
Lecture_1

Microprocessors Systems

CSE 238
Prof. M. E l-Banna

CSE 238 ILOs
ILO # Description

1 Understand the general working of computers.

2 Comprehend the internal structure of computers, CPU, memory and buses.

3 Comprehend the concept of pipelining and pre-fetch queue.

Know the 8088/8086 internal four types of registers, general purpose, index and pointers, segment,
4 as well as flag registers.

Differentiate between logical and physical memory in accordance to the memory structure of 8086/
5 8088 Intel’s processors.

6 Define different memory segments in Intel’s 8086/8088 processors.

7 Know the different addressing modes of Intel’s processors.

CSE 238 ILOs
ILO # Description

11 Understand how memory and I/O ports can be interfaced with microprocessors.

12 Use a microprocessor kit to exercise the above gained skills by writing assembly codes to drive and

test different operations.

9 Comprehend and use the instruction set of 8086/8088 processors.

10 Hardware specifications and pin configuration of Intel’s 8086/8088 microprocessors

Microprocessors Systems CSE 238

Term: Spring 2024

Instructors: Dr. M. El-Banna, Room: 4th floor EE-Building
Dr. Hania Farag, Room: 3rd floor EE Building

Classes : G3 and G4 Dr. Banna MON 02:00 – 04:40 G4 K5
TUE 11:10 – 02:50 G3 K5

Office Hours: Monday 12:00 – 02:00
Tuesday 10:00 – 11:00
Thursday 10:00 – 12:00

Lab TAs : Eng. A. Shasly and TBD

Microprocessors Systems CSE 238

Topics to be covered:

Software

Chapter 1: General knowledge of computers
Chapter 2: Introduction to the Intel’s 8086/8088 microprocessor
Chapter 3: Addressing Modes
Chapter 4: Data movement instructions
Chapter 5: Logical and arithmetic instructions.
Chapter 6: machine coding
Chapter 7: Program control instructions

Hardware

Chapter 1: Hardware specifications of 8086/8088
Chapter 2: Memory Interfacing

Text Book: The INTEL Microprocessors, Eighth Edition
Barry B. Brey

Grading Policy:
Midterm 30%
LAB 20%
Tutorials attendance/Quizzes 10% (5% +5%)
Final 40%

Microprocessors Systems CSE 238

Useful Codes and links:

Course code:9dlbhy3
Website : http:http://eng.staff.alexu.edu.eg/staff/mbanna/
public_html/

Youtube channel: “BannaElectronics”

https://www.youtube.com/channel/UCaKy_Y0LJaPieD4ve59LZEQ/
playlists

Microprocessors Systems CSE 238

General Knowledge of Computers

What is a computer composed of ?

1. CPU

2. Memory

3. I/O devices

The CPU connects with
1. Memory (RAM, ROM, and HD)

2. I/O devices (KB, Printers, and Monitor)

Using 1. Address Bus
2. Data bus
3. Control Bus

What is The CPU composed of ?

1. Registers

2. Arithmetic Logic Unit

3. Program Counter

4. Instruction Decoder

What is a Microprocessor ?

All four CPU components integrated into a
single chip called a microprocessor in 1971

CISC RISC

1. Large number of instructions Small number of instructions
2. Different lengths Fixed lengths
3. Multiple cycles Single cycle
4. Complex operations Simple operations
5. Interfaced Memory Built-in Memory

CISC Vs RISC

Chapter 1: Introduction
 There are two big microprocessors families:

 Intel (80xxx).
 Motorola (68xxx).

 The Intel Microprocessors are used in the
PCs.

 In this course, we study the Intel Ps.

1.1. Evolution of the Intel’s
Ps.

Product 8080 8085 8086 8088 80286 80386 80486
Year introduced 1974 1976 1978 1979 1982 1985 1989
Clock rate (MHz) 2-3 3-8 5-10 5-10 6-16 16-33 25-50
No. Transistors 4500 6500 29000 29000 130000 275000 1.2 million
Physical memory 64K 64K 1M 1M 16M 4G 4G
External data bus 8 8 16 8 16 32 32
Address bus 16 16 20 20 24 32 32
Data type (bits) 8 8 8,16 8,16 8,16 8,16,32 8,16,32

1.1. Evolution of the Intel’s
Ps.

Product P pro P II P III P 4
Year introduced 1995 1997 1978 2000
Clock rate (MHz) 150-166 266-333 1000, 1G 3.2G
No. Transistors 21M ? ? ?
Physical memory 4-64G 64G 64G 64G
External data bus 64 64 64 64
Address bus 32-36 36 36 36
Data type (bits) 8,16,32,64 8,16,32,64 8,16,32,64 8,16,32,64

1.1. Evolution of the Intel’s
Ps.

1.1. Evolution of the Intel’s
Ps.

1.1. Evolution of the Intel’s
Ps.

 The execution time are given as:

 The advantages of the 8086/8088:
 Hardware multiplication and division.
 Larger addressable memory space.
 Large number of internal registers which

are accessible in 200 ns.

8080 2 s
8085 1.3 s
8086/8088 400 ns

1.2. 8086/8088 Architecture
 The steps of fetching and executing the

instruction:
1. An instruction is fetched from memory, then

it is decoded within the P.
2. Operands are read from/written to either the

data memory segment or internal registers.
3. The P is now ready to execute the next

instruction.

1.2. 8086/8088 Architecture
 The normal operation of an 8085 is

CPU

Bus

Fetch

Busy

Read

Busy

Execute Fetch

Busy

Write

Busy

Execute

1.2. 8086/8088 Architecture
 The normal operation of an 8086/8088

depends on pipelining
EU

BIU

Bus

Fetch

Busy

Read

Busy

Execute

Fetch

Busy

Write

Busy

Execute

Fetch

Busy

2.1. Basic Internal Architecture
EU BIU

Register
Array

ALU and
Control Unit
Instruction
register

Segment
registers and IP

Bus
Controller

Prefetch
queue

8086/
8088
bus

1.2.1.1. Bus Interface Unit
(BIU)

 The main purposes of the BIU are:
1. To keep the prefetch queue filled with

instructions.
2. To generate and accept the system control

signals.
3. To provide the system with the memory

address or I/O port number.
4. To act as window between the EU and

memory for data.

1.2.1.1. Bus Interface Unit
(BIU)

 The prefetch queue is FIFO memory.
 The 8086 queue is 2 byte-wide queue and 3

locations deep.
 The 8088 queue is a byte-wide queue and 4

bytes deep.

1.2.1.2. Execution Unit (EU)
 The EU carries out instructions that are

fetched from the prefetch queue.
 The ALU performs arithmetic and logic

operations on memory or register data.
 The register array holds information

temporarily
 The instruction register

1. Receives the instruction from the prefetch
queue.

2. Decodes the instruction to be executed.

1.2.2. System Architecture
 The 8086 system

8086
System

Address Bus A0-A19

Control Bus
IO/M

WR

RD

Data Bus (16-bit)

A19

A0

D15

D0

1.2.2. System Architecture
 The 8088 system

8088
System

Address Bus A0-A19

Control Bus
M/IO

WR

RD

Data Bus (8-bit)

A19

A0

D7

D0

Lecture_2

1.3. 8086/8088 Memory
 8086/8088 has 1M (1,048,576) Byte.
 The memory can be studied from two points-

of-view:
 The programmer Logical Memory.
 The hardware designer Physical Memory.

1.3.1. Logical Memory
 The logical memory is the same for both 8086

and 8088 Ps.

1M Bytes

00000H

FFFFFH

1.3.1. Logical Memory
 Some address locations have dedicated

functions or reserved.

Open for
general Use

Reserved
Dedicated

Reserved
Dedicated

FFFFFH

FFFFCH

FFFF0H

0007FH

00014H

00000H

For Interrupt

For future use
For functions such
as storage of the

hardware reset jump
instructions.

1.3.2. Physical Memory
 The physical memory of the 8088 P is

identical to its logical memory.

1M Bytes

00000H

FFFFFH

1.3.2. Physical Memory
 The physical memory of the 8086 P

512K Bytes

00001H

FFFFFH

512K Bytes

00000H
High bank Low bank

FFFFEH

1.3.2. Physical Memory
 The advantages of this organization is:

 The 8086 can address any byte or word of data.

 To transfer 16 bits from/to memory:
 8086 requires 1 operation.
 8088 requires 2 operations.

 The 8086 software executes more efficiently.

1.4. Registers
 The registers can be divided into:

 Data or general purpose registers.
 Pointer and index registers.
 Segment registers.
 Flag register.

1.4.1. General Purpose
Registers

 There are 4 general-purpose data registers.
 Used for temporary storage of frequently

used intermediate results.
 The advantage of storing the data in the

internal registers instead of the memory is
that they can be accessed much faster.

1.4.1. General Purpose
Registers

 These registers can be used to store byte or word.

AH
BH
CH
DH

AL
BL
CL
DL

AX
BX
CX
DX

16 bits 8 bits 8 bits

1.4.1. General Purpose
Registers

 The primary functions of these registers
include:

 AX (Accumulator)
1. Used with the arithmetic and logic operation.
2. Used with the I/O devices
 BX (Base)
1. Hold the base address of data located in the

memory.
2. Hold the base address of a table of data

referenced by the translate instruction (XLAT).

1.4.1. General Purpose
Registers

 The primary functions of these registers
include:

 CX (Count)
1. Used as a counter for certain instructions such

as shift rotate and loop.
2. Used as a counter for the string operations.
 DX (Data)
1. Used with the arithmetic instruction such as 16-

bit multiplication and division.
2. Hold the I/O port number for a variable I/O

instruction.

1.4.2.Pointers & Index
Registers

 There are five pointer and index registers.

SP (Stack Pointer)
BP (Base Pointer)

SI (Source Index)
DI (Destination Index)
IP (Instruction Pointer)

1.4.2. Pointers & Index
Registers

 The functions of these registers are:
 SP (Stack pointer)
1. Used to address data in a LIFO (last-in, first-out)

stack memory.
2. Used with the PUSH and POP instructions and

the subroutines.
 BP (Base pointer)
1. Used to address an array of data in the stack

memory.

1.4.2. Pointers & Index
Registers

 The functions of these registers are:
 SI (Source index)
1. Used to address the data.
2. Used with the string instructions.
 DI (Destination index)
1. Used to address the data.
2. Used with the string instructions.

1.4.2. Pointers & Index
Registers

 The functions of these registers are:
 IP (Instruction Pointer)
1. Used to address the next instruction executed.
2. Every time an instruction is fetched from

memory, the 8086/8088 updates the value in IP
such that it points to the first byte of the next
instructions.

1.4.3. Segment Registers
 The memory is 1M-byte.
 It can be partitioned into 64K (65536) byte

segments.
 Not all this memory segments can be active at one

time.
 Four segments only can be active at one time.
1. Code segment store the program or code.
2. Data segment store the data.
3. Stack segment store data as LIFO stack.
4. Extra segment used for string instructions.

1.4.3. Segment Registers
 Each segment is addressed independently by

a special register called a segment register.
 There are 4 segments registers

 CS
 DS
 SS
 ES

 Each segment register identifies the
segment’s starting point or its lowest-
addressed byte.

 Each register is 16-bit wide.

1.4.3. Segment Registers
Stack

Segment

Extra
Segment

Data Segment

Code
Segment CS = 1000H

DS=3000H

ES=8000H

SS=A000H

AFFFFH

A0000H
8FFFFH

80000H
3FFFFH

30000H
1FFFFH

10000H

1.4.3. Segment Registers
 Each segment should start at address ended

by 0000B.
 The leftmost 16 bit are stored at the segment

registers.
 Examples:

Segment Register Memory Address Range
0100H 01000-10FFFH
1200H 12000H-21FFFH
2000H 20000H-2FFFFH

1.4.3. Segment Registers
 In the segment, data are addressed by the

registers.
 CS IP
 DS BX, SI, DI.
 SS BP, SP
 ES DI

1.4.3. Segment Registers
 The address of any memory location is 20

bits.
 The size of the registers is 16 bits.
 Question:

How can the registers point to any memory
location?

