Solid State Physics
PHY322

Chapter 1: Crystallography.

Chapter 2: Dielectric Properties of Materials.
Chapter 3: Magnetic Properties of Materials.
Chapter 4: Introduction to Quantum Mechanics.
Chapter 5: Energy-Band Theory.

Reference book: “Principles of Electronic Materials and Devices”, S. O. Kasap, 3" Edition, McGraw-Hill, 2005



PHY322 ILOs

Description

ILO #

1 Comprehend and understand several crystal structure of well-known solid-state materials.

2 Differentiate among different crystal bonds of solid states.
3 Know and understand the dielectric properties of solid states.

4 Know and understand the magnetic properties of solid states.

5 Comprehend the postulates of quantum mechanics.
6 Know how energy levels in solid states become bands used to differentiate among different categories of solid states..

7 Understand Schrodinger wave equation and use it to study solid states.
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http://eng.staff.alexu.edu.eg/~mbanna/
BannaElectronics  https://www.youtube.com/channel/UCaKy_YOLJaPieD4ve59LZEQ/playlist
Chapter 1: Crystallography

Why study Crystallography and crystal structures?

< Description of solids.

%+ Comparison with other similar materials and classifications.
% Correlation with physical properties, electric and magnetic.
% Stability of different alloys.



Lecture 1

Why Solid State?

% Most of the elements are solids at room temperature.
% Crystals are solid - but solids are not necessarily crystalline.

Crystals?
Regular repletion of building blocks (Basis).

! !

Lattice An atom

Bravais Lattice A group of atoms



Lecture 1

Examples:
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Lattice Translation Vector
Primitive
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Lattice Translation Vector
Nonprimitive
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Symmetry Operations: Carry the lattice into itself.

+ Rotation
An axis around which the lattice is rotated without any change.

L7
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++ Inversion

A lattice point pointed to by a translation vector R keeps the lattice unchanged if R is replaced by -R

.Al /
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+»» Reflection

There exist a plane lattice which divides the lattice into two identical parts

.

AQ




Primitive Lattice Cell

% Minimum volume.
% One lattice point.

Volume V. = |(a x b).c]|
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Two-dimensional lattice types
Only five 2D lattices



Only 14 3D lattices
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Three-dimensional lattice types

CRYSTAL SYSTEMS AND BRAVAIS LATTICES

may occur, as shown by an example in Sec. 2-4.)

(The symbol ¢ implies nonequality by reason of symmetry. Accidental equality

. Bravais Latti
System Axials lengths and angles lattice symb:r
' .
. Simple P
Cubic Th:et: ejuai axes ar r_lg;nr::r;al.:s Body-centered I
a=b=c, a=p=7= Face-centered F
Three oxes at right angles, two equal Simple P
Tetragonal a=b=¢, a=p =7 =90° Body-centered I
Simple P
. Three unequal axes at right angles Body~centered I
Orthorhombic a#b#%c, a=f=7=90° Base-centered C
Face-centered F
Three equal axes, equally inclined .
Rhombohedral - @ = 3,e: - au =P q= > ;900 Simple | =
Two equal coplanar axes at 120°,
Hexagonal third axis at right angles Simple P
9 a=bw#e, a=p=290° ¥ =120°
M lini ::ree;ol;:?\?;acitc::;:f angles Simple P
onoclinic
a#® bFc, a=y=900° #p Base—centered C
Three unequal axes, unequally inclined
and none at right angles Simple P

Triclinic

a#b#c, a#*p#y #90°




]
i) P

TRICLINIC (P)

iEhdc, a#p#y #90°

HEXAGONAL
P)

a=b#c¢, a=p=90° 7 =12°

BASE-CENTERED
MONOCLINIC (M

u#rb#ff a=7=90° #p

b
B _a

SIMPLE
MONOCLINIC (P




RHOMBOHEDRAL
(R)

SIMPLE BODY-CENTERED
TETRAGONAL TETRAGONAL
(P) (1)
a=b=c, a=p=7 =90°

BASE-CENTERED FACE-CENTERED
ORTHORHOMBIC

ORTHORHOMBIC
(") ()

u#h;it", u=[3='}'=90°

SIMPLE BODY-CENTERED
ORTHORHOMBIC* ORTHORHOMBIC
(P) (1)



/u.
| ¢

7
174

SIMPLE BODY-CENTERED FACE-CENTERED
CUBIC (P) CUBIC (1) CUBIC (F)



Lecture 1

Conventional Cubic Lattices: a=b=c=a

Simple Cubic SC: It is the same as the primitive cell

Nearest neighbors = 6 atoms at a distance a.
Lattice points = 8 x % =1 point

a O Ql
i

Q Q Q
N> <D =)

Packing density (filling factor)
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Conventional Cubic Lattices: a=b=c=a
Body-Centered Cubic Lattice BCC: It is not the same as the primitive cell

Nearest neighbors = 8 atoms at a distance ?a.

Lattice points = 8 x % +1 =2 points

a=(2+9- 2)
b=2(-R+9+ 2)
C=2(R=9+ 2)
4r =3 a
Packing density (filling factor) V3 a
4 - *
§nr3.2 3
= = 68%
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Conventional Cubic Lattices: a=b=c=a
Face-Centered Cubic Lattice FCC: It is not the same as the primitive cell

Nearest neighbors = 12 atoms at a distance a/+/2.
Lattice points = 8 x % + 6 X % =4 points

a
a=5(2+9)
b=-(+ 2)
— a
c==(X+ 2)
2 ( 4r =2 a
Packing density (filling factor) V2 a
4 - *
§m‘3.4 T
= = 749
a® 3v2 &
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Solids are classified according to:
% Crystal Structures:

O Single crystal where the unit cell occurs
throughout the volume of the solid.

O Polycrystal where regular structure occurs only
in portions of the solids (grains or crystallites separated by grain boundaries).

0 Amorphous where crystallites become unit cells and no
regular structure exists.
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*+ Binding bonds:

O Tonic Crystals, bonds highly
depend on the freedom of valence electrons

Q Covalent Crystals, bonds highly , 5 .
depend on the freedom of valence electrons )@ @

O Metallic Crystals, bonds highly
depend on the freedom of valence electrons

Q Van Dar Waals Crystals,
valence electrons are tightly bound to the nuclei
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Lattice System for crystal planes

Planes are usually determined by noncolinear three points in the plane. z

zZ
Equation of the plane: = X +Z T =1 Xo

Yo
Y

In crystallography, planes are represented by three integer numbers h, k, and | related to
the intersections with x-, y-, and z- axes X, ,Y,,and Z,

Steps to get h, k, and |:

1. Geft the intersections X ,Y,,and Z, .
2. Form the recuprocals — Yl andzi

o

3. Multiply by a common facTor' to get the smallest integers h, k and |.
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Miller indices:
(hkl) : a plane or a set of parallel.
{hkl} : planes equivalent by symmetry {100} ===) (100), (010), and (001).
[hkl] : direction, perpendicular to plane (hkl) in cubic lattices.
<hkl> : set of equivalent direction.

In cubic crystals the direction [hkl] is perpendicular to plane (hkl). K:
R a
Examples: the plane RSTU a a
X y z Q u
— 24+ —=1 S
a a o a
P T )

1. Intersections : a, -a, and .
2. Reciprocals : %%1, and é
3. hkl are 110, so the plane is (110)
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Plane QPTU
1. Intersections: a, o, .
2. Reciprocals: %%,%

3. hkl (100)

Usefulness of Miller Indices

< In Si, growing a crystal in <111> direction produces a stable crystal (Si);1; separation = 3-1 4.
% Al diffuses in Si faster in <100> direction than in <111> direction, a short circuit may occur.
% Si tears faster in <100> than in <111>.

% (100) is preferable for MOS devices.

% (100) Si has a relatively low packing density.

