk, reset, pc,

instr, aluout, writedata, memwrite, and readdata. All the values need to be

output in hexadecimal and must be readable to get full credit.

After you have fixed any bugs, print out your final waveform.

3. Modifying the MIPS single-cycle processor

You now need to modify the MIPS single-cycle processor by adding the ori and bne

instructions. First, modify the MIPS processor schematic at the end of this lab to show what

changes are necessary. You can draw your changes directly onto the schematic. Then modify the

main decoder and ALU decoder as required. Show your changes in the tables at the end of the

lab. Finally, modify the SystemVerilog code as needed to include your modifications.

 3 © 2012 David Money Harris and Sarah L. Harris

4. Testing your modified MIPS single-cycle processor

Next, you’ll need a test program to verify that your modified processor work. The program

should check that your new instructions work properly and that the old ones didn’t break. Use

test2.asm below.

test2.asm
23 March 2006 S. Harris sharris@hmc.edu
Test MIPS instructions.

#Assembly Code
main: ori $t0, $0, 0x8000

 addi $t1, $0, -32768

 ori $t2, $t0, 0x8001

 beq $t0, $t1, there

 slt $t3, $t1, $t0

 bne $t3, $0, here

 j there

here: sub $t2, $t2, $t0

ori $t0, $t0, 0xFF

there: add $t3, $t3, $t2

sub $t0, $t2, $t0

sw $t0, 82($t3)

Figure 1. MIPS assembly program: test2.asm

Convert the program to machine language and put it in a file named memfile2.dat. You may

choose to use the MPLAB assembler to check your work. Modify imem to load this file. Modify

the testbench to check for the appropriate address and data value indicating that the simulation

succeeded. Run the program and check your results. Debug if necessary. When you are done,

print out the waveforms as before and indicate the address and data value written by the sw

instruction.

What to Turn In

Please turn in each of the following items, clearly labeled and in the following order:

1. Please indicate how many hours you spent on this lab. This will not affect your grade

(unless omitted), but will be helpful for calibrating the workload for next semester’s labs.

2. A completed version of Table 1.

3. An image of the simulation waveforms showing correct operation of the processor. Does it

write the correct value to address 84?

The simulation waveforms should give the signal values in hexadecimal format and should

be in the following order: clk, reset, pc, instr, aluout, writedata, memwrite,

and readdata. Do not display any other signals in the waveform. Check that the

waveforms are zoomed out enough that the grader can read your bus values. Unreadable

waveforms will receive no credit. Use several pages and multiple images as necessary.

4. Marked up versions of the datapath schematic and decoder tables that adds the ori and bne

instructions.

 4 © 2012 David Money Harris and Sarah L. Harris

5. Your SystemVerilog code for your modified MIPS computer (including ori and bne

functionality) with the changes highlighted and commented in the code.

6. The contents of your memfile2.dat containing your test2 machine language code.

7. An image of the simulation waveforms showing correct operation of your modified processor

on the new program. What address and data value are written by the sw instruction?

 5 © 2012 David Money Harris and Sarah L. Harris

Cycle reset pc instr branch srca srcb aluout zero pcsrc writedata memwrite
read

data

1 1 00
addi $2,$0,5

20020005
0 0 5 5 0 0 0 0 x

2 0 04
addi $3,$0,12

2003000c
0 0 c c 0 0 0 0 x

3 0 08
addi $7,$3,-9

20067fff7
0 c -9 3 0 0 0 0 x

4
0 0C

Table 1. First sixteen cycles of executing mipstest.asm

 6 © 2012 David Money Harris and Sarah L. Harris

ImmExt

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Sign Extend

Register
File

0

1

0

1

A RD

Data

Memory

WD

WE
0

1

PC
0

1
PC' Instr

25:21

20:16

15:0

5:0

SrcB

20:16

15:11

<<2

+

ALUResult ReadData

WriteData

SrcA

PCPlus4

PCBranch

WriteReg4:0

Result

31:26

RegDst

Branch

MemWrite

MemtoReg

ALUSrc

RegWrite

Op

Funct

Control

Unit

Zero

PCSrc

CLK

ALUControl 2:0

A
L
U

0

1

25:0
<<2

27:0 31:28

PCJump

Jump

Single-cycle MIPS processor

 7 © 2012 David Money Harris and Sarah L. Harris

Extended functionality. Main Decoder:

Instruction Op5:0 RegWrite RegDst AluSrc Branch MemWrite MemtoReg ALUOp1:0 Jump

R-type 000000 1 1 0 0 0 0 10 0

lw 100011 1 0 1 0 0 1 00 0

sw 101011 0 X 1 0 1 X 00 0

beq 000100 0 X 0 1 0 X 01 0

addi 001000 1 0 1 0 0 0 00 0

j 000010 0 X X X 0 X XX 1

ori 001101

bne 000101

Extended functionality. ALU Decoder:

ALUOp1:0 Meaning

00 Add

01 Subtract

10 Look at funct field

11

