Alexandria University o HuCuy dadla

Faculty of Engineering Juaigl) 4K
Computers and Communications Department YLV s Clanlall duvia aud
Spring Final Exam, June 2016 (Y7) SUI sl) Jaadll dles laial
Course Title and Code Number: 4l 52580 a8)l g) jaall s
Computer Architecture (CC 322) (CC 322) il iy jlaza
Time Allowed: 2 hours e la s 3l
Attempt All Questions: (50 marks)

Question 1 (15 marks)

The MIPS instruction set reference sheet is provided in the last page of the exam.
a) Write a MIPS assembly program equivalent to the following pseudo-instructions. Do not use any

temporary registers.
i. add ($s0), $sl, ($s2) #fmem[$Ss0] =$sl+mem[$s2]
This MIPS instruction does not exist, because it uses an addressing mode not supported
by RISC processors.

idi. SWAP $t0, Stl # St0 <-> stl
This MIPS assembly does not exist; it is used to swap the contents of two registers, $t0
and st1.

idii. PUSH $s0

This instruction is not a MIPS instruction either. It decrements the stack pointer (SP),
then saves $s0 at this address.

b) In MIPS instructions, write the assembly translation of the following C code segment:

for (1 = 0; 1 <= 9; 1i++) {

Cli] = A[i + 1] - A[i] * B[i + 2]
}

Arrays A, B and C start at memory location 0xA000, 0xB000 and 0xC000, respectively. Save these

base addresses in registers $s1, $s2, $s3 andset $s0 asthe index i.

c) The following assembly code is used to compute factorial(n) where nis passed to the factorial
function as the argument register $a0. Draw the status of the stack before and after calling
factorial, and during each function call for $a0=4. Indicate the registers and variables stored
on the stack, mark the location of $sp, and clearly mark each stack frame.

0x90 factorial: #continue

addi sp, Ssp, -8 OxBO jr Sra
0x94 sw $al0, 4(Ssp) 0xB4 else:
0x98 sw Sra, 0(Ssp) addi $a0, $a0, -1
0x9C addi s$t0, $0, 2 0xB8 jal factorial
OxAO slt $t0, $a0, 5tO OxBC Iw Sra, 0(S$sp)
0xA4 beg $t0, $0, else OxCO Iw $al0, 4($sp)
0xA8 addi sv0, $0, 1 0xC4 addi sp, SSsp, 8
OxAC addi sp, Ssp, 8 0xC8 mul $v0, $al0, s$vO

OxCC jr Sra

Page 1 of 8

Question 2 (15 marks)
You can either just draw parts needing modifications in your answer sheet, or you

can draw the required modifications on the printed figures in the exam papers and
attach them to your answer sheet.

a)

b)

Modify the single-cycle MIPS processor shown in Figure 1 to implement each of the following
instructions. Indicate the changes required to the datapath, control unit, and control signals
indicated by Table 1
i. sll ii. sllv ii. jalr
Modify the multicycle MIPS processor shown in Figure 2 to implement each of the following
instructions. Indicate the changes required to the datapath, control unit, and control FSM indicated
by Figure 3. Describe any other changes that are required.
iv.] V. bne vi. lwinc
The 1winc instruction (load with postincrement instruction, which updates the index register to
point to the next memory word after completing the load) is equivalent to:
lw Srt, imm(Srs)
addi S$rs, Srs, 4
Can you modify the Single-cycle and Multicycle processors to implement the following
instructions without altering the processor state elements? If your answer is yes, indicate the
needed modifications to both the datapath and control units. If your answer is no, indicate why,
and show how these instructions can be implemented using the existing MIPS instructions.
i. beq rs, rt, rd #if reg(rs)==reg(rt) then PC=reg(rd) else NOP;
ii. beq rs, imml5:0, rd
#if reg(rs)==signextend (imml5:0) then PC=reg(rd) else NOP;

Question 3 (15 marks)

a)