% (111) Si wafer gives the best mechanical properties.
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Examples



Lecture 2

Parallel planes have the same Miller indices
Plane (1) is parallel to plane (2)

Plane (1): ratios é,%
(hkl) = (223)

[

. 11 1
Plane (2): ratios -, -, -
6 6 4

(hkl) = (223)
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Distance between parallel planes:
a, B, and y are angles the normal dj;; makes with the axes x-, y- and z-.

dprr = X, cosa
=Y, cosf
=Z,cosy

But cos?a + cos?B+ cos?y=1

&)+ ()
R ORI,

dizlkl =1
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X, =na, Y,=ny,b, and Z, = nszc
n n
=—, k=— and | = —
nq n, ns;
1 h 1 k 1 l
—=—, —=—,and —-=—
Xo na Y, nb Zo nc

n

(G2

Therefore, dy,; =

In cubic lattices,a = b =c = g,

na
Then, dui = fmer
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Example: Find the distance between the parallel planes (100) of a cubic lattice
whose lattice constant is a.

Intersections: 1 o oo hence n=1
Sdpg = a

For planes (111)

Intersections: 11 1 hence n=1
a

S dpgg =\/§
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Reciprocal Lattice: It is mathematical concept to explain physical phenomena.
The diffraction pattern of a crystal is a map of the reciprocal lattice

Real Lattice: The microscopic image of a crystal is a map of the real crystal structure.

The corresponding translation vectors of a reciprocal lattice whose primitive translation vectors
a, b andc are:

21T ;5 — —% ] - -
a = Vn(b X ¢), SO a isperpendiculartob and c

2 —  — —* , ——
b = Vn(c X a), SO b isperpendicular to ¢ Xa

c=22Z(axb , SO T is perpendicular toa and b
v
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Reciprocal lattice translation vectors satisfy the following relations:

E*-&=M=Zn @ b=0anda -2=0
b -b =21 b =0 andb -4=0
¢ é=2nm T-d=0andc -b=0

Define the reciprocal lattice operator as:
E = nla* + nzg + n3E*

a,b, and ¢ are real crystals primitive vectors and lead to the same set of reciprocal lattice points:

G=ha' +kb +1c
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Theorem: Every reciprocal lattice vector (operator) Gyy; is normal to a crystal lattice plane:

Need to prove that Gy, is perpendicular to the plane (hkl)

If Gy is perpendicular to both U and V
Gog- U = (h@” + kb + 1¢").(nyh — nsc)
= 2n(nyk — nzl)
Gont- V = (h@" + kb + [T7).(~ny@ + n,b)
= 2n(—ny h + nyk)
n

From Miller indicesh=—,k=—,and 1 = —
nq np ni

SO, n = h‘n1 = an: ln3

Hence, Gpy;. U=0 and Guy. V = 0and  Gpy. is perpendicular to the plane (hkl)
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Chapter 2: Dielectric Properties of Solids

% Dielectric materials do not ideally conduct electrical charges, so that an applied field does not
cause a flow of charge but instead relative displacement of opposite charges and hence polarization
of the medium.

< Thus, energy can be stored in the material by the polarization of the molecules.

< One use of dielectric is to increase the capacitance or charge storage ability of a  Free space ¢,
capacitor. - \ W

2.1 Capacitors: E

< Consider a parallel plate capacitor with free space between the plates.

<+ The capacitor is charged to a voltage V with Q, charges by
connecting it o a battery of voltage V. v
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% The ability of the capacitor to store an electric charge per unit volt is measured by
capacitance

Qo
Co=—F
° v

< A dielectric slab is inserted between the plates and V is kept constant.

* More charges are stored on the plates denoted by Q. e o
Q>0
< As a result, the capacitance is increased

c=2 >

2.2 Relative Permittivity (e,) "

< It is the fractional increase in the capacitance of a capacitor when the insulation between the
plates is changed from a vacuum to a dielectric material.

¢ _ @
€r = —

Co Qo
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©

< It is a macroscopic quantity which depends on the manner in which the atoms are
assembled to form a crystal.

Absolute permittivity (in vacuum)
g, =8.85x 10712 F/m
Material permittivity: € = €,€,

2.3 Polarization

Electric Dipole: A pair of equal and oppositely charged bodies separated by a small distance.

Dipole moment: measures the polarity of a system of charges. It is a vector points
from -ve to +ve charge.

p=Qa
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% If the positive charge coincides with the negative charge, this means that p = 0.

2.4 Sources of Electric Moments

+—— O—.u'.'.’v"ﬁ—.
. o . . . Cation Anion
a-Electronic Polarization: occurs in all insulators. P N E=0
(’f + - \} Shift in electron
. . . . . . . J bital O—AMWWWWY
b- Ionic Polarization: occurs in all ionic solids. oy 9
c- Orientation Polarization: occurs in all polqr' (a) Electronic Polarizaton in an atom (b) lonic Polarization

gases, liquids and solids , materials which have
permanent dipoles.

(c) Orientation Polarization
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2.5 Polarization Vector

<+ When a dielectric is placed in an electric field E, the particles of the medium become polarized due
to the slightly shift of their positive and negative charges caused by the applied field E

% The induced dipole moments p; associated with every particle point

. 4= : . ¢ » 2
towards the direction of the field E. The total dipole moment is: N f - +{
+ _
ptotzzpj:npav 13353:
j N S S iy
n : Number of dipoles in the medium. B [ -
P, : Average dipole moment per atom in the direction of E . + EPEDEDEH -
< Inside the polarization medium, there is no net charge within the A‘I/'

bulk as the positive charges cancel the negative ones.
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% Bound polarization charges appear on the opposite surfaces due to the polarization of the medium
particles denoted by Q».

% Thus, the total dlpOIC moment IS psor = de hBound pol;a.riza:ifon
charges on the surfaces
< The total dipole moment per unit volume _Q\“" +jQP Area=A Py
named as polar'lzci‘hor;? t\;fctor'_ls e | _ .
~ Vol Pav L EREDIED - +
N : Number of dipoles per unit volume. : @@ ~0p [ —P—P + +0,

Vol : Volume of material.

%

L EDEDEDCD |

[~

% For rectangular slab with volume Vol = A d, the magnitude of P can be

simply represented in terms of its surface polarization charge density as

Pz%p C/m?
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< Notice that for a general case the magnitude P is the component of the
vector P normal to the surface of the polarized medium.

< Let the applied voltage V and hence the field E be fixed after the insertion of dielectric. Thus, the
stored free-surface charges Q on the capacitor plates are increased by an amount Q, :

Q=0+ Qp +0 -Qp Gauss surface
< From Gauss's Law: § €,E,.ormdA = Qo "‘f“__ /
: L : [
% Before the dielectric is inserted between the parallel-plate capacitor T
Qo = €, EA [H| 1 dA
< Since Q = €,.Q, , then €,6,EA = €,EA + Q, o —ﬁb E

| i
.« e g " + )

< Dividing by the surface area 4, AR S

€6, E=€,E+P=D ! || | Dielectric

-----

< Thus P and E can be related by
P=¢€,(e, —1)E = €,x.E
where y, is defined as the electric susceptibility
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<+ In free space,
e=1, =0, P=0, andD =¢,E

2.6 Depolarization Field

<+ We can view the field E as arising from two electric fields: that due to the free charges E,, and that due
to the polarization charges, denoted as Eg,,. These two fields are indicated in the Figure. E, is called the

applied field as it is due to the free charges that have been put on the plates.

< Although E, polarizes the molecules of the medium, E4,, being in the +Q
. . . . . . . —xp P
opposite direction, tries to depolarize the medium. It is called the free | | e
depolarizing field NHI i -]
. _ __bo + e -
"E—Eo_Edep—E_ __‘_dp +
r -+ E _, —
£ +| E—p |-
Edep=E<—o—1>=E(er—1) +|[” -
E L | a
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<+ The polarization P is related to the field E by:
P=¢,(e, —1)E

< Thus, the depolarization field Eqep is given by:
P
Edep o

o

2.7 Polarization Mechanisms

% It is the mechanism in which atoms and molecules respond to an electric field.

