Lecture 9

9.1 Wave Aspects of Material Particles:

De Broglie Hypthesis:

He assumed that the dual aspects are cot confined to EM waves only, but apply as well to material particles.

De Broglie Wave

If a particle ha an energy $E = mc^2$ and a momentum p = mv, then one can assume a wave moving in place of the particle and carrying the same amount of energy mc^2 .

$$h\upsilon = mc^2$$

 $\therefore \upsilon_D = \frac{mc^2}{h}$

The above frequency is known as De Broglie frequency v_D . The same thing can be said about the momentum.

$$P_{D} = p_{particle}$$
$$\therefore \frac{h}{\lambda} = mv$$
$$hence \quad \lambda_{D} = \frac{h}{mv}$$

The velocity of propagation of De Broglie wave can be simply obtained as:

$$v_D = \lambda_D v_D$$
$$v_D = \frac{h}{mv} \frac{mc^2}{h} = \frac{c^2}{v}$$

Two main issues can be pinpointed from this results:

- 1. $v_D > c$, but no energy or signal can be transmitted by this velocity. Energy is being transmitted by the particle's velocity.
- 2. $v_D > v$, which means that the De Broglie wave gets away from the particle. This is not true, the particle is effectively inside a wave packet or a group of waves whose velocity is equal to the particle's velocity.

So, we conclude that the De Broglie velocity v_D does not represent a velocity with which a matter can be transferred, and from now on will be called the phase velocity v_{ph} . One main unique characteristic of the phase velocity of the waves associated with the particle is that id depends on the wavelength.

Proof:

$$E^2 = p^2 c^2 + m_o^2 c^4 \tag{1}$$

According to De Broglie $v_{ph} = \frac{c^2}{v} = \frac{mc^2}{mv} = \frac{E}{p}$ $\therefore E = v_{ph}p$ into equation (1) $v_{ph}^2 p^2 = p^2 c^2 + m_o^2 c^4$ $\therefore v_{ph}^2 = c^2 + c^2 \frac{m_o^2 c^2}{p^2}$ $v_{ph} = c \sqrt{1 + \frac{m_o^2 c^2}{p^2}}$ but $p = \frac{h}{\lambda}$ $\therefore v_{ph} = c \sqrt{1 + \frac{m_o^2 c^2}{h^2} \lambda^2}$ This is known as a dispersion relation.

It is clear from this relation that the phase velocity is a function of the wavelength , for a photon $m_o=0$, which gives $v_{ph}=c$.

9.2 Phase and Group Velocities:

Now, we have known that the particle is actually inside a wave packet composed of many wavelets each of which travels with a phase velocity v_{ph} , but the whole wave packet travels with a velocity equal to that of the particle. Consider now a dispersive medium where the phase velocity depends on the wavelength. Consider two wavelets, one of a wave length λ and travels with a velocity v_{ph} , and the other one of a wave length $\lambda + d\lambda$ which travels with a velocity v_{ph} .

$$v_g = \frac{S}{t}$$

From the figure, it is clear that:

$$S = v_{ph}t - \lambda$$

$$\therefore v_g = \frac{S}{t} = v_{ph} - \frac{\lambda}{t}$$

It is also clear from the above figure that:

$$d\lambda = (v_{ph} + dv_{ph})t - v_{ph}t$$
$$d\lambda = t \, dv_{ph}$$
$$t = \frac{d\lambda}{dv_{ph}}$$
$$dv = t \, dv_{ph}$$

Giving $v_g = v_{ph} - \lambda \frac{dv_{ph}}{d\lambda}$

Which is the relation between the group velocity and the phase velocity. For nondipersive medium, vacuum for example, the phase velocity does not depend on the wavelength λ .

$$\frac{dv_{ph}}{d\lambda} = 0$$
$$\therefore v_g = v_{ph}$$

We aim now at proving that the group velocity is equal to the particle velocity. We previously prove that:

$$v_{ph} = \sqrt{1 + \frac{m_o^2 c^2}{h^2} \lambda^2}$$

From which the group velocity can be obtained. First we differentiate v_{ph} with respect to λ , then we substitute in the above relation.

$$\frac{dv_{ph}}{d\lambda} = \frac{c\frac{m_o^2 c^2}{h^2}\lambda}{\sqrt{1 + \frac{m_o^2 c^2}{h^2}\lambda^2}}$$
$$v_g = v_{ph} - \lambda \frac{dv_{ph}}{d\lambda} = c\sqrt{1 + \frac{m_o^2 c^2}{h^2}\lambda^2} - \lambda \frac{c\frac{m_o^2 c^2}{h^2}\lambda}{\sqrt{1 + \frac{m_o^2 c^2}{h^2}\lambda^2}}$$

$$\therefore v_g = \frac{c^2}{v_{ph}} = \frac{c^2}{c^2/v} = v$$