The following program is running on a 5-stage (F, D, E, M, W) pipelined MIPS processor:

##Add Two Arrays##
addi $s0, $0, 40
L: lw S$s1, 0($s0)
lw S$s2, 40(S$s0)
addi $s3, $sl1, $s2
sw $s3, 0($s0)
addi $s0, $s0, -4
bne $s0, $0, L

Load first operand
Load second operand
Add operands

Store result
Calculate address of next element
Loop if (s0) != 0

S oS S e o

I. Calculate how many clock cycles will take execution of this code segment on a single-
cycle MIPS processor.

ii. Calculate how many clock cycles will take execution of this segment on a pipelined MIPS
processor without a hazard unit. Assume a nop operation is inserted to resolve RAW
hazards. Show timing of one loop cycle as follows:

Page 2 of 8

Clock Cycle Number

Instruction

6 (789101112

1314 |15

lw $s1, 0($s4) F

m
m<Z

1w $s2, 400 ($s4) F|D

5
W
M

w

addi $s3, $sl, $s2

sw $s3, 0(Ss4)

addi $s4, $s4, -4

bne $s4, $0, L

iii. Calculate how many clock cycles will take execution of this segment on a pipelined MIPS
processor with a hazard unit having both stalling and forwarding mechanisms. Show timing

of one loop cycle as the table of part ii.

b) A standard benchmark consists of approximately 20% loads, 10% stores, 15% branches, 5%
jumps, and 50% R-type instructions. Assume that 30% of the loads are immediately followed by
an instruction that uses the result, requiring a stall, and that 25% of the branches are mispredicted,
requiring a flush. Assume that jJumps always flush the subsequent instruction.

i. Compute the average CPI of the single-
cycle, multicycle, and pipelined
Processors.

ii. Compare the execution time for a program
with 10 billion instructions on the three
processors. The delay of various circuit
elements is shown the following table.

iii. Indicate only the most important
parameter needing optimization to
improve the overall performance of each

Element

register clk-to-Q tpeq
register setup Lsetup
multiplexer Tmux
ALU taLu
memory read tmem
register file read tRFread
register file setup fgpyenp

Parameter Delay (ps)

20
30
25
350
250
150
30

processor from both the fabrication technology and computer architecture point of views.

Question 4

(15 marks)

a) A 16-word cache has the following parameters: b, block size given in numbers of words; S, number
of sets; N, number of ways; and A, number of address bits. Consider the following repeating

sequence of 1w addresses (given in hexadecimal):

4 484C7074787C8084888C9094989C048C1014181C 20

Assuming least recently used (LRU) replacement for associative caches, determine the effective
miss rate if the sequence is input to the following caches.

i. direct mapped cache, b = 1 word
ii. fully associative cache, b = 1 word

iii. two-way set associative cache, b =1 word

iv. direct mapped cache, b = 2 words

Page 3 of 8

b) Consider a cache with the following parameters:
N (associativity) = 2, b (block size) = 2 words, W (word size) = 32 bits, C (cache size) = 32 K
Words A (address size) = 32 bits. You need to consider only word addresses.

iv.

Show the tag, set, block offset, and byte offset bits of the address. State how many bits are
needed for each field?

What is the size of all the cache tags in bits?

Suppose each cache block also has a valid bit (V) and a dirty bit (D). What is the size of
each cache set, including data, tag, and status bits?

Design the cache using the building blocks in the following figure and a small number of
two-input logic gates. The cache design must include tag storage, data storage, address
comparison, data output selection, and any other parts you feel are relevant. Note that the
multiplexer and comparator blocks may be any size (n or p bits wide, respectively), but the
SRAM blocks must be 16K x 4 bits. Be sure to include a neatly labeled block diagram.
You need only design the cache for reads.

fe to
14, | 16Kx4 —0
SRAM L —

J(—1 |
4

Figure: Cache Building blocks

c) Consider a virtual memory system that can address a total of 250 bytes. You have unlimited hard
drive space, but are limited to 2 GB of semiconductor (physical) memory. Assume that virtual and
physical pages are each 4 KB in size.