< For low electric field, the relation between the induced average dipole moment p__and the field E
that acts to produce it is given by:
P=Np,, =¢€,(e, — DE

< Define the ability of an atom or molecule to become polarized in the presence of electric field by
the polarizability (). Then we get p_ = aE
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<+ Therefore, the relation between macroscopic €, and microscopic a properties can be
expressed as :

e, =1+ Na/e,
2.8 Electronic Polarization

% Recall that an atom consists of nucleus with positive charge and surrounded by electrons with
negative charge.

< In the absence of field E, the centers of positive and negative charges coincide, i.e. no polarization.

Z electrons in shell

Atomic
nucleus
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<» When E is applied, the displacement of the center of negative charge from the electron cloud with
respect to the positive charge in nucleus produces an electric dipole.

% Let acbe electronic polarizability, then the average induced electronic E
dipole moment is: -

— e = L
pav = aeE LI . O

< Therefore, the relation between the macroscopic €, and microscopic «
properties can be expressed as :

Na

€r = 1+ E—

o Center of negative

< Since all materials consist of atoms, thus every atom has an electronic cherge G .
polarization. On other words, all insulators are capable of electronic Sy

polarization. Pinduced
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he applied field E tends to separate the e's from the nucleus. The nucleus can be considered as
massive particle that remains fixed while the e’ cloud is light that follows E. Let Z be the number of
e's. The separation force (Fs) on electrons due fo E is expressed as:

F, = (Ze)E

% Restoration (attractive) force (F.) between all the e's and the nucleus tends to return the charge cloud
centroid to the nuclear position. Assume the electron cloud is bound to the nucleus by a kind of spring
force. Given a separation distance x and a spring constant B., thus from Hooke's law:

F = Bex
% Using a classical mechanical system, from Newton's 2" law and by neglecting damping effect

d?x
Zmeﬁ =F —F

/
0‘0

2.9 DC Electric Field

< For static dc electric field (E=E,), the net force is zero at equilibrium where separation force is
balance by restoration force (Fs=F).
d?x

Then, (Ze)E, = B.x, and — =0
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< The induced electronic dipole moment is then given by:

o= ZeE,
0 Be ,
Pe = (Ze) o= %Eo
and Pe (Ze)z
¢ EO :88

< At the removal of E at t=0, velocity x'(0) = O and displacement x(0) = x,. Solving the differential
equation gives a harmonic oscillation
x(t) = x, cos(wet)

Where o, = (Zij ) is called a resonance or natural radial frequency.

e

< Substituting B, = Zm,w.” in x, and a,, we get

(Ze)?
(Zme)we?

Ze)E,
x, = (Ze)E,

= Imows and a, =
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2.10 AC Electric Field

< Let E be sinusoidally varying with exponential representation E = E,e/“t. Then,

d?x
ZmeF= E? —Fr = /eEk — Bex
d?x e ;
a T wex = G )Eqel

< Assume the solution be in the form x = x,e/“t, then by substituting in the equation we get,
—w?x, + wix, = (mi)EO

% Thus, the displacement amplitude x,

E, 1
xO ((,l)) = ifl—e (1)5—0)2
<+ The ac electronic polarizability a.(w) = %.

) _ (Ze)x, _ (Ze)? 1
o ae(w) ~  E,  Zm, w?-w?
o e e
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< During the oscillation of the charges, they lose some of the energy as heat. As in classical mechanics, this
loss can be represented as a friction force which is proportional to the velocity of the charged particle.
Let y, be the damping constant per electrons’ mass(Zm,). The equation of motion (Newton's 2" law) can be

extended as
d%x dx

ax 2, = £
dt2+yedt+a)ex (me)E

“» Note that the same equation would describe the damped motion of a ball attached to a spring ina
rough surface and oscillates by an applied force.

< Assume the solution be in the form x = x,e/®t. By solving the equation, we get x, from which we obtain
the polarizability in a complex form as

(Ze)? 1

Zme (wg_wz_jwye

ae(w) =

)

< The polarizability a; is a complex number. It can be written in the form of real a, and imaginary a.
or as magnitude | a.| and phase ¢, , such that |
a5 () = a.(w) = jag(w) = |ag(w)|e/ P
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% Recall that p, = a,E, thus ¢, is the phase of the polarization p, with respect to E, such that
Pe = |ae(a))|Eoej[wt+(pe(w)]

< The frequency dependence of the normalized polarizability %2 versus = for 7= = 0.1 is shown in the

ae(0) e We
figure for real and imaginary parts and for magnitude and phase components.

< For low frequencies (w < w,), a. goes to DC value with real quantity and thus no phase shift.
2
— s 9(@) >0

ae(w) - mewg ’
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% For high frequencies (w > w,), the dipole can not follow the change of the field E, i.e.x,(w) = 0
a,(w) >0 and ¢(w) —> —180°

% At resonant frequency (w = w,), the polarization is maximum. This leads to a maximum energy transfer
from the field to the dipole.

2
e (@) - —=

MeWeYe

, @ (we) = —90°
2.11 Complex permittivity

% Recall that the ac polarizability is a complex number ax(w) = a(w) - j '(w). Then, the medium relative
permittivity is also a complex number given by

. N N .N , .
& =1+2a (@) = 1+ 2 a(w) - 2a'(@) = () - je©)

% Real part (e,) determines the charge storage ability.
< Imaginary part (e,) represents the energy lost in the dielectric medium due to polarization.
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2.12 Piezoelectric Crystals

< They are special dielectric crystals which become electrically polarized when they are mechanically
stressed.
< Conversely, they become strained when polarized (placed in an electric field)

<+ The most commonly piezoelectric materials are Quartz (SiO:) and Barium titanate (BaTiOs).
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2.12 Piezoelectric Effect
< It was originally discovered in 1880 by Jacques and Pierre Curie.

(a)A crystal with no applied stress or field.

(b) The crystal is strained by an applied force that induces
polarization in the crystal and generates surface charges.

(c) An applied field compresses the crystal and causes it to
become strained.

(d) The strain changes direction with the applied field and
now the crystal is extended
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2.13 Crystal Structure

% Only crystal structure with no center of symmetry (noncentrosymmetric) can exhibit piezoelectricity.

U Centrosymmetrical crystal ( Example: NaCl cubic unit cell )

(a) In the absence of an applied force, the centers of mass
for positive and negative ions coincide.

(b) This situation does not change when the crystal is
strained by an applied force.
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0 Non-Centrosymmetric crystal ( Example: Hexagonal unit cell)

(a)In the absence of an applied force the centers of mass
for positive and negative ions coincide.

(b) Under an applied force along y the centers of mass for
+ve and -ve ions are shifted which results in a net dipole
moment P along y.

(c) When the force is along a different direction, along x,
there may not be a resulting net dipole moment in that
direction though there may be a net P along a different
direction (y).
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2.14 Piezoelectric Coefficients (di)

< An applied stress in direction j can give rise to induced polarization in direction i with
piezoelectric coefficients d;.

% Electromechanical transducers
Pi=dy;T;,
T; — Applied mechanical stress (T=F/A)
P;— Induced polarization

The induced strain S; can as well be expressed as:
S] = dl]El

where E; — Applied electric field
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< An engineering factor can be defined by electromechanical coupling factor
k2 __ Electrical energy converted to mechanical energy

Input ofelectrical energy
<+ Or equivalently by,
k? =

Mechanical energy converted to Electrical energy

Input of Mechanical energy

2.15 Typical Piezoelectric Materials
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2.16 Applications

» Ultrasonic Transducers

% The transducer on the left is excited from an ac source and
vibrates mechanically.

< These vibrations are coupled to the solid and generate ultrasonic
waves (above audible range).

% The waves reaches the other end mechanically vibrate the
transducer on the right, which converts the vibrations to an
electrical signal.

< It can be used to detect the internal imperfections in the solid.
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s Spark Generator

< The piezoelectric spark generator depends on the
phenomenon of dielectric breakdown. It is utilized in
lighters, car ignitions, and similar devices.

< By stressing a piezoelectric crystal, a charge is built up
on the electrodes on either side of the spark gap.

<+ When the strength of the field across the gap exceeds
the dielectric strength of air within the gap, a spark is
produced that ignites the fuel.
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s Quartz Watches

< They are battery powered watches different from the old
mechanical watches.