Lecture_3

1.4.3.1. Generating a memory
address

 There are logical and physical address.
 A logical address is described by

 The address stored at the segment register
 An offset stored at the index registers, pointer

registers, base registers or instruction pointer.
 Both the segment and the offset are 16 bits

long.
 It can be written as: Segment:Offset
 Example: CS:0100H

1.4.3.1. Generating a memory
address

 The physical address used to access memory
should be 20 bits long.

 The physical address is computed as follows:
PA = Segment 10H + Offset.

 Example :
The segment register = 1000H and the Offset
= 1234H
The physical address = 1000 10 + 1234 =
11234H.

1.4.3.1. Generating a memory
address

 Example1:
CS = 1000H, DS = 3000H, SS = A000H, ES = 8000H
BX = 0200H.

 The physical address pointed to by the BX is
DS 10 + BX = 30200H.

1.4.4. Flag Register
 The flag or status register is 16-bit register.

within the 8086/8088.
 The state of these flags indicates the

conditions that are produced as the result of
executing an arithmetic or logic instruction.

 There are nine flags divided into two groups:
 Status flags: CF, PF, AF, ZF, SF and OF.
 Control flags: TF, IF and DF.

1.4.4. Flag Register
 The flags are arranged as shown:

 The function of these flags are:
1. Carry flag (CF)

CF = 1 if there is a carry or borrow.
CF = 0 otherwise

2. Parity flag (PF)
PF = 1 if the result contains an even number of

1’s.
PF = 0 if the result has an odd number of 1’s.

 O D I T S Z A P C

1.4.4. Flag Register
 The function of these flags are:
3. Auxiliary carry flag (AF)

AF = 1 if there is a carry-out or a borrow-in
between the low and high nibble.

AF = 0 if there is no carry-out or borrow-in.
4. Zero flag (ZF)

ZF = 1 if the result is zero.
ZF = 0 if the result is not zero.

5. Sign flag (SF)
SF = 1 if the result is negative number.
SF = 0 if the result is positive number.

1.4.4. Flag Register
 The function of these flags are:
6. Trap flag (TF)

TF = 1 if the P works in the single-step mode.
TF = 0 if the 8086/8088 works in normal mode.

7. Interrupt flag (IF)
IF = 1 if the P enables the maskable interrupt.
IF = 0 if the P disables the maskable interrupt.

1.4.4. Flag Register
 The function of these flags are:
8. Direction flag (DF)

DF = 1 if the string instruction
automatically decrements the address.

DF = 0 if the string instruction
automatically increments the address.

9. Overflow flag (OF)
OF = 1 if the signed result is out of range.
OF = 0 of the signed result is within the

range.

1.5. Data Formats
 The data can be presented as:

 ASCII
 BCD
 8-bit signed and unsigned integers.
 16-bit signed and unsigned integers.
 32-bit signed and unsigned integers.
 Short and long real numbers (floating-point

numbers).

1.5.1. ASCII Data
 Used to represent alphanumeric characters.
 It is 7-bit code.
 In some systems, 8th bit holds the parity.
 In the printer system,

 The 8th bit holds 0 for alphanumeric.
 The 8th bit holds 1 for graphics characters.

1.5.1. ASCII Data

1.5.2. BCD
 Binary Coded Decimal (BCD) is 4-bit binary

codes from 0000 (0) to 1001 (9).
 It can be stored as:

 Packed BCD 2 BCD digits / memory byte.
 Unpacked BCD 1 BCD digit / memory byte.

1.5.3. Byte
 Byte data are stored as:
1. UnSigned

0 → 255

2. Signed

-128 → 127

27 26 25 24 23 22 21 20

128 64 32 16 8 4 2 1

-27 26 25 24 23 22 21 20

-128 64 32 16 8 4 2 1

1.5.3. Byte
 The negative numbers are presented in its

2’s complement.
 Example:

 If the value is 81H
As unsigned byte, 81H = 12910.
As signed byte, 81H = (-128+1)10=-12710.

1.5.4. Word
 Word data is formed as two bytes
 They are stored as:
1. UnSigned

2. Signed

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

-215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

1.5.4. Word
 To store the word in the memory,

 It takes two bytes (two memory locations).
 The least significant byte of the word is stored at

the lower-addressed byte.
 The most significant byte is stored at the higher-

addressed byte.
 Example: Store 1234H at address 10000H

10001H

10000H 34

12

1.5.5. Double Word
 Double word is formed as 4 bytes.
 Example: Store 12345678H at address

10000H.
10003H

10002H

10001H

10000H

12

34

56

78

1.5.5. Double Word
 Example: Store DS:Offset = 1000H:2356H at

the address 10000H

10003H

10002H

10001H

10000H

10

00

23

56

1.5.6. Real Numbers
 A real or floating-point number is composed

of:
 A mantissa
 An exponent.

 Example: Decimal 12 = 1100
It can be written as 1.1 23

The mantissa is 1 and the exponent is 3.

1.5.6. Real Numbers
 It can be stored as:

 4-byte short form.

 8-byte long form.

S

8-bit Excess-
127 exponent

23-bit
mantissa

S

11-bit Excess-
1023 exponent

52-bit
mantissa

1.5.6. Real Numbers
 Examples:

Decimal Binary Normalized Sign Biased
Exponent

Mantissa

+12 1100 1.123 0 10000010 1000000 00000000 00000000
-12 1100 -1.123 1 10000010 1000000 00000000 00000000
+100 1100100 1.100126 0 10000101 1001000 00000000 00000000
-1.75 1.11 -1.1120 1 01111111 1100000 00000000 00000000
0.25 .01 1.02-2 0 01111101 0000000 00000000 00000000
0.0 0 0 0 00000000 0000000 00000000 00000000

Lecture_4

Chapter 2: Addressing Modes
 In this chapter, we will discuss:

 The addressing modes.
 The stack.

 There are two types of the addressing
modes:
 Data addressing modes.
 Program memory addressing modes.

2.1. Data Addressing Modes
 MOV instruction is one of the simplest and

most flexible instruction.
 It is written as:

MOV Destination, Source
 Move (copy) the data from the source to the

destination.
 The addressing modes discuss how to

describe the source and the destination.

1.2. Data Addressing Modes
 Data addressing modes are:

a) Register Addressing.
b) Immediate Addressing.
c) Direct Addressing.
d) Register Indirect Addressing.
e) Base-Plus-Index Addressing.
f) Register-Relative Addressing.
g) Base-Relative-Plus-Index Addressing.
i) Port Addressing.

2.3. Register Addressing
 It is used to transfer a byte or word from the

source register to the destination register.
 The 8-bit registers are

AH,AL,BH,BL,CH,CL,DH,DL.
 The 16-bit registers are

AX,BX,CX,DX,SP,BP,SI,DI,CS,DS,SS,ES.
 The rules of using this addressing mode:

a) The source and destination registers have
the same size.

b) It is not allowed to MOV from one
segment to another.

2.3. Register Addressing
 Examples on the register addressing

Assembly Language Operation
MOV AL,BL
MOV CH,CL
MOV AX,CX
MOV SP,BP
MOV DS,AX
MOV SI,DI
MOV DI,SI
MOV BX,ES
MOV CS,DS
MOV BL,BX
MOV AX,DL

BL AL
CL CH
CX AX
BP SP
AX DS
DI SI
SI DI
ES BX
Not allowed
Not allowed
Not allowed

2.3. Register Addressing
 Example on the register addressing

MOV BX,CX
Ex: Before execution
AX
BX 76AF
CX 1234
DX

After execution
AX
BX 1234
CX 1234
DX

2.4. Immediate Addressing
 It is used to transfer the immediate byte or

word of data to the destination register.
 The data is stored immediately in the

instruction.
 Examples

Assembly Language Operation
MOV BL,44

MOV AX,44H

MOV SI,0

MOV CH,100

MOV SP,3000H

2CH BL

0044H AX

0000H SI

64H CH

3000H SP

2.4. Immediate Addressing
 Example on the Immediate addressing:

MOV AX, 3456H
Before execution
AX 6291 H
BX
CX
DX

After execution
AX 3456H
BX
CX
DX

2.5. Direct Addressing
 It is used to transfer a byte or word

between the memory and a register.
 The memory address of the data is stored

by its effective memory address or the
offset.

 The physical address of the data is
computed as: Segment Register 10H +
EA.

 The effective address can be written as:
 Direct (Label)
 Displacement

2.5.1. Direct Addressing
 The effective address is presented by the label.
 Example: MOV AX, BETA
 This stands for “move the contents of the

memory location labeled as BETA into the
register AX”. The physical address of the data is
DS10H+BETA and DS10H+BETA+1.

 Examples:
Assembly Language Operation
MOV AL,NUMBER

The contents of the memory location DS10H+NUMBER is
copied, a byte, into AL.

MOV THERE,AX

The content of the AX is copied to the memory location
whose address is DS10H+THERE and DS10H+THERE+1

Ex: Before execution
AH AL XX XX

Memory
Address Content
11234 12
11235
 After execution

AH AL XX 12

2.5.1. Direct Addressing
 Example: MOV AL, NUMBER1
 Where NUMBER1 = 1234H and DS = 1000H

• The PA = DS 10H + 1234 = 11234H

Only with the AX, AL and AH registers

2.5.2. Displacement
Addressing

 The effective address is given in the instruction.
 Example: MOV CX, [1234H]
 This stands for “move the contents of the memory

location whose effective address is 1234H into the
register CX”. The physical address of the data is
DS10H+1234H and DS10H+1234+1.

 Examples:
Assembly Language Operation
MOV CL,[2000H]

The contents of the memory location DS10H+2000H is
copied a byte into CL.

MOV THERE,BX

The content of the BX is copied to the memory location whose
address is DS10H+THERE and DS10H+THERE+1

Before execution
BH BL XX XX
CH CL XX XX

Memory
Address Content
12000 ED
12001 BD
12002
12003

After execution
BH BL XX XX
CH CL BD ED

 Example: MOV CX, [2000H]
where DS = 1000H

 Physical address = DS 10H + 2000H = 12000H

2.5.2. Displacement Addressing

2.6. Register Indirect
 It is used to transfer a byte or word between a

register and the memory location addressed by a
register.

 The data is addressed at the memory location
pointed to by any of the following registers: BX,
BP, SI and DI.

 An Example of this mode is given as: MOV
AX,[SI]

 This stands for “move the content of memory
location whose effective address is stored in SI to
the register AX”.

 The physical address is DS10H+SI and DS
10H+SI+1.

2.6. Register Indirect
 The following table illustrates several MOV

instructions using register indirect mode.
Assembly Language Operation
MOV CX,[BX]

The contents of the memory location DS10H+BX and
DS10H+BX+1 are copied as word into CX.

MOV [BP],DL

The content of the DL is copied to the memory location whose
address is SS10H+BP.

MOV [DI],BH

The content of the BH is copied to the memory location whose
address is ES10H+DI.

2.6. Register Indirect
 Example: MOV AX, [SI]

 Example: MOV CX, [BP]

2.7. Base-Plus-Index Addressing

 It is used to transfer a byte or word between
a register and the memory location addressed
by a base register plus an index register.

 The base register holds the beginning
address of a memory array.

 The index register holds the relative position
of the data in the array.

2.7. Base-Plus-Index Addressing

 Example: MOV [BX + SI], AL
“move the content of the register AL to the
memory location whose effective address is the
sum of the content of SI and the content of BX”.