.
ii.
iii.
iv.
V.
Vi.

How many bits is the physical and virtual addresses?

What is the number of physical and virtual pages in this system?

How many bits are the virtual and physical page numbers?

How many page table entries will the page table contain?

How many bytes long is each page table entry taking the valid bit into consideration?
Sketch the layout of the page table. What is the total size of the page table in bytes?

Page 4 of 8

Jnsay

+

bayoywapy

youeigdd pueix3 ubig
+
. psniaoa] T
0BayalM
LLSL
9102
am a4 caM
19)siba
fiowspy R i “_n sy Aiowspy
eleq 2l
7 v _N - 4 mrol_ cad v v uonanasu|
m elegpeay Insedny |C U] ad v
amMm A 0107 = VoIS ad £3IM _vrd/Q 1252
T |
XMT10 MT10
alpbe
1sabed| joung —
AsN1vY do
0¢jonuoDN Y .
—— |Q youeig
ammwepy |, MUN
|jonuon

2
8

Figure 1: Single-cycle MIPS processor

Page 5 of 8

wuwjubig

puaix3 ubig }

0:GL

L
€am |_1\w__| ereq
_._v q LLSL V\l\.\.v ﬁ_>>
—1 (o]} a4 €V Lo Koway
l > RIS ob—+ 1918169y ~J 9102 ejeq/iisu|
_n_w_ L
 [non) [Tmseanv | Q| g []== - g a7 s<_lﬂ_| i
Q "} Lay LY —{ sul JTod
X170 0197 v €M A~ |3 5| IM A
s " = sl 4 M10 I M10
X10 o g @ 70
s o
3 N
alubay “ocn“_u_ 05
voISNVY Olsee
%lgoisnv SlUMY
®Conuopny| wun [SWMwsN
21S0d | 194u0) [qio|
u3od youeig
mE>>on_(NWI\

A0

_O&

Figure 2: Multicycle MIPS processor

Page 6 of 8

Table 1: Single cycle MIPS processor control signals

Instruct | Ops.o | RegWr | RegD | AluS | Bran | MemW | Memto | ALUO | Jum
ion ite st rc ch rite Reg P10 p
R-type 000000 1 1 0 0 0 0 10 0
1w 100011 1 0 1 0 0 1 00 0
SwW 101011 0 X 1 0 1 X 00 0
beq 000100 0 X 0 1 0 X 01 0
J 000100 0 X X X 0 X XX 1
S0:Fetch S1:Decode
lorD=0
Reset AluSrcA=0
ALUSrcB=01 ALUSrcA=0
ALUOp=00 ALUSrcB=11
PCSrc=0 ALUOp=00
Op=ADDI
Op=LW Op=BEQ
or Op= R'Wpe
S2:MemAdr Op=SW S6:Execute S0:ADDI
S8:Branch Escols
ALUSrcA=1
ALUSrcA=1 ALUSIrcA=1 ALUSrcB=00 ALUSrcA=1
ALUSrcB=10 ALUSrcB=00 ALUOp=01 ALUSrcB=10
ALUOp=00 ALUOp=10 PCSrc=1 ALUOp=00
Branch
Op=SW
Op=tv S5:MemWrite \?V-,r;:\etgck S10:ADDI
S3:MemRead Writeback
lorD=1 RegDst=1 RegDst=0
MemV\?rite MemtoReg=0 MemtoReg=0
RegWrite RegWrite
S4:Mem
Writeback
RegDst=0
MemtoReg=1
RegWrite