< The battery sends electricity to the quartz crystal
through an electronic circuit.

% The quartz crystal oscillates at a precise frequency:
exactly 32768 times each second.

% The circuit counts the number of vibrations and uses
them to generate reqular electric pulses, one per second.

% These pulses can either power an LCD display showing the time
numerically or they can drive a small electric motor turning gear
wheels that spin the clock's sec, min, and hour hands.
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< Microphones

"y CRYSTAL
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Chapter 3: Magnetic Materials

<» Many electrical engineering devices utilize the magnetic properties of materials such
as inductors, fransformers, and rotating machines.

3.1 Inductors
% Consider a long solenoid with free-space medium having a length | and a number of turns N.

< From Ampere's law, the magnetic field intensity H due to a conduction
current I flowing through the solenoid windings is given by

g=N_L
l l
where I. = NI is defined as the conduction current.

% In free-space, the magnetic flux density B, generated by the
current carrying conductor is given by:

I¢
B, = u,H = #0(7)
where u, = 47 x 1077H/m
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» The total magnetic flux Ng, threaded per unit current is defined by the inductance
. _Ne, _NB,A
b =

I 1

< A material medium inserted into the solenoid develops a new magnetic field B along the

applied magnetic field B,. Hence, the inductance becomes
_N¢ NBA o
L ’

a2 =

% Relative Permeability p,
It is the fractional change in the magnetic field B with respect to the field in free-space B,. It
indicates how easy the material becomes magnetized

B
Hr = 5~ then B = u, poH

o
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< Magnetic Permeability pu.
It is the magnetic field generated per unit magnetizing field.
u=B/H = u,

3.2. Magnetic Dipole

% Consider a loop with area A and carrying current I, ’

% The current loop creates a magnetic field like a bar magnet.

%+ The magnetic dipole moment is defined by
m=/4 an
where anis normal vector.

<» When a magnetic moment is placed in a magnetic field, it experiences a

torque T = m x B that fries to rotate the magnetic moment to align its axis
with the magnetic field.

m



Lecture 5

.3. Sources of Magnetic Moments

< Orbital Magnetic Moment
> Produced due to the electron orbital movement around the nucleus.

> Consider an electron of mass m, rotate in orbit of radius r with
angular frequency w.
» The electron orbital angular momentum
L = mvr = mywr?
» The orbiting electron behaves like a current loop with current
w

[ =e —
eZn

> The orbital magnetic moment
Morp = [Aay

B wr? B e L
- T T om,

Where (%) is gyromagnetic ratio
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3.4 Spin Magnetic Moment
< Produced due to the electron spin movement around itself.

% Let S be the spin intrinsic angular momentum. The spin

magnetic moment
e
Mgpin = — m_ S
e

3.6 Total Magnetic Moment

%+ By vector addition, the total angular momentum
J=L+S

and the fotal magnetic moment
m = Myrp + Mgpin

< Noted that: Only incomplete electron shells are considered. For atoms with filled
electron shells, total orbital and spin momentums are zero. No magnetic dipole moment.
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3.7 Magnetization Vector
% The magnetic field inside the solenoid due to the conduction current I. = NI is B,

I
B, = % = UoH
% If a material medium is inserted inside the solenoid, each atomic
magnetic moment of the material fends to align with the applied
field B,. Thus, a net magnetic moment is developed along B, and
a new field B is built and thus the medium become magnetized.

<+ Each magnetic moment can be viewed as an elementary current loop circulated in the
same direction. Since adjacent currents are in opposite directions and cancel each
other. Hence, there is equivalently no internal current and only net induced
surface current defined as I,,, . Notice that, this is not a flow of

free charge carriers. .
% The total magnetic moment is

Zmi = ImA
i
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< The net magnetic moment vector per unit volume of material along B, is the magnetization vector
M = Zimi _ I

vol 1
3.8 Magnetic Field

< The total field B inside the solenoid arises from the conduction current I, = NI and the magnetization
surface currents I,,.
B=B,+B,

_ ., e Im
THo T

< Then by definition, the magnetic field is given by,
B = puoH + poM

% For linear and isotropic medium (i.e. constant p,. )
B = uo urH
% Then, we have
M = (ﬂr —1H = XmH
where y,, is the magnetic susceptibility.
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3.9 Magnetostatics Energy

% The energy required to establish a magnetic field

% The potential energy stored in the magnetic field.

< From Ampere's law:
Hl = Ni

< From Faraday's law:
_NA dB
T
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< The electric energy (work) supplied by the battery to increase the field by dB
dW = iv dt = (Al) H dB

<+ Work done per unit volume to increase B from B,to B,

B,
Wvol == j HdB
B4

% For linear magnetic medium (u, is constant)
B =y, prH

< Energy density needed to establish the field B
Wyor = . H? = 5" = 1HB
vol_z.ur.uo _2/11"/10_2
< This energy is absorbed from the battery and stored as a magnetic potential energy called

magnetostatics energy density
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< If the battery is suddenly removed?

< External work comes from stored energy in magnetic field o heat the resistor, current flows for a
short while determined by L/R.

3.7 Magnetic Material Classifications

*» Magnetic materials are classified into five groups:

> Diamagneftic

» Paramagnetic

> Ferromagnetic

> Antiferromagnetic
> Ferrimagnetic
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< Diamagnetism
<» When a diamagnetic substance is placed in a magnetic field B,, the magnetization vector M in
the material is in the opposite direction to the applied field B, and the resulting field B within the
material is less than B, . This repels the diamagnetic material away from a permanent magnet.
< Accordingly, diamaghetic materials have magnhetic susceptibility y,, that is negative and small ~ 107°
Relative permeability p, = y,+1 is slightly < 1.

% Atoms of the diamagnetic materials have closed subshells and
shells. Example: Neon which has 10 electrons in an atom. .

% Covalent and many ionic crystals are examples of diamagnetic materials.

< In absence of applied field B, = 0, each atom in the material has no permanent magnetic moment
such that: mgeom = Morp + Mgy = 0.



Lecture 5

< Superconductors are perfect diamagnetic with x,,, = —1 or u, = 0 and B = 0. Thus, they
expel the applied fields, and no field can be established inside the material.

< Application is the diamagnetic Levitation where an object can be
made to float in the air above a strong magnet.

> Simple Model

% Consider a simple atomic model with nuclear charge Ze and an
electron in a circular orbit of radius r about the nucleus and having
angular frequencyw,.

% Two forces affected the electron:
1. The coulomb force between e’ and nucleus.
Ze?
Atre, T2
2. The centrifugal force F. of the orbiting electron.
F. = m,w?r

F, =
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<+ With the absence of an applied magnetic field, the attractive coulomb force F, will be exactly
balanced by the centrifugal force F. . Such that F, = F, .

% The electron magnetic moment in the absence of the applied field.

ew,r?

< Suppose a magnetic field B, is applied in the same direction of m,

an

% The field produces an outward force on the orbiting electron known
as the Lorentz force.

F, = ewrB,

% Since the orbital radius is quantized, assume that the magnetic field effect is not

large enough to cause a change in the radius of the circular orbit. Thus, the
inward Coulomb force F, is also unchanged.

< To balance the outward magnetic force F,, the orbital angular velocity will change o reduce the
outward centrifugal force F, and becomes w.
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< By equating the forces, we get
F.+FE,=F,
Mew?r + ewrB, = Mmyw2r

% Solving the equation

eB 1 | eB
w=—- +—\/(m0)2+4a)§

2m, 2 e

B
% For the case of fn—" < w,
e
eb,
2m,

W= = + W,

< The change in the angular frequency due to B results in slow down of the orbiting electron.

<+ The new magnetic moment
ewr?

2

m = a,
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» Paramagnetism

< Paramagnetic materials have a magnetic susceptibility x,, that is positive and small ~107>.

< Each atom has a permanent small net magnetic moment due to unpaired electrons. Example: Al which has
13 electrons in an atom.