 The physical address = DS10H+BX+SI
 Example:

Assembly Language Operation
MOV CX,[BX+SI]

The contents of the memory location DS10H+SI+BX and
DS10H+SI+BX+1 are copied as word into CX.

MOV [BP+DI],DL

The content of the DL is copied to the memory location whose
address is SS10H+BP+DI.

2.8. Register Relative Addressing

 It is used to transfer a byte or word between a
register and the memory location indicated by the
sum of the content of a register and a direct or
indirect displacement.

 The register can be BX, BP, SI or DI.
 Example: MOV [BX +BETA], AL

This stands for “move the content of the register AL
to the memory location whose effective address is
the sum of BETA and the content of BX”.
The physical address is DS10H+BX+BETA.

2.8. Register Relative
Addressing

 Examples:
Assembly Language Operation
MOV CX,[BX]+BETA

The contents of the memory location DS10H+BX+BETA
and DS10H+BX+BETA+1 are copied as word into CX.

MOV [BP+NEWS],DL

The content of the DL is copied to the memory location whose
address is SS10H+BP+NEWS.

MOV CX,ARRAY[SI]

The contents of the memory location DS10H+SI+ARRAY
and DS10H+SI+ARRAY+1 are copied as word into CX.

MOV [DI]BETA,DL

The content of the DL is copied to the memory location whose
address is DS10H+DI+BETA.

Before execution
AX BEED
BX 1000

Memory: DS10+BX+BETA=11234
Address Content
11234 ED
11235 87

 After execution
AX BEED
BX 1000

2.8. Register Relative
Addressing

 Examples: MOV [BX]+BETA, AL

Memory After = Memory Before “87ED”

2.9. Base-Relative-Plus-Index
Addressing

 It is used to transfer a byte or word between a
register and the memory location addressed by a
base register plus an index register plus a
displacement.

 An Example: MOV [BX][SI]BETA,AL
This stands for “move the content of the register AL
to the memory location whose effective address is
the sum of BETA and the content of SI and the
content of BX”.
The physical address = DS10H+BX+SI+BETA.

2.9. Base-Relative-Plus-Index
Addressing

 Examples
Assembly Language Operation
MOV CX,[BX+SI+BETA]

The contents of the memory location DS10H+SI+BX+BETA
and DS10H+SI+BX+BETA+1 are copied as word into CX.

MOV BETA[BP+DI],DL

The content of the DL is copied to the memory location whose
address is SS10H+BP+DI+BETA.

Before execution
DI 0200
CX XXXX
BP 0400

2.9. Base-Relative-Plus-Index
Addressing

Memory: SS10+BP+DI+BETA= 20000+0400+0200+1234=21834
Address Content
21834 FC
21835 AB
21836
21837

After execution
DI 0200
CX ABFC
BP 0400

 Example: MOV CX,[BP][DI]BETA

Summary

Lecture_5

Chapter 4.
Data Movement Instructions

 In this chapter, we will discuss the data
movement instructions.

 These instructions are provided to move data
either between its internal registers or
between an internal register and a memory
location.

 All these instructions do not affect the flags.

4.1. MOV
 MOV is used to transfer a byte or a word of

data from a source operand to a destination
operand.

 The following table shows this instruction:

Mnemonic Meaning Format Operation Flags
affected

MOV Move MOV D,S (S) (D) None

4.1. MOV
 These operands take different forms as

shown in the following table:
Destination Source

Memory
Accumulator

Register
Register
Memory
Register
Memory

Segment Register
Segment Register

Register-16
Memory

Accumulator
Memory
Register
Memory
Register

Immediate
Immediate
Register-16
Memory-16

Segment Register
Segment Register

4.1. MOV
 The rules of the MOV instruction:

 It cannot transfer data directly between two
memory locations.

 It cannot transfer data between two segment
registers.

 The source and the destination have the same
size.

4.2. PUSH/POP
Stack segment has 64K bytes.
SS register is used to store the lowest address in
the stack segment.
SP is used to point to the top of the stack.
There are four instructions to move the word data
between the registers and the stack:

PUSH, POP, PUSHF and POPF.

4.2. PUSH/POP
 The following table shows these instructions

Mnemonic Meaning Format Operation Flags affected
PUSH Push word onto stack PUSH S ((SP)) (S) None
POP Pop word from stack POP D (D) ((SP)) None
PUSHF Push flags onto stack PUSHF ((SP)) (flags) None
POPF Pop flags from stack POPF (flags) ((SP)) None

The operand take the following forms:
Register
Memory
Segment registers
Flag Register

4.3. Load Effective-Address
There are three load effective-address instructions
used to load a register or a register and a segment
register with an address.
The following table shows these instructions:

Mnemonic Meaning Format Operation Flags
affected

LEA Load effective
address

LEA Reg16,EA (EA)(Reg16) None

LDS Load register
and DS

LDS Reg16,Mem32 (Mem32)(Reg16)
(Mem32+2)(DS)

None

LES Load register
and ES

LES Reg16,Mem32 (Mem32)(Reg16)
(Mem32+2)(ES)

None

4.3.1. LEA
 It is used to load a register with the address

of the data specified by the operand, not
the data.

 By comparing an LEA with a MOV:
 LEA BX,[DI] ; loads the address specified by

[DI] into the BX register BX=DI.
 MOV BX,[DI] ;load the data stored at the

memory location addressed by DI into BX.
 LEA BX,[DI] is equivalent to MOV BX,DI.

4.3.1. LEA
 Example 1: LEA CX, [DI]

Before Execution: CX = 1000H, DI = 2000H
After Execution: CX = 2000H, DI = 2000H

 Example 2: LEA CX, [BX+DI]
 If BX = 1000H and DI = 2000H

After the execution CX = BX + DI = 3000H.
 If BX = 1000H and DI = FF00H

After the execution CX = BX + DI = 0F00H.

4.3.2. LDS and LES

 They load a 16-bit register with an offset
address and either the DS or ES segment
register with a new segment address.

 They use any of the valid memory addressing
modes.

Mnemonic Meaning Format Operation Flags
affected

LDS Load register
and DS

LDS Reg16,Mem32 (Mem32)(Reg16)
(Mem32+2)(DS)

None

LES Load register
and ES

LES Reg16,Mem32 (Mem32)(Reg16)
(Mem32+2)(ES)

None

4.3.2. LDS and LES
 Example 1:

What is the result of executing: LDS SI,[200]?
Before Execution: DS = 1200H, SI = 0001H

PA = DS10+200=12200H
After Execution: SI = 0020H, DS = 1300H

Address Contents
12203 13
12202 00
12201 00
12200 20

4.3.2. LDS and LES
 Example 2:

What is the result of executing: LES BX,[DI]?
Before Execution:
BX = 0000H, DS = 1000H, DI = 1000H

PA = DS10+DI=11000H

After Execution: BX = 6F2AH , ES = 8930H

Address Contents
11003 89
11002 30
11001 6F
11000 2A

4.4. String Data Transfers
 There are three string data transfer

instructions: LODS, STOS and MOVS.
 Each instruction allows data to be transferred

as a block or group or as a single byte or
word.

 These instructions use:
 SI to point to the source data.
 DI to point to the destination data.
 D flag to select the auto-increment (D=0) or auto-

decrement (D = 1) mode of operation for SI and
DI during the string operation.

4.4. String Data Transfers
 The following table shows these instructions:

Mnemonic Meaning Format Operation Flags
affected

MOVS Move
String

MOVS ((ES)0+(DI)) ((DS)0+(SI))
(SI) (SI) 1 or 2
(DI) (DI) 1 or 2

None

MOVSB Move
String Byte

MOVSB ((ES)0+(DI)) ((DS)0+(SI))
(SI) (SI) 1
(DI) (DI) 1

None

MOVSW Move
String
Word

MOVSW ((ES)0+(DI)) ((DS)0+(SI))
((ES)0+(DI)+1) ((DS)0+(SI)+1)
(SI) (SI) 2
(DI) (DI) 2

None

LODS Load String LODS (AL or AX) ((DS)0+(SI))
(SI) (SI) 1 or 2

None

STOS Store String STOS ((ES)0+(DI)) (AL or AX)
(DI) (DI) 1 or 2

None

4.4. String Data Transfers
 Example: What is the result of executing: LODSW?

Before execution:DS = 1000H, SI = 1000H,
AX = XXXXH, DF = 0

After the execution: DS = 1000H, SI = 1002H,
AX = A032H, DF = 0

Address Contents
11002 FA
11001 A0
11000 32

4.4. String Data Transfers
 In most applications, the string operations must

be repeated in order to process arrays of data.
 This is done by inserting a repeat prefix before

the instruction that is to be repeated.
 The repeat prefix is shown:

Prefix Used With Meaning
REP MOVS, STOS Repeat while not end of string. CX 0.

4.4. String Data Transfers
Example1: What is the function of this program?

This program moves 100 bytes from LIST2 to LIST1

LES DI,LIST1

LDS SI,LIST2

CLD

MOV CX,100

REP MOVSB

;Loads DI,ES by the first address
in the destination list (LIST1).

;Loads SI,DS by the first address
in the source list (LIST2).

;DF = 0 so select auto-increment

;Loads the counter CX = 100

;Transfers 100 bytes from LIST2
to LIST1.

4.4. String Data Transfers
Example2: What is the function of this program?

This program clears 10 memory locations whose starting
address is BUFFER

LES DI,BUFFER

MOV CX,10

CLD

MOV AL,0

REP STOSB

;Loads DI,ES by the first address
in the destination list.

;Loads the counter CX = 10

;DF = 0 so select auto-increment

;Clears AL

;Stores AL in the memory location
addressed by [DI]

4.4. String Data Transfers
Example3: What is the function of this program?

This program clears 10 memory locations whose starting
address is BUFFER

LES DI,BUFFER

MOV CX,5

CLD

MOV AX,0

REP STOSW

;Loads DI,ES by the first address
in the destination list.

;Loads the counter CX = 5

;DF = 0 so select auto-increment

;Clears AX

;Stores AX in the memory location
addressed by [DI]

4.5. Miscellaneous Data
Transfer Instructions

 These instructions are:
 XCHG
 LAHF and SAHF
 IN and OUT
 XLAT

4.5.1. XCHG
 It exchanges the contents of any register

with the contents of any register or memory
location.

 The following table shows these instructions:
Mnemonic Meaning Format Operation Flags affected
XCHG Exchange XCHG D,S (D)(S) None

Destination Source
Accumulator
Memory
Register

Register-16 bits
Register
Register

The allowed operands for these instructions are
shown in the following table:

4.5.1. XCHG
 Example: If BX = 11AAH, DS = 1200H and

the memory location addressed by SUM
contains 1E87 where SUM = 1234H.
What is the result of executing the following
instruction: XCHG SUM,BX.

PA = DS 10H + SUM = 12000 + 1234 =
13234H
After the execution: BX = 1E87H and the
memory locations (34 & 35) = 11AAH

4.5.2. LAHF and SAHF
 LAHF and SAHF transfer the least significant

flag byte to and from the AH register.
 The following table shows these instructions:

Mnemonic Meaning Format Operation Flags affected
LAHF Load AH from flags LAHF (AH) (Flags) None
SAHF Store AH into flags SAHF (Flags) (AH) SF,ZF,AF,PF,CF

4.5.2. LAHF and SAHF
Example: Trace the following program.

This program clears the SF,ZF,AF,PF,CF.

MOV AL,0

LAHF

XCHG AH,AL

SAHF

;Clears AL

;Loads AH by the flags.

;Exchanges the data between AH
and AL.

;Stores AH into the flags.

