

AAST Faculty of Engineering CE-Department Instructor: Dr. M. El-Banna Fifth Term EC233: Devices II Year: 2006/2007 Sheet : 2

- 1. A silicon n⁺-p-n transistor has a base width of $1*10^{-4}$ cm, a base resistivity of 0.1 Ω .cm, and an electron diffusion length in the base region of 10 μ m. The emitter region thickness is $1.0*10^{-4}$ cm and has a resistivity of 0.005 Ω .cm. the emitter and collector areas are both $2.5*10^{-5}$ cm². Take $\mu_n = 650$ cm²/V.sec and assume the transistor is operating in the active mode.
 - a) Calculate the total charge of electrons stored in the active base region when the transistor base current is $100 \ \mu A$ at room temperature.
 - b) Determine the collector current under the condition of (a).
 - c) Calculate the electron density just at the edge of the emitter space-charge region, in the p-type base region.
 - d) Calculate the emitter-base voltage V_{BE} in this case.
 - e) Calculate the emitter-base current gain α_F .
 - f) Calculate the common-emitter current gain β_F .
- 2. Draw the approximate Ebers-Moll equivalent circuit for a transistor operating in the active region, where $\alpha_F >> \alpha_R$ and $I_{CBO} << \alpha_F I_E$.
- 3. For a transistor with strongly reverse-biased collector junction and emitter-base open-circuited, show that the floating emitter-base voltage is $(KT/q)\ln(1-\alpha_F)$.