<+ Many metals are paramagnetic materials.

oriented due to thermal fluctuations where the average magnetic moment

O—+ O <O
< In the absence of an applied field H = 0, magnetic moments tend to be randomly |«* il i ?
SN
Mgy, = 0 and thus magnetization M = 0. a,
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< In the presence of applied field H, individual magnetic moments tend to be
aligned along H and M = y,,H is finite and along H.

O
< Notice that M decreases with increasing temperature due to molecular o «° o
collisions which destroy the alignments of molecular moments with the applied C\_MO:" c/

ie S
field. O/O\

» Ferromagnetic Materials

> Ferromagnetism

% In these materials, the atomic magnetic moments align in the same direction without applying an
external magnetic field H. Thus, ferromagnetic materials exhibit permanent magnetization.

% The susceptibility x,, is (+ve) and (very large)
<+ By Hund's rule, electrons try fo align their spins.

% By Pauli exclusion principle, parallel spins must occupy different orbitals and hence different spatial
distribution.
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36 452
AdRE RS RN RA RS

< Example: the iron Fe atom [Ar]3d® 4s2.

> Saturation Magnetization

< Maximum magnetization that happens at a given femperature when all the
maghetic moments are aligned in the applied field direction.

< As temperature increases, lattice vibrations become more

energetic, which leads to a frequent disruption of the
alignments of the spins.

< At temp T = T, (Curie temp), the thermal energy can overcome the
potential energy of the exchange interaction that aligns the spins and O T T T T T
hence destroy the spin alignments. I

Te

< Above T,, the ferromagnetic behavior disappears, and the crystal behaves as paramagnetic.

< Some properties of the ferromagnets can be summarized in the following table.
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Fe Co Ni
Crystal structure BCC HCP FCC
Bohr magnetons per atom 222 1.72 (.60
Mad0)(MAm™ 1) 1.75 1.45 0.50
B = poMuu(T) 22 1.82 (.64
Te T ®C 1127 °C 358 °C
1043 K 1400 K 631 K

» Magnetic Domain

< A magnetic domain is a region in which all the spin magnetic moments are aligned to produce a magnetic
moment in one direction only.

< If a magnetized piece of iron is heated to a temperature about T, and then allowed to cool in the
absence of a magnetic field, it will possess no net magnetization. This is due to the formation of
several magnetic domains that effectively cancel each other.
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< For a single domain, the iron crystal is like a bar magnet with external magnetic field.

% Formation of two domains reduces the external magnetic field lines and there is now less potential
energy stored in the magnetic field.

< Several domains with certain arrangements can eliminate the external fields and the specimen
appears unmagnetized.
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> Domain Walls

< Domain wall (or Bloch wall), is the region between two
domains where the direction of magnetization changes
from one direction to the opposite direction.

< In a Bloch wall, the neighboring spin magnetic moments
rotate gradually, and it takes several hundred atomic
spacings to rotate the magnetic moment by 180°.

“» When an external magnetic field H is applied, the domains with

magnetizations along H is enlarged due to the rotation of the N ]

magnetic moments in the wall by the applied field. IA Bl 4 iA _}Bl -
< As a result, the domain wall between A and B migrates into A _“

domain B and the specimen now acquires net magnetization. e -—

> Hysteresis Loop

< As discussed before, the structure of the domain in an unmagnetized iron crystal will possess no
net magnetization.



Lecture 6

% Consider applying an external magnetic field u,H along some direction. The M or B versus H behavior of
a ferromagnetic through one cycle is called the hysteresis loop.

Q (o — d) Increases the applied field (magnetizing) p
QO (d) M is aligned along H (saturation magnetization) SR .
0 (d — e) Decrease and remove magnetizing field H
O (e — f) Applying H in reverse direction

O An M or B versus H hysteresis curve for a full cycle.

®©®®

Reversible  Irreversil ble Rotation Suiwwhon
boundary  boundary of M
motion motion

*H
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< The hysteresis loop depends on the magnitude of the applied . SIS
field. It can reach some maximum value B,,, less than Bgg,;. J i P—
B, 1 ._-" to saturation
» Demagnetization -H 752’“ S
< It can be demagnetized by cycling the field A saanepei
. . . . . . A applied field
intensity with a decreasing magnitude until the

y
-B

origin is reached.

» Hysteresis Loss

-H

% Recall that the energy per unit volume supplied to
increase the field by dB is
dW,,, = H dB

% For a linear relation between B and H where u, is constant
B = uourH
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<+ The total energy stored in the magnetic field
1
Wyor = EHB

< For ferromagnetic, the total energy density to increase B from B,to B, = Area (PQRS)
sat
Wvol :J HdB
B

T

<+ Energy returned from the field = Area (QRS)

% The difference is the energy dissipated in moving and rotating the domain
walls.

< Over one full cycle, energy density dissipated (E;,) = total hysteresis loop
area

< Hysteresis power loss for AC field of f frequency
Py = Epf



» Hard and Soft Magnetic Materials

% Based on the B-H behavior,
engineering ferromagnetic materials are classified
into soft and hard magnetic materials.

Lecture 6

- Ditficult to magnetize

- Difficult to demagnetize
- Broad B-H loop

- Large Hysteresis LLoss
Use:

- Permanent Magnet

- Magnetic Recording

- Storage of digital data

- Kasy to magnetize
- Easy to demagnetize
- Narrow B-H loop

- Small Hysteresis Loss

Use:

- Electric Motors
- Transformers

- Inductor
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> Application - Magnetic Storage
% Storage of data on magnetized medium.

< A form of non-volatile memory.

% Information is stored as

O A magnetization pattern (analog form) or
O A binary magnetization state (digital form).

<+ Magnetic materials are found in
O Magnetic heads to write, read, and erase.
0 Magnetic media to store the information.

< Magnetic medium includes hard disks,
floppy disks, audio and video tapes ... etc.

< Example: Audio cassette
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Diamagnetic

Paramagnetic

ﬁ
Mm - —

NP\

7

Ferromagnetic
b
b

Vo
Vol

Summary of Magnetic Materials

B=0, myyp = mgpin. net magnetization =0

B is applied, produces a magnetic moment in opposite direction to B. Repelled
when brought near a bar magnet.

Xm 18 negative.

B=0, m,,p # Mgy resulting in a net magnetic moment

B is applied, magnetic moment increases.

Internal interaction and thermal agitation tfend to weaken this increase. (partial
alignment only)

Attracted when brought near a bar magnet.

Xm 1S positive.

Alignment is enhanced quantumly through phenomenon known as exchange
coupling or "domains”.

Above curie temperature T, the material becomes a paramagnetic one (magnetic
moment of adjacent atoms align in the same direction.)
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Antiferromagnetic ~ Magnetic moment is nil even in the presence of a magnetic field

LT

Ferrimagnetic Adjacent atoms align oppositely, and they have unequal dipole moments. Weaker
T | T | T | than ferromagnetic, like ferrite (low electrical conductivity) useful for cores of ac
inductors and transformers.
Super It is a ferromagnetic material suspended in dielectric (plastic). Good for Audio,

ferrimagnetic Video, and data recording systems.



Introduction to Quantum Mechanics

Lecture 1

I. Four contradictions between theory and experiment:

1. EM theory: Moving charged particles emit continuous radiations. Experiment: Discrete frequencies

2. EM theory: Moving charged particles emit radiations. Experiment: Electrons on stable orbits do not.

3. Electrons usually come out from a metal surface upon irradiating by light of any frequency.
Experiment: Threshold frequency for every metal.

4. Tunneling
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Classical mechanics: Observables and measurable quantities
Quantum mechanics: Fictitious quantities
There exists a state function ¢ which contains all information about the system.

Requires operators

e Velocity
- e Time
Operator State Function e Distance
P e Energy
e Momentum
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IT. Postulates of quantum mechanics:

Postulate # 1

For very dynamical system, there exists a function ¢(x,y,z,t) which contains all information about
the system, this function has to be:

i- finite
ii- single-valued
iii- continuous up to the 15" derivative.

Examples:
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A P2
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S
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A @3
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Configuration space T( X,Y, Z):

It is the space containing all valid possible coordinates x, y, and
z. i.e. the space through which a given function is defined.