4.5.3. IN and OUT
 The IN and OUT instructions are used to transfer

the data between the I/O device and the
microprocessor.

 This transfer goes through the AL or AX
 They use the port addressing mode.

4.5.4. XLAT
 The XLAT (translate) instruction has been

provided to simplify implementation of the
lookup table operation.

 The following table shows this instruction:
Mnemonic Meaning Format Operation Flags

affected
XLAT Translate XLAT Source-table ((AL)+(BX)+(DS)0)(AL) None

The procedure of this instruction:
It adds the contents of AL to the contents of the BX

register to form a memory address in the data segment.
It loads the data stored at this address into the AL.

4.5.4. XLAT
Example: BCD-to-7-segment LED display
The 7-segment LED display lookup table is stored at
location TABLE = 1000H in the data segment where
DS = 4000H.
Write a program to convert the contents of the
accumulator into 7-segment code. Assuming that the
7-segment code is already stored at TABLE.

4.5.4. XLAT

;Initialize BX by the offset address

;Load AL by 5H (5 BCD number)

;AL will be loaded by the 7-
segment code equivalent to 5.

;PA = DS 10+ BX + AL.

MOV BX, TABLE

MOV AL,05H

XLAT

The program is:

PA contains 6D (01101101)
h g f e d c b a

g

a

f

d
c

Lecture_6

Chapter 5.
Arithmetic and Logic Instructions

 In this chapter, we will discuss the arithmetic
and logic instructions.

 The execution of these instructions affects
the status of the flags.

 The affected flags are carry flag (CF), sign
flag (SF), zero flag (ZF), parity flag (PF) and
overflow flag (OF).

5.1. Addition
 Addition instructions include: ADD, ADC, INC.
 The following table shows these instructions:

Mnemonic Meaning Format Operation Flags affected
ADD Addition ADD D,S (S)+(D)(D)

carry CF
OF,SF,ZF,AF,PF,CF

ADC Add with carry ADC D,S (S)+(D)+(CF)(D)
carry CF

OF,SF,ZF,AF,PF,CF

INC Increment by 1 INC D (D)+1(D) OF,SF,ZF,AF,PF,CF

5.1. Addition
 The allowed operands for ADD and ADC are:

 The allowed operands for the INC

Destination Source
Register
Register
Memory
Register
Memory

Accumulator

Register
Memory
Register

Immediate
Immediate
Immediate

Destination
Register-16 bit
Register-8 bit

Memory

5.1. Addition
 Example: What are the result of executing

the following program:
The program Affected Register Affected flags

MOV AL, EDH
ADD AL, 21H
ADC AL,11H

INC AL

AL = EDH
AL = ED+21 = 0EH
AL =0E+11+1=20H

AL = 20+1=21H

None
ZF=0, CF=1, AF=0, SF=0, PF=0, OF=0.
ZF=0, CF=0, AF=1, SF=0, PF=0, OF=0.
ZF=0, CF=0, AF=0, SF=0, PF=1, OF=0.

5.1.Subtraction
 Subtraction instructions include: SUB, SBB,

DEC, NEG.
 The following table shows these instructions.

Mnemonic Meaning Format Operation Flags affected
SUB Subtract SUB D,S (D)-(S)(D)

Borrow CF
OF,SF,ZF,AF,
PF,CF

SBB Subtract with borrow SBB D,S (D)-(S)-(CF)(D)
Borrow = CF

OF,SF,ZF,AF,
PF,CF

DEC Decrement by 1 DEC D (D)-1(D) OF,SF,ZF,AF,
PF,CF

NEG Negate NEG D 0-(D) (D)
1 SF

OF,SF,ZF,AF,
PF,CF

5.2. Subtraction

 The allowed operands for SUB and SBB are:

 The allowed operands for DEC and NEG are
Destination

Register-16 bit
Register-8 bit

Memory

Destination Source
Register
Register
Memory
Register
Memory

Accumulator

Register
Memory
Register
Immediate
Immediate
Immediate

5.2. Subtraction
 Example: What are the result of executing

the following program:
The program Affected Register Affected flags

MOV CX, 1527H
MOV BX,1234H

SUB CX,44H
SBB BX,CX

DEC BX
NEG BX

CX = 1527H
BX = 1234H

CX=1527-0044=14E3
BX=1234-14E3-0=FD51

BX = FD50H
BX =02B0H

None
None

ZF=0,CF=0,AF=0,SF=0,PF=0,OF=0.
ZF=0,CF=1,AF=0,SF=1,PF=0,OF=0.
ZF=0,CF=0,AF=0,SF=1,PF=1,OF=0.
ZF=0,CF=1,AF=0,SF=0,PF=1,OF=0.

5.3. Multiplication
Both 8- and 16-bit multiplication on either signed
or unsigned numbers can be performed.
This instruction results in shorter programs and
faster execution.
Multiplication always results in a double-width
product.
For example, if two 8-bit numbers are multiplied,
then the product is always 16 bits.
Likewise, if two 16-bit numbers are multiplied,
then the product is always 32 bits.

5.3. Multiplication
 In 8-bit multiplication,

 The multiplicand is always in the AL register.
 The programmer can choose the multiplier.
 The 16-bit product is stored in AX.

 In 16-bit multiplication,
 The multiplicand is always in the AX register.
 The programmer can choose the multiplier.
 The 32-bit product is stored in DX and AX. DX will contain

the most significant 16 bits of the products and AX will
contain the least significant 16 bits.

 In the signed multiplication, the product is in true
form if positive and in two’s complement form if
negative.

5.3. Multiplication
The following table shows these instructions:

Mnemonic Meaning Format Operation Flags affected
MUL Multiply

(Unsigned)
MUL S (AL)(S8)(AX)

(AX)(S16)(DX),(AX)
OF,SF,ZF,AF,PF,CF

IMUL Multiply
(signed)

IMUL S (AL)(S8)(AX)
(AX)(S16)(DX),(AX)

OF,SF,ZF,AF,PF,CF

The allowed operands are:
Source
Register-8 bit
Register-16 bit
Memory-8 bit
Memory-16 bit

5.3. Multiplication
 Example 1: What are the results of this program:

MOV BL, 5 ;BL = 05H
MOV CL, 10 ;CL = 0AH
MOV AL, CL ;AL = 0A H
MUL BL ;AX = AL BL = 0AH 05H = 32H

 Example 2: IF AL = -1 = FFH and CL = -2 = FEH,
what is the result of executing:
a)MUL CL;
AX = ALCL = 11111111 11111110 =
1111110100000010 = FD02H.
b) IMUL CL;

AX = -1 -2 = 2 = 0002H.

5.4. Division
 Both 8- and 16-bit division on either signed

(IDIV) or unsigned numbers (DIV) can be
performed.

 Numbers are divided into its double-width
dividend.

 For example, an 8-bit division always
converts the 8-bit dividend into a 16-bit
dividend.

 Likewise, in 16-bit division, the 16-bit
dividend is always converted into 32-bit
dividend.

5.4. Division
 In 8-bit division,

 The dividend is located in AX register and the divisor is the
operand selected for the instruction.

 The results are two 8-bit numbers: the quotient (AL) and the
remainder in (AH).

 In 16-bit division,
 The dividend is located in DX and AX registers. DX will

contain the most significant 16 bits of the dividend and AX
will contain the least significant 16 bits.

 The results are two 16-bit numbers: the quotient in (AX) and
the remainder in (DX).

 The signs of the remainder and the quotient are the
same.

5.4. Division
The following table shows these instructions:

The allowed operands are:

Source
Register-8 bit
Register-16 bit
Memory-8 bit
Memory-16 bit

Mnemonic Meaning Format Operation Flags affected
DIV Division

(Unsigned)
DIV S 1) Q((AX)/(S8))(AL)

 R((AX)/(S8))(AH)
2) Q((DX,AX)/(S16))(AX)
 R((DX,AX)/(S16))(DX)

OF,SF,ZF,AF,PF,CF

IDIV Division
(signed)

IDIVS 1) Q((AX)/(S8))(AL)
 R((AX)/(S8))(AH)
2) Q((DX,AX)/(S16))(AX)
 R((DX,AX)/(S16))(DX)

OF,SF,ZF,AF,PF,CF

5.4. Division
 There are two instructions (CBW and CWD) used

before the division instructions.
 In 8-bit division, CBW (convert byte to word)

converts the signed number in AL to a 16-bit signed
number in AX.

 In 16-bit division, CWD (convert word to double
word) converts the signed 16-bit number in AX to a
32-bit signed number in both DX and AX.

 The following table shows these instructions:
Mnemonic Meaning Format Operation Flags

affected
CBW Convert B to W CBW (MSB of AL)(All bits of AH) None
CWD Convert W to D CWD (MSB of AX)(All bits of DX) None

5.4. Division
 Example 1: What are the results of the following

program:
MOV AL, A1H ;AL = A1H.
CBW ;AX = FFA1H
CWD ; DX = FFFFH and AX = FFA1H.

 Example 2: IF AX = 0012H and CL = 03H, what is
the results of executing:
DIV CL
0012H/03H = 06H; The quotient is 6 and the
remainder is 0
AX = 0006H

5.4. Division
 Example 3: What are the results of executing the

following program:
MOV AX,-100 ;AX = -100 = -64H= FF9CH.
MOV CX,9 ;CX = 9 = 0009H.
CWD ; DX = FFFFH and AX = FF9CH
IDIV CX ; DX = -1 = FFFFH and

; AX = -11 = -000B H = FFF5H

5.5. BCD and ASCII Arithmetic

 The 8086/8088 allows arithmetic
manipulation of both binary coded decimal
(BCD) and American Standard Code for
Information Interchange (ASCII).

 BCD operations are used in applications that
require little arithmetic, such as point of sales
terminal (POS).

 ASCII operations are used in systems that
employ ASCII-coded data to store numbers.

5.5.1. BCD Arithmetic
 The following table shows these instructions:

Mnemonic Meaning Format Operation Flags affected
DAA Decimal adjust for

addition
DAA OF,SF,ZF,AF,PF,CF

DAS Decimal adjust for
subtraction

DAS OF,SF,ZF,AF,PF,CF

AAM Adjust AL after
multiplication

AAM Q((AL)/10)AH
R((AL)/10)AL

OF,SF,ZF,AF,PF,CF

AAD Adjust AX before
division

AAD (AH)10+ALAL
00AH

OF,SF,ZF,AF,PF,CF

DAA, DAS and AAM are used after adding,
subtracting or multiplying BCD numbers.
The AAD instruction is used before a division to
preadjust the numbers before using the DIV.

 Example:DAA (BX + DX) CX
Trace the following program

MOV DX, 1234H ;DX = 1234H
MOV BX, 3099H ;BX = 3099.
MOV AL, BL
ADD AL, DL ;AL=CDH
DAA ;AL = 33 and CF = 1
MOV CL, AL
MOV AL, BH
ADC AL, DH ;AL = BH + DH + CF = 43H
DAA ; stays as is, it is a valid BCD
MOV CH, AL

5.5.1. BCD Arithmetic

 Example:DAS (BX - DX) CX
Trace the following program

MOV DX, 1234H ;DX = 1234H
MOV BX, 3099H ;BX = 3099.
MOV AL, BL
SUB AL, DL
DAS
MOV CL, AL
MOV AL, BH
SBB AL, DH
DAS
MOV CH, AL

5.5.1. BCD Arithmetic

 Example: AAM (05 X 05)
Trace the following program

MOV AL, 5 ;AL = 05H
MOV CL, 5 ;CL = 05H
MUL CL ;AX now contains 0019H = 25
AAM ;AH = 02 and AL = 05

 Example : AAD (72/9)
MOV AX, 0702H
MOV BL, 9
AAD ;makes AX = 48H
DIV BL ;Q = 08H AL R = 00H AH

5.5.1. BCD Arithmetic

5.5.2. ASCII Arithmetic
 The following table shows these instructions:

They are used with ASCII-coded numbers.
These range from 30H through 39H and represent
the number 0 through 9.
They always use register AX as the source and
destination.

