Alexandria University o HuCuy dadla

Faculty of Engineering duaigl) K
Computers and Communications Department C¥laiy) 5 llall duvigl) and
Mid-term Exam, April 2017 (Y dal) A ()) i) s Gl
Course Title and Code Number: 4l 52580 a8 15) jaall ol
Computer Architecture (CC 322) (CC 322) il iy jlaza
Time Allowed: 1 hour sas) g Ac bz g 3l
Answer all the following guestions: (20 marks)
Question 1: (5 marks)

Implement the following high-level code segments using the s1t instruction. Assume the integer
variables g and h are in registers $s0 and $s1, respectively.

a. if (g < h) b. while (g > h) c. do
g=nh-1; g=nh-1; g=nh-1;
else while (g > h);
g=n"h+ 1;
Question 2: (5 marks)

Write a MIPS assembly program equivalent to the following pseudo-instructions. If necessary, you can
use register $t0 to memorize intermediary values. No other register can be used.

a. add ($s0), $sl, ($s2) # mem[$s0] = $sl + mem[S$s2]
This MIPS instruction does not exist, because it uses an addressing mode not supported by RISC
Processors.

b. SWAP $t0, $tl # St0 <-> s$tl

This MIPS assembly does not exist; it is used to swap the contents of two registers, St 0 and
$t1.You may not use any other registers

c. PUSH $s0
This instruction is not a MIPS instruction either. It decrements the stack pointer (SP), then saves
$s0 at this address.

Question 3: (5 marks)

The following questions examine the limitations of the jump J and branch beq instructions. Give your
answer in number of instructions relative to the jump instruction.
a. In the worst case, how far can the jump instruction (5) jump forward (i.e., to higher addresses)?

(The worst case is when the jump instruction cannot jump far.) Explain using words and examples,
as needed.

b. In the best case, how far can the jump instruction (3) jump forward? (The best case is when the
jump instruction can jump the farthest.) Explain.

c. Repeat a, b for the beq instruction if applicable.

Page 1 of 2

Question 4: (5 marks)

You are required to develop a new MIPS-like instruction set architecture. The following are the
processor specifications and instruction set requirements:
I. The processor has 64 32-bit general purpose registers, 64 32-bit floating-point register, and the

instruction register is 32-bit width.

Ii. The addressing modes are: Register, Immediate, Base-offset, PC-relative, and Pseudo-direct
addressing modes; and the memory capacity is 4 GByte (Byte-addressable).

iii. R-, I-, and J-type instruction formats are required, and the immediate operands should be 16-
bit width.

iv. A floating-point instruction format is needed to support both single and double precision
instructions on three register operands, two sources and one destination.

Design the instruction formats to maximize the number of operations encoded by each format
while satisfying the above requirements.
a. Illustrate with neat plots the four instruction formats.

b. Construct a table to indicate the number of instructions that can be encoded by each format.
c. Indicate with equations how the memory address is calculated for PC-relative and Pseudo
direct addressing modes in your architecture.

Gload Luek
D Wokammed Horey

Page 2 of 2

MIPS Reference Cheat Sheet

INSTSTRUCTION SET (SUBSET)

Name (format, op, funct) Syntax

add (R,0,32) add rd,rs,rt
add immediate (1,8,na) addi rt,rs,imm
add immediate unsigned (1,9,na) addiu rt,rs,imm
add unsigned (R,0,33) addu rd,rs,rt

and (R,0,36) and rd,rs,rt
and immediate (1,12,na) andi rt,rs,imm
branch on equal (1,4,na) beq rs,rt,label
branch on not equal (1,5,na) bne rs,rt,label
jump and link register (R,0,9) jalr rs

jump register (R,0,8) jr s

jump (J,2,na) 3j label

jump and link (J,3,na) jal 1label

load byte (1,32,na) 1b rt,imm(rs)

load byte unsigned (1,36,na) 1bu
load upper immediate (I,14,na) lui

rt,imm(rs)
rt,imm

load word (1,35,na) 1w rt,imm(rs)
multiply, 32-bit result (R,28,2) mul «rd,rs,rt
nor (R,0,39) nor rd,rs,rt
or (R,0,37) or rd,rs,rt
or immediate (1,13,na) ori rt,rs,imm
set less than (R,0,42) slt rd,rs,rt

set less than unsigned (R,0,43)
set less than immediate (1,10,na) s1ti rt,rs,imm
set less than immediate
unsigned (1,11,na)
shift left logical (R,0,0) sll rd,rt,shamt
shift left logical variable (R,0,4) sllv rd,rt,rs
shift right arithmetic (R,0,3) sra rd,rt,shamt