Figure 3: Multicycle MIPS controller FSM

Page 7 of 8

ﬁ jyun piezey
= [= wlw wlw w [~} [=] [=] e &
: £le (& ik g 8|3 8 = B
= |5 2|% 3|3 o g|a & @ Lz
> 2| 2| E g|e |2 @
2 o x g Vol Fiod S| o
29 @ = s Wl Wl
Minsey
Qquoueigod
= —=r — ;
5] Qavsnidod e 4vSnidOd
+ <<
>>
pusixe 4
oS
Jwwiubis quwubis ubj
7l .
um| E) 3Py e
“'MmBagerm “"wbayam “736eHelum Lo T
5 ™ Y a :
n_:_ MINONTY| 3sy asy 1e5e
- am M eam
WelBgeIum Jeegeium 101s16ay
o _._ll i Aowaw
el
1, n< 10 2ad (AN e uononAsu|
Meleqgpeay winonvy _I_\ I H a4 v
0 Lay LY] QitsUl 40d od
(T4-r4
IM A || = €IM AL kT
| Q 10
X0 90189 [enb3 X110 A0
- ayouelg
Jisabey aisgbay oun [——
3usNV aIsNTV do —
- 9ziie
“#3j00u00N Y “Zglenuodny
Walumwapyy Jalumwapy aejumwapyy wun
mbayoispy whayonwep 3b6ayonueny ogzo.:mms_ Jonuo)
\Sw__:smmmAV Ew::SmeNV wm_:\sommAV asiumbey
10 A0 M0

Pipelined MIPS Processor

Figure 4

Page 8 of 8

MIPS Reference Cheat Sheet

INSTSTRUCTION SET (SUBSET)

Name (format, op, funct) Syntax

add (R,0,32) add rd,rs,rt
add immediate (1,8,na) addi rt,rs,imm
add immediate unsigned (1,9,na) addiu rt,rs,imm
add unsigned (R,0,33) addu rd,rs,rt

and (R,0,36) and rd,rs,rt
and immediate (1,12,na) andi rt,rs,imm
branch on equal (1,4,na) beq rs,rt,label
branch on not equal (1,5,na) bne rs,rt,label
jump and link register (R,0,9) jalr rs

jump register (R,0,8) jr s

jump (J,2,na) 3j label

jump and link (J,3,na) jal 1label

load byte (1,32,na) 1b rt,imm(rs)

load byte unsigned (1,36,na) 1bu
load upper immediate (I,14,na) lui

rt,imm(rs)
rt,imm

load word (1,35,na) 1w rt,imm(rs)
multiply, 32-bit result (R,28,2) mul «rd,rs,rt
nor (R,0,39) nor rd,rs,rt
or (R,0,37) or rd,rs,rt
or immediate (1,13,na) ori rt,rs,imm
set less than (R,0,42) slt rd,rs,rt

set less than unsigned (R,0,43)
set less than immediate (1,10,na) s1ti rt,rs,imm
set less than immediate
unsigned (1,11,na)
shift left logical (R,0,0) sll rd,rt,shamt
shift left logical variable (R,0,4) sllv rd,rt,rs
shift right arithmetic (R,0,3) sra rd,rt,shamt

sltu rd,rs,rt

sltiu rt,rs,imm

shift right logical (R,0,2) srl rd,rt,shamt
shift right logical variable (R,0,6) srlv rd,rt,rs
store byte (1,40,na) sb rt,imm(rs)
store word (1,43,na) sw rt,imm(rs)
subtract (R,0,34) sub rd,rs,rt
subtract unsigned (R,0,35) subu rd,rs,rt
xor (R,0,38) xor rd,rs,rt

xor immediate (I,14,na) xori rt,rs,imm

Definitions

Operation

reg(rd) := reg(rs) + reg(rt);

reg(rt) := reg(rs) + signext(imm);

reg(rt) := reg(rs) + signext(imm);

reg(rd) :=reg(rs) + reg(rt);

reg(rd) := reg(rs) & reg(rt);

reg(rt) := reg(rs) & zeroext(imm);

if reg(rs) == reg(rt) then PC = BTA else NOP;
if reg(rs) != reg(rt) then PC = BTA else NOP;
Sra:=PC+4; PC:=reg(rs);