Mnemonic Meaning Format Operation Flags affected
AAA ASCII adjust for addition AAA OF,SF,ZF,AF,PF,CF
AAS ASCII adjust for subtraction AAS OF,SF,ZF,AF,PF,CF

 Example
MOV AX, 31H ; 31 is ASCII Code of 1
ADD AL, 39H ; 39 is ASCII code of 9

; results in 6AH
AAA ;clears AH if the sum is less than 10

; and adds 01H to AH if the sum is
; is greater than 10.
;AAA results in 01H in AH and 00H
; in AL…AX 0100

ADD AX, 3030H ; results in 3130 which is ASCII 10

5.5.2. ASCII Arithmetic

Lecture_7

5.6. Comparison

 The comparison instruction (CMP) is actually
a subtraction that does not change anything
except the flag bits.

 This instruction is almost always followed by
a conditional jump instruction which tests
the flag bits that are changed by CMP.

5.6. Comparison
The following table shows this instruction

Mnemonic Meaning Format Operation Flags affected
CMP Compare CMP D,S (D)-(S) is used to change

the flag bits only.
OF,SF,ZF,AF,PF,CF

The allowed operands are:

Destination Source
Register
Register
Memory
Register
Memory

Accumulator

Register
Memory
Register

Immediate
Immediate
Immediate

5.6. Comparison
Example1: What is the function of this program?
CMP AL,10H ;It performs AL – 10H and the result

;is not stored but it affects the flag
;values (ZF, SF, etc).

JZ ONTEN ;If ZF = 1 then the program jumps to
;address ONTEN.
;If ZF = 0 then no jump occurs.

5.6. Comparison
Example 2: Trace the following program and the
values of the flag bits.

Instruction Registers ZF SF CF AF OF PF
Initial states
MOV AX,1234H
MOV BX,ABCDH
CMP AX,BX

AX = 1234H
BX = ABCDH
AX-BX = 1234 - ABCD = 6667H

0
0
0
0

0
0
0
0

0
0
0
1

0
0
0
1

0
0
0
0

0
0
0
0

5.7. Basic Logic Operations
The AND, OR, XOR and NOT are performed.
They perform their respective logic operations bit-
by-bit on the source and destination operands.
The result is stored in the destination operand.
The following table shows these instructions.

Mnemonic Meaning Format Operation Flags affected
AND Logical AND AND D,S (S) (D) (D) OF,SF,ZF,AF,PF,CF
OR Logical OR OR D,S (S) + (D) (D) OF,SF,ZF,AF,PF,CF
XOR Logical XOR XOR D,S (S) (D) (D) OF,SF,ZF,AF,PF,CF
NOT Logical NOT NOT D)D()D(OF,SF,ZF,AF,PF,CF

5.7. Basic Logic Operations
 The allowed operands for AND,OR and XOR are:

 The allowed operands for NOT are

Destination Source
Register
Register
Memory
Register
Memory

Accumulator

Register
Memory
Register

Immediate
Immediate
Immediate

Destination
Register-16 bit
Register-8 bit

Memory

5.7.1. AND
 It is used to clear bits of a binary number

selectively (often called masking).
 The main idea of the masking is based on:

If X AND 0 = 0, this bit is cleared.
If X AND 1 = X, this bit is passed without
changes.

 Example 1: If AX = 1234H and BX = 000F, the
result of executing the instruction: AND AX,BX
AX = 1234 AND 000F = 0004H.
In this example, the leftmost 12 bits are cleared
and the rightmost 4 bits are passed.

5.7.1. AND

5.7.2. OR
 It selectively sets bits of a binary number.
 The main idea of the OR operation is based on:

If X OR 1 = 1, this bit is set.
If X OR 0 = X, this bit is passed without any
change.

 Example : If AX = 1234H and BX = FFF0, the
result of executing the instruction: OR AX,BX
AX = 1234 OR FFF0 = FFF4H.
In this example, the leftmost 123 bits are set and
the rightmost 4 bits are passed.

5.7.2. OR

5.7.3. XOR
 It selectively inverts bits of a binary number.
 The main idea of the XOR operation is based on:

If X XOR 1 = , this bit is inverted.
 If X XOR 0 = X, this bit is passed without

change.
 Example: If AX = 1234H and BX = 00FF, the

result of executing the instruction: XOR AX,BX
AX = 1234 XOR 00FF = 12CBH.
In this example, the leftmost 8 bits are passed
and the rightmost 8 bits are inverted.

X

5.7.3. XOR

5.7.4. NOT

 The NOT instruction or one’s complement inverts
each bit position of a number.

 Example: If AX = 1234H, the result of executing
the instruction: NOT AX

AX = EDCBH

5.7. Basic Logic Operations
Example: Trace the following program.

MOV AL, 55H

AND AL, 1FH

OR AL, C0H

XOR AL, 0FH

NOT AL

;AL = 55H.

;AL = 55 AND 1F = 15H

;AL = 15 OR C0 = D5H

;AL = D5 XOR 0F = DAH

;AL = NOT(DA) = 25H

5.7.5. TEST
 It performs the AND operation, but it affects only

the flag register and not the operands of the
instruction.

 TEST is used in the same manner as CMP, but to
test a single bit rather than an entire number.

 Example : What is the result of executing:
TEST AX,1.

It tests the rightmost bit in AX for a 1 or 0.
If the ZF = 1, then the rightmost bit of AX is a 0.
If the ZF = 0, then the rightmost bit of AX is a 1.

5.8. Shift Instructions
The following table shows these instructions

Mnemonic Meaning Format Operation Flags
affected

SHL Shift logical
left

SHL D,Count Shift the D left by the number of
bit positions equal to Count and
fill the vacated bits positions on
the right with zeros

OF, CF

SAL Shift
arithmetic
left

SAL D,Count Shift the D left by the number of
bit positions equal to Count and
fill the vacated bits positions on
the right with zeros

OF, CF

SHR Shift logical
right

SHR D,Count Shift the D right by the number
of bit positions equal to Count
and fill the vacated bits positions
on the left with zeros

OF, CF

SAR Shift
arithmetic
right

SAR D,Count Shift the D right by the number
of bit positions equal to Count
and fill the vacated bits positions
on the left with the original most
significant bit

OF,SF,ZF,
AF,PF,CF

5.8. Shift Instructions
 The allowed operands for these instructions

are shown in the following table:

The arithmetic right shift will always divide a signed
number by 2.

Destination Count
Register
Register
Memory
Memory

1
CL
1

CL

A logical right shift will always divide an unsigned
number by a 2.

A left shift will always multiply a number by a 2.

5.8. Shift Instructions

5.8. Shift Instructions
 Example: IF AX = 091AH = 0000 1001 0001

1010B, What is the result of executing:
a) SHL AX,1

AX = 0001 0010 0011 0100B =1234H.
b) SAL AX,1

AX = 0001 0010 0011 0100B = 1234H.

5.8. Shift Instructions
 Example: IF CL = 02H and AX = 891AH = 1000 1001

0001 1010B, What is the result of executing the
following instructions:
a) SAR AX,CL
The first shift is AX = 1100 0100 1000 1101B, CF = 0
The second shift is AX = 1110 0010 0100 0110B =
E246H, CF = 1.

b)SHR AX,CL
The first shift is AX = 0100 0100 1000 1101B, CF = 0
The second shift is AX = 0010 0010 0100 0110B =
2246H, CF = 1.

5.9. Rotate Instructions
The following table shows these instructions

Mnemonic Meaning Format Operation Flags affected
ROL Rotate

left
ROL D,Count Rotate the (D) left by the

number of bit positions equal to
Count. Each bit shifted out from
the leftmost bit goes back into
the rightmost bit position.

OF, CF

ROR Rotate
right

ROR D,Count Rotate the (D) right by the
number of bit positions equal to
Count. Each bit shifted out from
the rightmost bit goes back into
the leftmost bit position.

OF, CF

RCL Rotate
left
through
carry

RCL D,Count Same as ROL except carry is
attached to (D) for rotation.

OF, CF

RCR Rotate
right
through
carry

RCR D,Count Same as ROR except carry is
attached to (D) for rotation.

OF, CF

5.9. Rotate Instructions
 The allowed operands for these instructions

are shown in the following table:

The difference between the rotate and shift instructions
is that bits moved out are not lost but they are reloaded
at the other end.

Destination Count
Register
Register
Memory
Memory

1
CL
1

CL

5.9. Rotate Instructions

Example: If CL=4H, AX=1234H =0001 0010 0011 0100,
What is the result of executing the following instructions:
a) ROL AX,1 ;AX = 0010 0100 0110 1000B, CF = 0
b) RCL AX,CL ;AX = 0100 1000 1101 0000, CF = 0

;AX = 1001 0001 1010 0000, CF = 0
;AX = 0010 0011 0100 0000, CF = 1
;AX = 0100 0110 1000 0001, CF = 0

c) RCR AX,CL ;AX = 0010 0011 0100 0000, CF = 1
;AX = 1001 0001 1010 0000, CF = 0
;AX = 0100 1000 1101 0000, CF = 0
;AX = 0010 0100 0110 1000, CF = 0

d) ROR AX,1 ;AX = 0001 0010 0011 0100, CF = 0

5.8. Rotate Instructions

5.9. String Comparisons
 String comparison operations allow a section

of memory to be compared for a particular
value or two sections of memory to be
compared for a match or no-match condition.

 The following table shows these instructions:
Mnemonic Meaning Format Operation Flags affected
SCASB Scan SCASB (AL)-(DI) changes the flags. OF,SF,ZF,AF,PF,CF
SCASW Scan SCASW (AX)-(DI) changes the flags. OF,SF,ZF,AF,PF,CF
CMPSB Compare CMPSB (SI)-(DI) changes the flags. OF,SF,ZF,AF,PF,CF
CMPSW Compare CMPSW (SI)-(DI) changes the flags. OF,SF,ZF,AF,PF,CF

5.9. String Comparisons
 In most applications, the string operations must

be repeated in order to process arrays of data.
 This is done by inserting a repeat prefix before

the instruction that is to be repeated.
 The repeat prefix is shown:

Prefix Used W ith M eaning
REPE/REPZ CM PS, SCAS Repeat while not end of string and strings are

equal. CX 0 or ZF = 1
REPNE/REPNZ CM PS, SCAS Repeat while not end of string and strings are not

equal. CX 0 or ZF = 0

5.9. String Comparisons
Example: Trace the following program.

MOV DI, BLOCK

CLD

MOV CX,100H

MOV AL, 0

REPNE SCASB

;Load DI by the starting address in
the block.

;Select auto-increment by clear DF.

;Load CX by the block length 256.

;Load AL by 0.

;Repeat the scan instruction until
finding 0 or CX = 0.

5.9. String Comparisons
Example: Trace the following program.

MOV SI, LINE

MOV DI, TABLE

MOV CX,10

CLD

REPE CMPSB

;Load SI by the starting address in
the source block.

;Load DI by the starting address in
the destination block

;Load CX by the block length 10.

;Select auto-increment by clear DF.

;Repeat the compare instruction if
they are equal or until CX = 0.

Lecture_8

Chapter 3.
Machine Language Coding

 In this chapter, we will discuss the conversion
from assembly language to machine
Language.

 Each assembly instruction must be converted
to its equivalent machine code instruction.

3.1. Introduction
 The machine code should specify:

 What operation is to be performed.
 Whether the operation is performed on byte or

word data.
 What operand or operands are to be used.
 Whether the operands are located in registers

or a register and memory location.
 If the operand is stored in memory, how its

address is to be generated.