sltu rd,rs,rt

sltiu rt,rs,imm

shift right logical (R,0,2) srl rd,rt,shamt
shift right logical variable (R,0,6) srlv rd,rt,rs
store byte (1,40,na) sb rt,imm(rs)
store word (1,43,na) sw rt,imm(rs)
subtract (R,0,34) sub rd,rs,rt
subtract unsigned (R,0,35) subu rd,rs,rt
xor (R,0,38) xor rd,rs,rt

xor immediate (I,14,na) xori rt,rs,imm

Definitions

Operation

reg(rd) := reg(rs) + reg(rt);

reg(rt) := reg(rs) + signext(imm);

reg(rt) := reg(rs) + signext(imm);

reg(rd) :=reg(rs) + reg(rt);

reg(rd) := reg(rs) & reg(rt);

reg(rt) := reg(rs) & zeroext(imm);

if reg(rs) == reg(rt) then PC = BTA else NOP;
if reg(rs) != reg(rt) then PC = BTA else NOP;
Sra:=PC+4; PC:=reg(rs);

PC :=reg(rs);

PC:=JTA;

Sra:=PC+4; PC:=ITA;

ﬂ
@
0
=
st
i
N
o
1
o
¢}
x
=
3
)
3
=
[0}
LR
=
L
+
@,
@
=}
I
x
=
3
3
=
e

(

(

(
reg(rt) := mem[reg(rs) + signext(imm)];
reg(rd) := reg(rs) * reg(rt);
reg(rd) := not(reg(rs) | reg(rt));
reg(rd) :=reg(rs) | reg(rt);
reg(rt) := reg(rs) | zeroext(imm);
reg(rd) := if reg(rs) < reg(rt) then 1 else O;
reg(rd) := if reg(rs) < reg(rt) then 1 else O;
reg(rt) := if reg(rs) < signext(imm) then 1 else 0;
reg(rt) := if reg(rs) < signext(imm) then 1 else 0;
reg(rd) := reg(rt) << shamt;
reg(rd) := reg(rt) << reg(rs,,);
reg(rd) := reg(rt) >>> shamt;
reg(rd) := reg(rt) >> shamt;

reg(rd) := reg(rt) >> reg(rs,,);

mem([reg(rs) + signext(imm)], := reg(rt),o,
mem(reg(rs) + signext(imm)] := reg(rt);
reg(rd) := reg(rs) - reg(rt);

reg(rd) := reg(rs) - reg(rt);

reg(rd) := reg(rs) reg(rt);

reg(rt) := rerg(rs) » zeroext(imm);

= Jump to target address: JTA = concat((PC + 4);,.,4, address(label), 00,)

= Branch target address: BTA=PC+4 +imm * 4

Clarifications
= All numbers are given in decimal form (base 10).

= Function signext(x) returns a 32-bit sign extended value of x in two’s complement form.

= Function zeroext(x) returns a 32-bit value, where zero are added to the most significant side of x.
= Function concat(x, y, ..., z) concatenates the bits of expressions x, vy, ..., z.

" Subscripts, for instance Xg,, means that bits with index 8 to 2 are spliced out of the integer X.

= Function address(x) means the address of label x.

= NOP and na means “no operation” and “not applicable”, respectively.
= shamt is an abbreviation for “shift amount”, i.e. how much bit shifting that should be done.

INSTRUCTION FORMAT

R-Type
31 26 25 21 20 16 15 11 10 65 0
| op | rs | rt | rd | shamt | funct |
6 bits 5 bits 5 bits 5 bits 5 bits
I-Type
31 26 25 21 20 16 15 0
| op | rs | rt | immediate |
6 bits 5 bits 5 bits 16 bits
J-Type 31 26 25 0
| op | address |
6 bits 26 bits

REGISTERS

Name Number Description
Szero 0 constant value 0
Sat 1 assembler temp
Sv0 2 function return
Svl 3 function return
$a0 4 argument

Sal 5 argument

$a2 6 argument

$a3 7 argument

Sto 8 temporary value
Stl 9 temporary value
St2 10 temporary value
St3 11 temporary value
Sta 12 temporary value
St5 13 temporary value
St6 14 temporary value
St7 15 temporary value
$sO 16 saved temporary
Ss1 17 saved temporary
$s2 18 saved temporary
$s3 19 saved temporary
Ss4 20 saved temporary
$s5 21 saved temporary
$s6 22 saved temporary
Ss7 23 saved temporary
St8 24 temporary value
St9 25 temporary value
Sko 26 reserved for OS
Skl 27 reserved for OS
Sgp 28 global pointer
Ssp 29 stack pointer
Sfp 30 frame pointer
Sra 31 return address
MIPS Reference Cheat
Sheet

By David Broman
KTH Royal Institute of Technology

If you find any errors or have any
feedback on this document, please send
me an email: dbro@kth.se

Version 1.0, December 19, 2014

	Midterm_2017
	mips-ref-cheat-sheet