PC :=reg(rs);

PC:=JTA;

Sra:=PC+4; PC:=ITA;

ﬂ
@
0
=
st
i
N
o
1
o
¢}
x
=
3
)
3
=
[0}
LR
=
L
+
@,
@
=}
I
x
=
3
3
=
e

(

(

(
reg(rt) := mem[reg(rs) + signext(imm)];
reg(rd) := reg(rs) * reg(rt);
reg(rd) := not(reg(rs) | reg(rt));
reg(rd) :=reg(rs) | reg(rt);
reg(rt) := reg(rs) | zeroext(imm);
reg(rd) := if reg(rs) < reg(rt) then 1 else O;
reg(rd) := if reg(rs) < reg(rt) then 1 else O;
reg(rt) := if reg(rs) < signext(imm) then 1 else 0;
reg(rt) := if reg(rs) < signext(imm) then 1 else 0;
reg(rd) := reg(rt) << shamt;
reg(rd) := reg(rt) << reg(rs,,);
reg(rd) := reg(rt) >>> shamt;
reg(rd) := reg(rt) >> shamt;

reg(rd) := reg(rt) >> reg(rs,,);

mem([reg(rs) + signext(imm)], := reg(rt),o,
mem(reg(rs) + signext(imm)] := reg(rt);
reg(rd) := reg(rs) - reg(rt);

reg(rd) := reg(rs) - reg(rt);

reg(rd) := reg(rs) reg(rt);

reg(rt) := rerg(rs) » zeroext(imm);

= Jump to target address: JTA = concat((PC + 4);,.,4, address(label), 00,)

= Branch target address: BTA=PC+4 +imm * 4

Clarifications
= All numbers are given in decimal form (base 10).

= Function signext(x) returns a 32-bit sign extended value of x in two’s complement form.

= Function zeroext(x) returns a 32-bit value, where zero are added to the most significant side of x.
= Function concat(x, y, ..., z) concatenates the bits of expressions x, vy, ..., z.

" Subscripts, for instance Xg,, means that bits with index 8 to 2 are spliced out of the integer X.

= Function address(x) means the address of label x.

= NOP and na means “no operation” and “not applicable”, respectively.
= shamt is an abbreviation for “shift amount”, i.e. how much bit shifting that should be done.

INSTRUCTION FORMAT

R-Type
31 26 25 21 20 16 15 11 10 65 0
| op | rs | rt | rd | shamt | funct |
6 bits 5 bits 5 bits 5 bits 5 bits
I-Type
31 26 25 21 20 16 15 0
| op | rs | rt | immediate |
6 bits 5 bits 5 bits 16 bits
J-Type 31 26 25 0
| op | address |
6 bits 26 bits

REGISTERS

Name Number Description
Szero 0 constant value 0
Sat 1 assembler temp
Sv0 2 function return
Svl 3 function return
$a0 4 argument

Sal 5 argument

$a2 6 argument

$a3 7 argument

Sto 8 temporary value
Stl 9 temporary value
St2 10 temporary value
St3 11 temporary value
Sta 12 temporary value
St5 13 temporary value
St6 14 temporary value
St7 15 temporary value
$sO 16 saved temporary
Ss1 17 saved temporary
$s2 18 saved temporary
$s3 19 saved temporary
Ss4 20 saved temporary
$s5 21 saved temporary
$s6 22 saved temporary
Ss7 23 saved temporary
St8 24 temporary value
St9 25 temporary value
Sko 26 reserved for OS
Skl 27 reserved for OS
Sgp 28 global pointer
Ssp 29 stack pointer
Sfp 30 frame pointer
Sra 31 return address
MIPS Reference Cheat
Sheet

By David Broman
KTH Royal Institute of Technology

If you find any errors or have any
feedback on this document, please send
me an email: dbro@kth.se

Version 1.0, December 19, 2014

	Final_2016
	mips-ref-cheat-sheet