3.1. Introduction
 The machine code instruction can be

encoded in up to 6 bytes.
 Single-byte instructions generally specify a

simpler operation with a register or a flag
bit.

 Example on single-byte instruction,
Complement Carry (CMC) is equivalent to
F5H.

 Single Operand : INC DL

3.2. General Instruction
Format

 Most multibyte instructions use the general
instruction format as follows:

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

Opcode D W MOD REG R/M

Low
Disp/Data

High
Disp/Data

Low
Data

High
Data

3.2. General Instruction
Format

Byte 1 contains three kinds of information:
Opcode field (6 bits) specifies the operation.
Register direction bit (D bit) specifies whether the
register operand specified in byte 2 is the source or
destination operand.

• D = 1 if the register is a destination operand.
D = 0 if the register is a source operand.

• Data size bit (W) specifies whether the operation will be
performed on byte or word.
W = 0 for byte. W = 1 for word.

3.2. General Instruction
Format

 Byte 2 contains three fields.
 The register is used for an operand
 Where the other operand is stored. It can be

in either a register or a memory location.

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

Opcode D W MOD REG R/M

Low
Disp/Data

High
Disp/Data

Low
Data

High
Data

3.2.General Instruction Format
 The 3-bit register field (REG) is used to identify the

register for an operand (first or second depending on D).
 The register is defined as source or destination by the D

bit in byte 1.
 The following table shows the value for the register (REG)

field: REG W = 0 (Byte) W = 1 (Word)
000
001
010
011
100
101
110
111

AL
CL
DL
BL
AH
CH
DH
BH

AX
CX
DX
BX
SP
BP
SI
DI

3.2. General Instruction
Format

 The 2-bit mode field (MOD) indicates
whether the other operand is in a register
or memory.

 The following table shows the mode (MOD)
field encoding:

Code Explanation
00
01
10
11

Memory mode, no displacement
Memory mode, 8-bit displacement follows.
Memory mode, 16-bit displacement follows.
Register mode (no displacement).

3.2. General Instruction
Format

 The 3-bit register/memory (R/M) field
specifies the other operand as shown in the
following table.

MOD = 11 Effective Address Calculation
R/M W = 0 W = 1 R/M MOD = 00 MOD = 01 MOD = 10
000
001
010
011
100
101
110
111

AL
CL
DL
BL
AH
CH
DH
BH

AX
CX
DX
BX
SP
BP
SI
DI

000
001
010
011
100
101
110
111

(BX)+(SI)
(BX)+(DI)
(BP)+(SI)
(BP)+(DI)

(SI)
(DI)

Direct Address
(BX)

(BX)+(SI)+D8
(BX)+(DI)+D8
(BP)+(SI)+D8
(BP)+(DI)+D8

(SI)+D8
(DI)+D8
(BP)+D8
(BX)+D8

(BX)+(SI)+D16
(BX)+(DI)+D16
(BP)+(SI)+D16
(BP)+(DI)+D16

(SI)+D16
(DI)+D16
(BP)+D16
(BX)+D16

3.2. General Instruction
Format

 Byte 3 and byte 4 are used to store the
displacement or the data.
The low byte is stored first then the high byte
is stored.

 Byte 5 and byte 6 are used to store the data
if byte 3 and 4 contain the displacement.

3.2. General Instruction
Format

 Example 1:
Find the machine code of: MOV BL, AL.
If the MOV opcode is 100010.

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

Opcode D W MOD REG R/M

Low
Disp/Data

High
Disp/Data

Low
Data

High
Data

Byte 1 Byte 2

100010 1 0 11 011 000

The first byte has opcode = 100010, D = 1, W = 0.
The second byte has: REG = 011, MOD = 11, R/M = 000
MOV BL, AL = 100010 1 0 11 011 000 = 8AD8H

3.2. General Instruction
Format

 Example 2:
Find the machine code of: ADD AX, [SI].
If the ADD opcode is 000000.

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

Opcode D W MOD REG R/M

Low
Disp/Data

High
Disp/Data

Low
Data

High
Data

The first byte has opcode = 000000, D = 1, W = 1.
The second byte has: REG = 000, MOD = 00, R/M = 100
ADD AX, [SI]= 000000 1 1 00 000 100 = 03 04H

3.2. General Instruction
Format

 Example 3:
Find the machine code of: XOR CL, [1234].
If the XOR opcode is 001100.

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

Opcode D W MOD REG R/M

Low
Disp/Data

High
Disp/Data

Low
Data

High
Data

The first byte has opcode = 001100, D = 1, W = 0.
The second byte has: REG = 001, MOD = 00, R/M = 110
XOR CL, [1234] = 00110010 00001110 00110100 00010010

=32 0E 34 12 H

3.2. General Instruction
Format

 Example 4:
Find the machine code of: ADD [BX][DI]+1234H, AX.
If the ADD opcode is 000000.

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

Opcode D W MOD REG R/M

Low
Disp/Data

High
Disp/Data

Low
Data

High
Data

The first byte has opcode = 000000, D = 0, W = 1.
The second byte has: REG = 000, MOD = 10, R/M = 001.

00000001 10000001 00110100 00010010
= 01 81 34 12 H

3.2. General Instruction
Format

 The drawbacks of this format:
1. The application of sign extension.
2. Not used for the segment register.

 It cannot be used to encode all the
instructions.

 Minor modifications must be made to
encode few instructions.

 There is a table that can be used to encode
all the instruction set.

3.3. Instruction Set Table
 It shows all the instructions.
 Example: MOV: Move

Register/memory
to/from register

100010dw Mod Reg R/M Disp-lo Disp-
hi

Immediate to
register/memory

1100011w Mod 000 R/M Disp-lo Disp-
hi

Data Data
if
w=1

Immediate to
register

1011 w Reg Data Data if
w = 1

Memory to
accumulator

1010000w Addr-lo Addr-hi

Accumulator to
memory

1010001w Addr-lo Addr-hi

Register/memory to
segment register

10001110 Mod 0 SR R/M Disp-lo Disp-
hi

Segment register to
register/memory

10001100 Mod 0 SR R/M Disp-lo Disp-
hi

3.3. Instruction Set Table
 Example:

Find the machine code of:
MOV [BP][DI]+1234h,ABCDH

From the table:
I m m e d ia te to
r e g is te r /m e m o r y

1 1 0 0 0 1 1 w M o d 0 0 0 R /M D is p -lo D is p -h i D a ta D a ta
if w = 1

W = 1, MOD = 10, R/M = 011
The machine code =
11000111 10000011 00110100 00010010 11001101 10101011

= C7 83 34 12 CD AB H.

3.3. Instruction Set Table
 Examples:

Add=Addition
Register to either
Reg/memory

000000 d w Mod Reg
R/M

Disp-lo Disp-
hi

Immediate to
register/memory

100000 s w Mod 000
R/M

Disp-lo Disp-
hi

Data Data if
s,w=01

Immediate to
accumulator

0000010 w Data Data if
w = 1

DEC: Decrement
Register/memory 1111111 w Mod 001 R/M Disp-lo Disp-hi
Register 01001 Reg

INC: Increment
Register/memory 1111111 w Mod 000 R/M Disp-lo Disp-hi
Register 01000 Reg

3.3. Instruction Set Table
 The following table shows 1-bit field and their

functions

Field Value Function
S
S
V
V
Z
Z

0
1
0
1
0
1

No Sign Extension
Sign extend 8-bit immediate data to 16 bits if W = 1
Shift/Rotate count is one.
Shift/Rotate count is specified in CL register.
Repeat/Loop while zero flag is clear.
Repeat/Loop while zero flag is set.

3.3. Instruction Set Table
 The instructions that involve segment register

need a 2-bit field to encode these registers.
 This field is called the SR field.
 They are defined as shown in the following

table. Register SR
ES
CS
SS
DS

00
01
10
11

3.3. Instruction Set Table
 Example:

Find the machine code of:
MOV [BP][DI]+1234h,DS

From the table:

Mod = 10, SR = 11, R/M = 011
The machine code = 10001100 10011011 00110100 00010010

= 8C 9B 34 12 H.

Segment register to
register/memory

10001100 Mod 0 SR R/M Disp-lo Disp-
hi

3.3. Instruction Set Table
 Example: Encode the following Program

MOV AX,1020H
MOV DS,AX
MOV SI,100H
MOV DI,120H
MOV CX,10H

AGAIN: MOV AH,[SI]
MOV [DI],AH
INC SI
INC DI
DEC CX
JNZ AGAIN

3.3. Instruction Set Table

Label Memory location Assembly
Instruction

Machine Code

AGAIN

200,201,202
203,204
205,206,207
208,209,20A
20B,20C,20D
20E,20F
210,211
212
213
214
215,216

MOV AX,1020H
MOV DS,AX
MOV SI,100H
MOV DI,120H
MOV CX,10H
MOV AH,[SI]
MOV [DI],AH
INC SI
INC DI
DEC CX
JNZ AGAIN

B82010
8ED8
BE0001
BF2001
B91000
8A24
8825
46
47
49
75F7

Lecture_9

2.10. Port Addressing
 It is used with the IN and OUT instructions

to access input and output ports.
 There are two types:

 Direct addressing
 Indirect addressing

2.10. Port Addressing
 Direct Addressing:

 The port number is given directly.
 Example: IN AL , 15H
 This stands for “input the data from the byte-

wide input port at address 15H of the I/O
address space to register AL”

2.10. Port Addressing
 Indirect Addressing:

 The port number is stored in register DX
 Example: IN AL , DX
 This stands for “input the data from byte-wide

input port whose address is specified by the
contents of register DX to register AL”.

2.11. Program Memory Addressing
Modes

 These modes are used with the JMP and
CALL instructions.

 They can be divided into:
 Direct
 Relative
 Indirect

2.12. Stack Memory
 It is used to:

 Hold data temporarily.
 Stores return addresses from subroutines.

 It is a LIFO (last-in, first-out) memory.
 Data are stored using PUSH or CALL.
 Data are removed using POP or RET.
 Two important registers are used in the

stack:
 SS (stack segment) points to the beginning of the

stack.
 SP (Stack Pointer) points to the top of the stack.

2.12. Stack Memory
 How to Store a word to the stack:

 The high-order byte is placed in the location
addressed by SP – 1.

 The low-order byte is placed in the location
addressed by SP – 2.

 Decrement SP by 2.

2.12. Stack Memory
 Example: PUSH AX
where AX = 1234H, SS = 3000H, SP = FFFEH

SP = FFFE

FFFD

FFFC

3FFFE
3FFFD
3FFFC

12

34

After Execution:SP = FFFC

2.12. Stack Memory
 How to remove a word from the stack:

 The low-order byte is removed from the location
addressed by SP.

 The high-order byte is removed from the
location addressed by SP +1.

 Increment SP by 2.

2.12. Stack Memory
 Example: POP AX

where SS = 3000H, SP = FFFCH

FFFE

FFFD

SP= FFFC

3FFFE
3FFFD
3FFFC

12

34

After Execution: AX = 1234 and SP = FFFE

Chapter 6.
Program Control Instructions

 In this chapter, we will discuss the program
control instructions.

 They include: JMP and subroutines.

6.1. Flag Control Instructions
 These instructions affect the state of the

flags.
 The following table shows these instructions.
Mnemonic Meaning Format Operation Flags

affected
CLC Clear CF CLC (CF) 0 CF
STC Set CF STC (CF) 1 CF
CMC Complement CF CMC (CF))CF(CF
CLI Clear IF CLI (IF) 0 IF
STI Set IF STI (IF) 1 IF
CLD Clear DF CLD (DF) 0 DF
STD Set DF STD (DF) 1 DF

6.2. Jump Instructions
 It is used to skip over sections of a program

to any part of the program.
 The jump alters the execution path of

instructions in the program.
 Program execution is not intended to return

to the next sequential instruction after the
jump instruction.