Example: To trace the two particles P1 and P2, we define a

configuration space composed of six coordinats (x1, yl. z1 and x2
y2,22)

. P1

Y (x1, y1, z1)

.P2
(x2, y2, 22)

\ e
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The elemental volume of the configuration space:

dt = dxdydz

In a multidimensional system:

dt = tdq; =dq,dqydgs .. ...
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Postulate # 2

The probability of observing a system at an instant t inside an elemental volume dt is the
function

QP dt

Therefore the integration over the whole configuration is unity
| #g7ar = [191dz =1
T

@ should be square integrable i.e. € Hilbert space.
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Postulate # 3

To every dynamic quantity L (energy, position, momentum) there corresponds a linear operator
L which is Hermitian.

Examples of operators of some basic quantities:

1. Position operator
Qip=qi¢
Xp =x¢p
Yo =ygp
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+

2. Time operator T
To=to

—
3. Linear momentum operator —] hV

0

= ) 0
—J/AV @ = —jh(5= ax + = ay + az)<p
Where:
. h
2
d VF( ) = 0 +a +(3 F
an x,y,2) =[5~ ax 3y 5, Azl F(x5.2)
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worth noting that:

Operators are related with the same algebraic formulae which tie the dynamic quantities.
for example

VZIOCiTy oper-a-ror. - position operator

time operator

ie. V =

1N |
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So far the systems dealt with are assumed in eigen states.

Eigen state means the operator results directly in its dynamical quantity.

@ becomes Y

and Ly = Ay

Where 1 is known as the eigen value.
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Postulate #4

The state function should satisfy the equation:
.. 0Q
Hp = \h—
Ho = jh3;

Which is known an Schrodinger equation. Wave equation or more precisely Schrodinger wave
equation. Where H is the Hamiltonian (energy) operator.

Hamiltonian Operator:

If a system happens to be in an eigen state of H then ¢ becomes .
oY
HY =jh—
Hy =jn-

Hy = EY
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Where E is the eigen value of H. The above equation is known as time-
dependent Schradinger equation and can be rewritten as:

99 _ _.E
ot ]hw

Postulate #5

The expected or average value <A> of an observable A when a system in a state |,
which is not an eigen state , is given by:

<A>= [ ¢ Aedr
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ITT. Functions and operators:
Functions: convert a number into another number

F(x) = x?
X=4 - F(x)=16

Operators: A recipe to convert a function into another function

1. Multiplication operator A

A F(x) = x F(x).

Example:

F(x)=a+bx +cx2

then, A F(x) = ax + bx2 + ¢x3.
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+

2. Differentiation operator D

Df@) =4 f@)

3. Integration operator B

B f(x) = f F()dx

4. Laplacian operator V*
0°f _9°f  0°f
2
Z) = — + +
V2 flx,y,z) = TL+ L4 2L
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+

5. Identity operator E

Efx) = f(x)
[f) = f(=x)
Tf() = f(x+a)

6. Inversion operator I

7. Translation operator T,

8. Rotation operator C,

2
Co fO) = fFO+ =)
9. Partial derivative operator D,
01 (%)

Dy fly) = —~
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+

Linear operators:

L is called a linear operator if it satisfies the following relation:
L[afl(x,y,z) + bfZ(x'yrZ)] — Clé fl(X,y,Z) + bé fz(X,y,Z)

Superposition is satisfied.

Example of linear operators:

D, (ax + bx* + cd) = a + 2bx
aD, x + bD,x* + D,bc = a+ 2bx + 0 = a + 2bx
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+

Example of a nonlinear operator:

Assume an operator G
df
G f(x)=f(x) dgcx)

et f1(x) =ax and f,(x) = b(x* + ¢)

Glfilx) + f,(0)] = Glax + b(x? + c)]
[ax + bx? + bc][a + 2bx]
= 2b%x3 + 3abx? + (a® + 2b?c)x + abc
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+

Now applying G to each function separately,

filx) = ax
fo(x) = b(x? +©)
Gfilx)+G fo,(x) =axa+ b(x* + c).2bx
= 2b%x3 + (a® + 2b%c).x

# G[fi(x) + fa(x)]
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Operators’ Properties:

Two main properties usually encountered on quantum mechanics.
Let A and B be two linear operators

1. Distributive law
If,

(A+ B)f(x) =Af(x) + B f(x)

A and Q are associative.

Then,

2. Commutative law
If,

AB f(x) = BA f(x)

A and Q commute

Then,
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i Generally Tinear operators do not commute

AB #BA
AB-BA #0
[A, B]=AB-BA

Commutator = [A, Q] = O operators commute, # 0 operators do not commute
Example of non commuting operators

A—d B =

—_dx'—_x

ABy == (By) = 2 Ly
y

BAy = x.— # AB

bAay xdx;t—y

so,|[A, Bl =y #0
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IV. Eigen functions and eigen values:

The state function ¢ is an eigen function y of an operator L if L Y = A ) , wherelisa
constant.

Y is called the eigen function of L
and A is the eigen value

Example:

Ak defined over a configuration space —TT < X S TT

24

Consider a function V), = €
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d

This function y, is an eigen function of the derivative operator L — I

= Ay

Akx

Ly, = Age
Eigen values could be real or imaginary.
— S jAkx
Vi = e’k
For the 15" derivative operator D the eigen value is imaginary:

D yy = jAr yx

2

as ., .
While for the 2n derivative operator M — ) it is real

— 2
| My, = —Ai Yk
For the function Y = e_JAkx, My, = —Ai Vi .

Which means that the eigen value —}{% belongs to two different eigen functions € tjArx .
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ch an eigen value is called a two-fold degenerate eigen value, it belongs to two different eigen
functions.

In general one can find n-fold degenerate eigen value.
V. Hermetian operators:

If ¢, and ¢, are two functions belonging to the same class of functions and L is a linear
operator , acting on these two functions, is said fo be Hermetian if:

j b; (L) dr = f b (L'}

The integration is carried out over the whole configuration space t. A different simpler way to
express the Hermeticity of an operator is to write:

(b1, Lopy) = (Lp1, P2)

The quantity to the left of the comma is always complex conjugate
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Example:

. d
The operator L — (@] —— is Hermetian when applied to square integrable functions, i.e. functions which

dx
belong to Hilbert space. .
(o1, Lo,) = [0 (Lop,) dv

T+, .do,
= a]—=)dx
__[O(Pl( de)
=aj | ¢;(do,)

=aj [(0;9,) [, [ 9,d¢i]
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¢, and ¢, are assumed to be square integrable functions , i.e. their values go to zero as x goes to infinity.

do;
, L = —aj — d
(901 _<P2) aj j P> dx X
too )
.agq
= —aj—) d
| 0a-0j< 2 ax

- f 02 (L°gD) dx

— 00

(L P, (pz) Therefore L is Hermetian
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Theorem:

The eigen values of Hermetian operators are real.

Proof:

Ly =y (1)

Taking the complex conjugate of the last equation results in
Pre-multiply equation (1) by l/)* gives.