6.2. Jump Instructions
 CS and IP keep track of the next instruction

to be executed.
 The jump instruction involves altering the

contents of these registers (CS and IP).
 Thus, execution continues at an address

other than that of the next sequential
instruction.

 There are two different types of jump
instructions:
 Unconditional
 Conditional

6.2. Jump Instructions
 In an unconditional jump,

 No status requirements or conditions are imposed
for the jump to occur.

 As the instruction is executed, the jump takes
place to change the execution sequence.

 In a conditional jump,
 If the status conditions exist, the jump instruction

is executed.
 Otherwise, execution continues with the next

sequential instruction of the program.
 The condition depends on the status flags such

as CF, PF, OF, SF, ZF.

6.2.1. Unconditional Jump
 The unconditional jump instruction is given as:

 The allowed operands are:

M nem onic M eaning Form at O peration Flags
affected

JM P U nconditional
jum p

JM P O perand Jum p is initiated to the
address specified by the
operand

N one

Operands
Short-Label
Near-Label
Far-Label
Memory Pointer 16
Register Pointer 16
Memory Pointer 32

Lecture_10

6.2.1. Unconditional Jump
There are two basic kinds of unconditional
jumps:
 Intrasegment (Short and Near jump)
 Intersegment (Far jump)

6.2.1. Unconditional Jump
Intrasegment jump is limited to addresses within
the current code segment.
It is achieved by modifying the value of IP only.
It is divided into short and near.

Intersegment jump is used to addresses outside
the current code segment.
This type is achieved by modifying the value in
CS and IP registers.

6.2.1. Unconditional Jump
The machine codes of the unconditional jump:

Short JMP OPCODE (EBH) DISP
Near JMP OPCODE (E9H) IP Low IP High
Intersegment JMP OPCODE (EAH) IP Low IP High CS Low CS High

Short jump allows jumps or branches to memory
locations within +127 and –128 bytes from
memory location following the jump.
Near jump allows jumps or branches to memory
locations within +32K and –32K bytes from
memory location following the jump.

6.2.1. Unconditional Jump
Example: What is the content of the IP register after the
JMP instruction?
a) JMP 04

Before Execution: CS = 1000H, IP = 0002H
After the execution of JMP:
New IP = IP + 04H = 0006H

b) JMP 200DH
Before Execution: CS = 1000H, IP = 200BH
After the execution of JMP: New IP = 200DH

6.2.1. Unconditional Jump
Example: What is the content of the IP register after the
JMP instruction?
c) JMP A300:0127

Before Execution: CS = 1000H, IP = 0002H
After the execution of JMP:
New CS = A300H, New IP = 0127H

6.2.1. Unconditional Jump
Example: What is the content of the IP register after the
JMP instruction?
d) JMP [BX]

CS = 0CDEH, BX = 1000H, DS = 1000H
IP = 0102H

After the execution of JMP:
New IP = 0200H
PA = CS10+IP=0CDE0+0200=0CFE0H

Address Contents
11002 F2
11001 02
11000 00

6.2.1. Unconditional Jump
Example: What is the content of the IP register after the
JMP instruction?
d) JMP DWORD PTR[BX]

CS = 0CDEH, BX = 1000H, DS = 1000H
IP = 0102H

After the execution of JMP:
New IP = 0200H, New CS = 0A10H

Address Contents
11000 00
11001 02
11002 10
11003 0A

6.2.2. Conditional Jump
 The conditional jump instruction is given as:
Mnemonic Meaning Format Operation Flags

affected
Jcc conditional

jump
Jcc Operand If the specified condition cc is

true the jump to the address
specified by the operand is
initiated; Otherwise the next
instruction is executed.

None

Conditional jumps are all short jumps.
The range of the jump is always within +127 to –
128 bytes from the address of the next instruction.

6.2.2. Conditional Jump
A list of conditional jump is given as:

Opcode Condition Tested Function
JA/JNBE CF = 0 and ZF = 0 Jumps above/jumps not below or equal to
JAE/JNB CF = 0 Jumps above or equal to/jumps not below
JB/JNAE CF = 1 Jumps below/jumps not above or equal to
JBE/JNA CF = 1 or ZF = 1 Jumps below or equal to/jumps not above
JC CF = 1 Jumps carry set
JE/JZ ZF = 1 Jumps equal/ jumps 0
JG/JNLE OF = ZF and SF Jumps greater/jumps not less than or equal to
JGE/JNL SF = OF Jumps greater than or equal to/jumps not less than
JL/JNGE SF = OF Jumps less than/jumps not greater than or equal to
JLE/JNG Z = 1 or S = 0 Jumps less than or equal to/jumps not greater than
JNC CF = 0 Jumps no carry
JNE/JNZ ZF = 0 Jumps not equal to/jumps not 0
JNO OF = 0 Jumps no overflow
JNP/JPO SF = 0 Jumps no parity/jumps parity odd
JNS PF = 0 Jumps no sign (positive)
JO OF = 1 Jumps on overflow
JP/JPE PF = 1 Jump parity/jumps parity even
JS SF = 1 Jumps sign (negative)
JCXZ CX = 0 Jumps if CX = 0

6.2.2. Conditional Jump
 Example 1: Trace the following program

CMP AX,BX ;The result of AX-BX affects the flags
JB DIFF2 ;Jump if Below (CF = 1)

DIFF1 MOV DX,AX ;DX = AX
SUB DX,BX ;DX = AX-BX affects the CF
JMP DONE

DIFF2 MOV DX,BX ;DX = BX
SUB DX,AX ;DX = BX – AX affects the CF.

DONE NOP
This program tests whether AX < BX or not.

If AX > BX, DX = AX – BX

If AX < BX, DX = BX – AX

6.2.2. Conditional Jump
 Example 1: Trace the following program
SCAN: MOV DI,OFFSET TABLE ;Load DI by the address of

the first byte in array TABLE
MOV CX,100 ;Load counter CX = 100
MOV AL, 0AH ;Load AL by 0AH
CLD ;Select auto increment.
REPNE SCASB ;Search for the byte 0A
JCXZ NOT_FOUND

NOT_FOUND -------

This program scans a table of 100 bytes for a 0AH.

6.3. Loop Instructions
 There are two different types of loop

instructions:
 Unconditional
 Conditional loop.

 The unconditional loop (LOOP) instruction is a
combination of the conditional jump and the
decrement of CX instructions.
 It will decrement the contents of register CX.
 If CX is not 0, jump to the label associated with

loop.
 If CX becomes a 0, the next sequential instruction

in the program is executed.

6.3. Loop Instructions
 The conditional loop instructions include

LOOPE/LOOPZ, LOOPNE/LOOPNZ.
 They work as LOOP instruction except that they

check for two conditions: the contents of both CX
and ZF flag.
 If CX is not 0 and the ZF condition is satisfied, jump to

the label associated with loop.
 If CX is 0 or the ZF condition is not satisfied, the next

sequential instruction in the program is executed.

6.3. Loop Instructions
 The following table shows the loop

instructions

Mnemonic Meaning Format Operation Flags
affected

LOOP Loop LOOP Short-label (CX) (CX) – 1
Jump is initiated to location
defined by short label if (CX) 0;
Otherwise, execute next sequential
instruction

None

LOOPE/
LOOPZ

Loop while
equal/Loop
while zero

LOOPE/LOOPZ Short-label (CX) (CX) – 1
Jump to location defined by short
label if (CX)0 and (ZF) = 1;
Otherwise, execute next sequential
instruction

None

LOOPNE/
LOOPNZ

Loop while
not equal/
Loop while
not zero

LOOPNE/LOOPNZ Short-
label

(CX) (CX) – 1
Jump to location defined by short
label if (CX) 0 and (ZF) = 0;
Otherwise, execute next sequential
instruction

None

6.3. Loop Instructions
 Example 1: Trace the following program:

MOV CX, 05 ;Load the counter CX = 5
MOV DX, 00 ;Load DX by zero

AGAIN: NOP ;No operation (Just Waiting)
INC DX ;Increment DX by 1
LOOP AGAIN ;Go to AGAIN until CX = 0.

This program increment the value of DX five times
DX = 5 and CX = 0.

6.3. Loop Instructions
 Example 2: Trace the following program:

MOV DL,05 ;Load DL by 05H
MOV AX,0A00H ;Load AX by 0A00H
MOV DS,AX ;Initialize the DS =AX
MOV SI,0200H ;Initialize SI by 0200H
MOV CX, 0FH ;Load CX = 15

AGAIN: INC SI ;Increment SI by 1
CMP [SI],DL ;[SI]-DL affect the ZF
LOOPNE AGAIN ;Repeat this

comparison loop until CX=0 or ZF=1.

6.3. Loop Instructions
 It compares a block of data pointed to by SI to DL.
 The data stored at the memory location starting at

address DS:0200 are: 4, 6, 3, 9, 5, 6, D, F, 9, BA, AB, 32,
E9, 4C, F7, 80,..

 The length of the block is 15 numbers.
1st loop: compare 4 and 5, ZF = 0, SI = 0200, CX = 0E
2nd loop: compare 6 and 5, ZF = 0, SI = 0201, CX = 0D
3rd loop: compare 3 and 5, ZF = 0, SI = 0202, CX = 0C
4th loop: compare 9 and 5, ZF = 0, SI = 0203, CX = 0B
5th loop: compare 5 and 5, ZF = 1, SI = 0204, CX = 0A
The loop is terminated.

6.4. Subroutines
 The subroutine is a very important part of any

computer’s software architecture.
 It is a group of instructions that performs a given

task.
 It is used many times by the program but need

to be stored once in the memory.
 This saves memory space and makes the task of

programming much simpler because it takes less
time to code a program.

 The disadvantage of a subroutine is that the
computer takes a small additional time to link to
the subroutine (CALL) and return from it (RET).

Lecture_11

6.4. Subroutines
 The subroutine is a very important part of any

computer’s software architecture.
 It is a group of instructions that performs a given

task.
 It is used many times by the program but need

to be stored once in the memory.
 This saves memory space and makes the task of

programming much simpler because it takes less
time to code a program.

 The disadvantage of a subroutine is that the
computer takes a small additional time to link to
the subroutine (CALL) and return from it (RET).

6.4. Subroutines
 The stack is used to store the return address so that the

subroutine may return to the program at the point after the
CALL instruction in the program.

 The subroutine is called a procedure as it would be in a
higher-level language.

 There are two basic instructions: CALL and RET.

6.4. Subroutines
 These instructions are as shown:

Mnemonic Meaning Format Operation Flags
affected

CALL Call
subroutine

CALL
Operand

Execution continues from the address of
the subroutine specified by the operand.
Information required to return back to
the main program such as IP and CS is
saved on the stack.

None

RET Return RET or
RET
operand

Return to the main program by restoring
IP (and CS for far-procedure). If
operand is present, it is added to the
content of SP.

None

6.4. Subroutines
 The operands of the CALL are as shown:

 The operands of the RET are as shown:

Operands
Near-procedure
Far-procedure
Memory pointer (16 bits)
Register pointer (16 bits)
Memory pointer (32 bits)

Operands
None
Displacement (16 bits)

6.4. Subroutines
CALL instruction transfers the flow of a program
to a procedure.
CALLs differ from JUMPs because they save the
contents of IP on the stack if the CALL is near or
IP and CS on the stack if it is far.
They are divided into:

Near CALL
Far CALL

6.4. Subroutines
 Near CALL instruction is 3 bytes long and its

second and third bytes contain the offset
location of the near procedure.