I/J*Q/J =Y Y (3)
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i Integrating equation (3) over the whole configuration space

f P*LY d7 = j P* ) Wt

T T

=A[ ¥ Wdr  (4)

Pre-multiply Equation (2) by ¥ :
YL P = Yy (5)
Integrate equation (5) over the whole configuration space

f WL dT = f YA T = A° f i dr (6)

T T
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Comparing equation 4 and equation 6 and Since L is a Hermetian operator, then
f Y*Lpdt = f YL Y dt
T T

A*jl/;*l/;dr = Ajl/)*l/)dr

A

A" s Aisreal

we are ultimately interested in observable quantities i.e. real values, here comes the
importance of Hermetian operators.
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Hamiltonian (ENERGY) Operator H:

Consider a single particle of mass M moving with a velocity v in a potential field
V (x,y,z,1) in a conservative system and get its energy

1
E==-mv:+V(x,y,zt)

2

1 1 p*

M =S mivt = o
pZ

.-E +V ) t

o (x,¥,2,t)

p = —jhV
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H = ﬁ +V(x,y,2t)
— 2m
_h—sz
H = - +V(x,y,2t)

The last equation is known as the Hamiltonian operator
Angular Momentum Operator:
L is the linear momentum = mv

The angular momentum = Iw
I is the rotational moment of inertia = m r?
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Vr:VCOSOL
Ve:VSinoc
L=mr’e
=MNr.ro®
= mr.y/,

L=mrvsina
L =p.r.sinoa =rxp
L =rxp= X (—JAV)
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Components and properties of Angular momentum operator:

L= Lyay + Lya, + L,a,

= —jhir X V
Ay Ay Ay
lx y z
=—jhlg 9 0
dx Jdy 0z]
L ) 0
B A O PR
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The commutator:

0 0 0 0
y——-2—||Z— — X—

0z oy O X 0z

o 0 , 0 0 02 d d

—_ _ 12 Y o o T
=Y % T Faxay Vot oy0z

OX 0z 0z° OXoy 0z 0y

—
I
—
Il

> 0 _ 0 0 0 0 0 0 _ 0
-h |y —Z——-YI——+XL—— - X—Z—
0z 0OX 0X 0Z 0y 0Z 0z 0Y
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Inner product of the angular momentum operator:
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If asystem isina state ¢:

0

Ho =jh—— v

In an eigen state V: dt
g al/)
then

oY  Ey

gt - I h i
Whose solution is l/) l/J(.X' y. Z)e fl

which means that we can solve the time independent equation and eventually we multiply by
—JEt
e h
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For a system in a state ¢ you can get the average of any physical dynamical quantity A as such:

< A>= J(ga*égo)dr
T

We need now to prove that the above equation indeed represents a probabilistic average of A.
i.e. it resembles throwing a die a very large number of times. If the number 1 through 6
represents a temperature in degree Celsius, the probabilistic average of temperature would be:

cTomisig2sriizeiiatis el
=1 *x— * — * — * — * — * — = 3, —
6 6 6 6 6 6 g0
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V. Orthogonal Functions:
A set of functions is said to be orthogonal in the interval (a, b ) if for any two

members of the set 0
jfi(x) f ()dx=a; s,
a 5, =1 fori=]
and O elsewhere

a; is a non-zero positive constant and §;; is the Kronecker &
If a; =1 the set is an orthonormal set, and we can always normalize an orthogonal set by dividing
each function by /a;

1 . a,
al.’zaﬁl2 jfi (%) T; (x) dx = ITETE Sij :6ij

J J J
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Fourier series — periodic function — sum of sines and cosines.
Orthogonal functions — sines and cosines.

Likewise: A state function —» sum of orthogonal functions.

P = ?:1 Ci fi(x) C; is a constant

If C; are all zeros except one this means that ¢ belongs to the set and cannot be expressed
in terms of the orthogonal function

Multiply both sides of the above equation by f;" and intfegrate from a to b

Lbfj* (X)pdx = fnb fi (X)Zn: Cifi(x)dx
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THEOREM:

Any two different eigen functions with non-degenerate eigen values of a Hermetian operator
are orthogonal

PROOF:
Let y.,and y, be two eigen functions of a Hermetian operator L with eigen values

A, and ) () ,Is not equal ) )

LY, = MY
LY, = ALY,
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Pre-multiply the first equation by W; and integrate over the whole configuration space

J LIJ; quld'l- — Alf "IJ; "pld'l-
T T

Taking the complex conjugate of the second equation and premutiply by ¥; and integrate over
the whole configuration space

JwiLy,) de= [y, p o
L is a Hermetian operator

Jw.by =y (Ly,) &
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One can now write from the last two equations

SRV BI VAT,

and from the quantum mechanical postulate

.'.!W:Wldr =1

Therefore W, and ¥,  are orthonormal functions

So any well behaved function can be expressed as a sum of non-degenerate eigen functions of a
Hermetian operator
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Exercise:

Prove that the state function ¢ = C;3; + C,1, is not an eigen function of an operator L whose
hondegenerate eigen functions are ¥, and , .

(I) - Cl\‘Vl T CZ\Vz

Lo=L(c,w,+c.v,)
- Cll—_\V1 T CZI—_\VZ

= C17L1\|]1 T C27L2\|]2
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Since A, is not equal to A, .then
Lo # A

and ¢ is not an eigen function of L.

From the QM postulates fr (p*(pdT =1

J.(Cl\ll + Cz\ljz)* (Cl\ljl + C2\|]2) dt =1
I\CI\I’I * CZ\VZ) (cw, +c.v,)

1
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+

C.CJ W, W, &+ ¢.C. W W 0t + c.c [y, de+ ¢.C. p, yp dr =1

C.C.+C,C, =1
B

cl +[c.
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6= LCV,
Where G, = |/, ¢ dr
Jo Avdr= 3" crydr(AY cwi)de

= IZ.”l (C.\Vl) (Azin:lci\pi) dr

IXlev (e, Jdr

o Asdt=3" ¢k

T



Lecture 4

Knowing that
NATLSS
_[C:C,—?»,—W:\l!jdf =0
= [ Apdr=3,

2

f @" A ¢ dt is indeed a probablistic average.
T

‘ 2

Ci A

Ci‘2 =1
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VI. Applications

Assume a particle of energy E inside the shown one dimensional well.

1. The possible energy the particle can possess

2. The possible locations of the particle.

Hy = EY

'V(X)

IIT
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—h2
—— 2 p—
[va + V|w = Ey
Vz—a_z
dx?
h262¢+V = F
2m 0x? Y =Ey
h? 04
Y vy =y
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h% 04y

2m 0x?

0%y 2m

W + W(E — V)l/) =(
RegionI: 0 <x <aand V=0

0%y, 2m
0x?2 T W(E)lpl =0

0%, 2mE
axz + azll)l — O, a V hz

+Y(E—-V)=0
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+

RegionII: x >a, V=V, and E<YV,

s Yy = A cosax + A, sinax

2
Y
axzz (E Ve ) ) IIJZ =0
0%y, 2m
axzz_ F(I/O_ E)IIJZ —
d*y, 2m

2 — ,821/)2 =( Wher'e,B = ? (VO — E)
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Region ITT: x <0, V

o lpz — Bleﬁx + Bze_’gx
V,, and E <YV,

o 7./)3 — Cle’gx + Cze_'gx

Y, = Ay cosax + A, sinax
l/)z — Ble’Bx + Bze_ﬁx

l/)g — Cle'Bx + Cze_'gx
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Since Y has to be finite:
o Bl= Cz — 0

Y, = A{cosax + A, sinax
Y, = Bye F¥
Y3 = C1eﬁx

Boundary conditions: Y has also to be continuous up to the first derivative

P1(0) =93(0) = A1 = (4

dip1(0)  dy3(0)
dx  dx
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~—Ajasinax + Aya cos ax = [C, eP*
x=0 x=0

Aa = Cip = AP
Aq

therefore — =

¢
Boundary conditions at x = a: A, P
1(a) = yP3(a)
di,(a) diys(a)
dx dx

Ajcosaa+ A,sinaa = B, e P e

—A a sinaa+ A,acosaa = —fBB,e P ... ...
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viding (1) over (2) results in:
A{cosaa + A,sinaa —1

—Ajasinaa + A, acosaa 15

Dividing numerator and denominator by A, cos a a yields:
a/f +tanaa —1
—a’/ftanaa+a L

CXZ

—tanaa—a=a+ ftanaa

p

aZ

2a=('8

f)tanaa
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2af
tan aa = (6(2 —,82)
2JE(V, — E)
T 2E-V,
tan 2—mE.a = 2\/E(VO )
J 72 2F —V,

fL(E) = f2(E)
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i

Quantized energy levels,
answer to the first question
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Now the second question: where the particle can most likely be located?

This is obtained by integrating the probability density function |y|?over a region
within which the particle is searched for. Because we know:

f_O:ol/Jt/J* dx = J_Oooz/;gllJ?,dx + foal/hlpidx + faoolpzl/;;dx -1

Let us plot a sketch of the wave function ¢ for a given energy value E and the associated
probability density function [i]?.
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Remarks:

1. |yp|* gives the probability of finding the particle in a distance dx within
the configuration space. Integrating ||*dx over a distance (x;, x,) gives
X the probability that the particle can be located within this distance.

2. Even though E is less than V,, there is a nonzero probability of finding
the particle in regions ITT and IT.




Example: Infinite potential well
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Let us assume that V, = . Recall the solution we obtained before and geft its

limit when V, goesto oo,
2mE 2 E(V,—E
tan a — \/ (Yo ) -0
| 72 2F — V,
Vo—0
2mE |
tan a Y = ( Which means
\ -
_ 2mE 0
Sina =
2
\ h
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hence, a\l Z;ZE = nm, n=1234....cc.cccccuuu....
. g2 ZZQE — 272
h%m?
E = n* a? n=12,3,
hem?
E, = n* ra? n=12,3,

Which confirms the quantization of energy.
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Now, what about ¢, and

2m(Vy, — E
po [Go=B) |,
\

VO—>oo
SP, =93 =0

Which means the particle can neither be found in region I nor in region IT.

Agrees with the classical theory
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Boundary conditions:

atx=0, l/)lzl/)3=O :>A1=O

at x = a, Pi(a) =9(a) =0 =>a=—

e = A, si nm
o 1 — leTl—.X
a

A, can be obtained by integrating the probability density function over the whole
configuration space:

f;/)ﬂ/)i dr =1
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+

a
f A5 sin® axdx = 1
0

aAZ
f —Z (1 —cos2ax)dx =1
0o 2

A3
7(61) =1
Which gives:
A=
2 a
a 2
2 — Ja
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' = |[—Sin—X
h= Jasing

Sketch of Y and || forn=1and n = 2.

Curve of |y|? shows locations of maximum and minimum probability
Example:
hZ
2ma?’ .
and the likelihood is to find the particle at >

For n=1, the energy E1 =

al2



+

VII. Probability current density:

P is the probability and J is the number of particles crossing a unit area per unit

Time.
From the QM postulates:

Lecture 6

+ V.]=0

oY

HY = jh—

—h? oY
2 _ p ¥
<2mV +V)1/) ]hat

_hz al/)*
2 * _ g
< Y +V>1/) jh 5

2m

ot
X P*

X

(1)

(2)
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Subtract (2) from (1)

—-h? A ey O® 0P
S—[Y7 VY — Vi) = AT —=+ p— ]

—h2 ) A eprgOW 0T
VLYV — YVt = jRlYT -+ Y — ]

2m

.y (Y. Y*
vy - pvy] = )

2m
oW.yY*) —jh

——— + 5=V [PV — YvypT] =0
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Comparing the last equation with the continuity equation yields:
1= Lipvy - poyr
2m
In one dimensional case

dyp”
[l/) dx

Which is the probability per unit time that a particle passes through the unit area
placed perpendicular to the direction of J.
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A particle in a potential step:

Casel E <V, A
RegionI: V=0 andx<0 n Vo
.- > Jt
_hZ le/J I I
VY =E =
2m dx? +Vy g 5
d?y 2m
dx2 Y (V E)l/J = (
d2¢ Zm V—FE 0
dx? 7 ( W = dzl/J1
For Reglon I, V:andlp — l/)1 dxz hz El/)l = O
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The solution of the last equation can be written as:

2m

Y,(x) = A/ + A,e™Tox where a = ?E

RegionIT: V=V, andx=>0

d?y, 2m
7 ?(Vo — E)Y, =0

Whose solution can be written as:

B0 = Bieb 4 B where p= [y, - B)
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Y, has to be finite which means goes to 0 as x goes to o, so B; = 0.

x)= B e“ﬁx
Boundary condition at x = O: lpZ( ) 2

P1(0) = 1, (0)

Al +A2 — BZ (1)
di(0) B dy,(0)
dx  dx
ja(Al _Az) = _,BBZ
_ —PpB;
(A1 _Az) — (2)

Ja



Lecture 6

+

Add (1) 1o (2): 1 B
A, = — —
24, = By(1 = 1)
2iaA
. BZ = - ] 1
ja — B

Back into equation (2):

= A
Yja — B

— — A=A
A; = By 1 1(].“_

2ja _1> ja+ B
p

2P () = A(ef™ + e_jax]:a +'B)
S\ Ja—B

incident reflected
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+

2JaAq

Po(x) = - e Px
ja — p
Transmission (T) and reflection (R) coefficients:

Use the incident wave for J;:

[Ale ™/ jaA /% — Ae/%*. (—ja)Aie %]

Ji= 5—

2m
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_]hlAllz ] ] h|A1|2(1 hlAllz 2m
Ji= — Ja +ja) = = >
m m m Vfi
~ h|A;]* |2m P2
Ji = 'm,,VhZZWz
|A1|*P
Ji =
m
h=:ﬂAﬂ2
similarly, J, =-vl4,?,  |[E2E] =1

ja—p
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WR="—=-1

let A = ca AL =Y, = Ae B*
ja — g T

Zm

Jo = So A2 Bl-e~x 4 o2 | =

i.e. no resultant transmission, those particles which were able to be transmitted to region

IT would get reflected back, 1 = L = 0.

Ji

Jt [A* PXLA(-P) e — AeTPX AT (—B)e ]
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i CaseIT E >V,

o

Region I : solution is the same

Pi(x) = Aje/¥ + A where «
Region ITT

dzle
dx2

(E_V)lpz—o let p'=

Yo(x) = B1ejﬁlx + Bze_jﬁ’x

X4
No reflection inregionII = B, =0 = 1, (x) = BleJ:B X
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Solution as before with replacing —,B with ],B’

S (0) = (I T e
aapy(x) = Ap(e/ + “ P e ™)

incident reflected

20(A1 ',B’x
o(x) = oy e/l T

!
,B tfransmitted
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+

Following the same procedure we get J; , [ and JR

]r a_ﬁlz
ek (220)
and Tzﬁ’(za )2

It is clear now that:
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VIII. Energy Band Theory

Free Electron Fermi Gas:

Electrons move freely inside metals. This is because the potential inside metals is
zero and the wave nature of electrons make them propagate freely inside metals.

Metallic bond: Positive ions

Cloud of electrons move freely inside the crystal and \
are hindered by frequent scattering with th4 lattice

and other electrons Cloud of electrons

\
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Energy Levels in one dimension

Electrons inside metals are considered to move inside
an infinite potential well

The solution Schrodinger wave equation has been previously
obtained and confirm the existence of quantized energy levels.

B 2 nm
Y,(x) = T Sin——x
\
h%m?
E, = n* n=123,..

2ml?
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LY B
@
C D
VN '\ /N
] \/
Maximum energy an electron can possess inside
metals (Fermi Level) > o
Er =nj T 2
2mlL

Consider each atom contributes a single free electrons and N is
the number of free electrons per unit volume.

o N — an

4> ——>

< - 0 H—

N W
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Bloch Theorem:

Inside a metal the potential can be considered periodic
as shown, i.e.:

Vix+a) =V(x)
and therefore  W(x + a) = e/ (x)
and  P(x) = elu(x)
Where U(X) is the unit cell solution, a region of an extension equal to the lattice constant a.

The solution 1,/)(36) is a plane wave eka modulated by the unit cell solution u(x) which
has the same periodicity of V(X)
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Kronig-Penny model

They simplified the periodic potential inside metal, assumed
by Bloch, to look like the shown figure.

Solving now Schrodinger wave equations one can write:

Pa(x) = Ay sinax + A, cos ax for 0<x<a
Yp(x) = By sin Bx + B, cos fx for —b<x<0
2m 2m
where a:\j?E and ﬁ:\l?%_a
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Applying the boundary conditions and taking care of the periodicity one can reach to
the following transcendental equation:

a’ + p*
2af

sin aa sin fb + cos aa cos fb = cosk(a + b)

f(E) = cosk(a+ b)
f(E)

forbidden hands allowed bands
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