 It causes the jump to the subroutine.
 It also pushes the IP register onto the stack.
 Because the IP register contains the address

of the next instruction to be executed.

6.4. Subroutines
 Far CALL instruction is 5 bytes long.
 Bytes 2 and 3 contain the IP of the subroutine

and bytes 4 and 5 contain the new code segment
(CS) value for the subroutine.

 It causes the jump to the subroutine.
 It also pushes both the IP and the CS registers

onto the stack.
 Because the IP and CS registers contain the

address of the next instruction to be executed,
the return address is pushed onto the stack.

6.4. Subroutines
 RET instruction removes either a 16-bit number

(near return) from the stack and places it in the
IP or a 32-bit number (far return) and places it in
IP and CS.

 When IP or IP and CS are changed, the location
is changed to the address of the instruction that
immediately follows the most recent CALL to a
procedure.

 There is another form of the RET instruction.
This form allows a number added to the contents
of the stack pointer (SP) before the return.

6.4. Subroutines
 PROC is used to indicate the start of a procedure

(subroutine), the name of the procedure and the
type of CALL and RET instructions used by the
assembler.

 The name of the subroutine can be any valid
assembly language name.

 The type can be near (intrasegment) or far
(intersegment) depending on whether the
procedure is located within the code segment or
some distance from it.

 ENDP is used to indicate the end of the
procedure and the name of that procedure.

6.4. Subroutines
 Example 1: What is the result of executing:

CALL 1002H
 Before execution:

CS = 1000H, IP = 0003H,
SS = A000H, SP = FFFFH

 After the execution:
CS = 1000H, IP = 1002H,
SS = A000H, SP = FFFDH

6.4. Subroutines
 What is the result of executing the following

a) RET
Before execution:

CS=1000H, IP = 1006H, SS = A000H, SP = FFFDH
After the execution:

CS=1000H, IP = 0003H, SS = A000H, SP = FFFFH

b) RET 4
It adds a 4 to the SP before removing IP from

the stack.

6.4. Subroutines
 Example 3: Trace the following program:

MOV SI, OFFSET COMPUTE ;Load SI by the compute
CALL [SI] ;Call procedure addressed by SI

COMPUTE PROC NEAR ;Procedure is of type near call

PUSH DX ;Push DX to the stack
MOV DX,AX ;Move AX to DX
IN AX, DATA ;Load AX by the input port DATA
OUT PORT,AX ;Output (AX) to the output port PORT
MOV AX, DX ;Restore the content of (AX)
POP DX ;Pop (DX) from the stack
RET ;Return to the next instruction

COMPUTE ENDP ;End the procedure

Lecture_12

6.5. Interrupts
 An interrupt can be:

 Hardware-generated subroutine call(externally derived)
 Software-generated subroutine call (internally derived).

 It interrupts the program currently executing by
calling the interrupt service subroutine.

 Software interrupt are special types of call
instructions in the 8086/8088 microprocessor.

6.5.1. Interrupt Vectors
 An interrupt vector is a 4-byte number stored in the first 1024 bytes of

the memory (00000H-003FFH).
 There are 256 interrupt vectors.
 They are used for either hardware or software.
 Each vector contains the address of the interrupt service subroutine,

called interrupt.
 The first 2 bytes of the vector contain the number that is loaded into IP

register and the next 2 bytes contain the number that is loaded into the
CS register in response to an interrupt.

6.5.1. Interrupt Vectors

6.5.1. Interrupt Vectors
 The interrupt vector map is as shown:

Number Address Function
0
1
2
3
4

5-31
32-255

0H-3H
4H-7H
8H-BH
CH-FH

10H-13H
14H-7FH

80H-3FFH

Divide error
Single step

NMI (hardware interrupt)
Breakpoint

Interrupt on overflow
Reserved for future use

User interrupts

6.5.1. Interrupt Vectors

6.5.2. Interrupt Instructions
 The 8086/8088 has three different interrupt

instructions available to the programmer:
INT, INTO and INT 3.

 There are 256 different software interrupt
(INT) instructions available to the
programmer.

 Each INT instruction has a numeric operand
whose values ranges from 0 to 255.

 Each instruction is 2 bytes long, except INT 3
that is 1-byte software interrupt instruction.

6.5.2. Interrupt Instructions
 A software interrupt instruction (INT N) is executed as

1) It pushes the flags onto the stack.
2) It clears the I and T flags.
3) It pushes CS onto the stack.
4) It fetches the new CS location from the vector table.
5) It pushes IP onto the stack.
6) It fetches the new IP location from the vector table.
7) It jumps to this new location.

6.5.2. Interrupt Instructions
 The INT 3 is a 1-byte long instruction.
 Vector number 3 is called breakpoint interrupt.
 It is easy for the programmer to insert a 1-byte instruction at

any point in the software.
 The software at the INT 3 interrupt service subroutine

displays all the registers and waits.
 It can be used to debug a faulty program.

6.5.2. Interrupt Instructions
 Interrupt on overflow (INTO) is a conditional

interrupt instruction.
 If the overflow flag (OF) is set and the INTO

instruction is encountered in a program, the
subroutine whose address is stored at vector 4 will
be called.

 IF OF is clear and INTO instruction is encountered,
no interrupt will be called.

 The INTO instruction is most widely used following
signed arithmetic to detect overflow error condition.

 It appears after every addition and subtraction.

6.5.2. Interrupt Instructions
 The interrupt return instruction (IRET) is used with the

software or hardware interrupt.
 IRET is executed as follows:

1) It pops stack data into IP.
2) It pops stack data back into CS.
3) It pops stack data back into the flags.

 Whenever the IRET pops the flag back into the flag register,
the prior contents of IF and TF are restored.

6.5.2. Interrupt Instructions
 Example: Write an interrupt that add the contents of DI, SI,

BP and BX and save the result in AX. Each time this function
is required, an INT 50 instruction is used to call it.

ADDEM: ADD AX,BX
ADD AX,SI
ADD AX,DI
ADD AX,BP
IRET

;Set up vector address ORG 000C8H
;Set the program at address 200=C8H

6.5.3. Interrupt Control

 There are two instructions used to control the
hardware interrupt structure:
 Set interrupt flag (STI)
 Clear interrupt flag (CLI).

 When the IF = 0, the INTR pin is disabled.
 When the IF = 1, INTR is enabled.

6.6. Miscellaneous Instructions
 These instructions provide control of the carry bit,

sample the pin and perform various other
functions.

 Most of these instructions are used in hardware
control.

 These instructions include:
 Controlling the Carry Flag Bit (CF)
 WAIT
 HLT
 NOP
 LOCK Prefix
 ESC

TEST

6.6.1. WAIT
 WAIT instruction tests the hardware pin
 This pin is used to test a variety of external hardware events.
 If this pin is a logic 1, the 8086/8088 will become idle and

wait for it to become a logic 0.

6.6.2. HLT
 HLT stops the execution of software.
 There are only two ways to execute a halt:

 By interrupt
 By a hardware system reset.

6.6.3. NOP
 When the microprocessor encounters a NOP, it takes 3 clocking periods

to execute.
 NOP is used in time delay software.
 In machine language programs, it is advisable for the programmer to

leave patch areas every 50 bytes in case the program needs
modification in the future.

 These patch areas normally contain NOP instructions so that the
program’s operation will not affected by these patch areas.

6.6.4.LOCK Prefix
 The LOCK prefix is a byte placed before any 8086/8088

instruction to inhibit external coprocessor in the system from
gaining access to system buses.

6.6.5. ESC
 ESC is an opcode for an external coprocessor.
 ESC passes information to the 8087 arithmetic coprocessor.
 Whenever the escape instruction is executed, the 8086/8088

performs a NOP and the external coprocessor receives a 6-bit
opcode encoded in the ESC instruction.

 The ESC instruction accesses a memory location so that the
coprocessor can read or write data if necessary.

Sample Print-Program
 six EQU 6
 MOV AH,six
 MOV DL,’M’
 INT 21H
 MOV DL,’0’
 INT 21H
 MOV DL,’h’
 INT 21H
 MOV DL,’a’
 INT 21H
 MOV DL,’m’
 INT 21H
 MOV DL,’e’
 INT 21H
 MOV DL,’d’
 INT 21H
 MOV DL,’ ’
 INT 21H
 MOV DL,’B’
 INT 21H
 MOV DL,’a’
 INT 21H
 MOV DL,’n’
 INT 21H
 MOV DL,’n’
 INT 21H
 MOV DL,’a’
 INT 21H

Lecture_13

Part II:
8086/8088 Hardware

Chapter 1: 8086/8088 Hardware
Specifications

 This chapter will discuss:
 The pin functions of both 8086 and 8088 Ps.
 Clock Generator.
 Bus buffering
 Bus latching
 Timing
 Wait states
 Minimum and maximum mode operations.

1.2.Pinouts and the Pin Functions

1.2.1. The Pinout
 Both processors are packaged in 40-pin dual in-

line packages (DIPs).
 The differences between the two

microprocessors are:
1. The 8086 has 16-bit data bus (AD0-AD15), but

the 8088 has 8-bit data bus (AD0-AD7).
2. In the 8088, pin 34 is an 𝑆𝑆0 , while on the

8086, it is a 𝐵𝐻𝐸/S7
3. The 8086 has 𝑀/𝐼𝑂 , but the 8088 has 𝐼𝑂/𝑀

.

1.2.2. Power Supply
Requirements

 Both microprocessors require +5V with a supply
voltage tolerance 10%.

 8086 draws a maximum supply current of 360
mA, 8088 draws a maximum supply current of
340 mA.

 Both microprocessors operate in ambient
temperature between 32oF and 180oF.

 Extended temperature-range versions are
available.

 There is a CMOS version (80C86/80C88):
 It requires a very low supply current (10mA).
 It has an extended temperature range (-40oF to225oF).

1.2.3. DC Characteristics
 To select the proper interface components, the

following characteristics are very important:
 Input characteristics.
 Output characteristics.

Input Characteristics Output Characteristics
Logic Level Voltage Current Logic Level Voltage Current

0 0.8V max 10 µA max 0 0.45V max 2.0 mA max
1 2.0 V min 10 µA max 1 2.4V min -400 µA max

 Standard logic gates have a maximum logic 0 output
voltage of 0.4V, and the 8086/8088 has a maximum of
0.45V.
That may result in more loads on the connection.

1.2.4. 8086 Pin Functions

1.2.4. 8086 Pin Functions
1. Vcc: The +5V, 10% power supply pin.
2. GND: The ground connection, two pins.
3. CLK (clock): It provides the basic timing.
4. AD0-AD15: Multiplexed address (ALE=1)/data

bus (ALE=0).
5. A16/S3-A19/S6 (multiplexed Address/Status):

They carry the address during ALE and the
status for the remainder cycle.

1. S6 is always 0.
2. S5 indicates the condition of the IF.
3. S4 and S3 refer to the used segment.

S4 S3 Function
0 0 ES
0 1 SS
1 0 CS or No segment
1 1 DS

1.2.4. 8086 Pin Functions
6. 𝑅𝐷 (Read): It becomes logic 0, when the data bus

receives (reads) data from the memory or I/O port.
7. 𝑊𝑅 Write: It becomes logic 0, when the data bus

drives (writes) data to the memory or I/O port.
8. ALE (Address Latch Enable): When it is logic 1, the

address/data bus contains a memory or I/O address.
9. 𝐷𝑇/𝑅 (Data Transmit/Receive): It is used to control

the direction of the data bus transmitting/receiving
data.

10. 𝐷𝐸𝑁 (Data bus Enable): When it is logic 0, the
address/data bus contains a memory or I/O data

1.2.4. 8086 Pin Functions
11. 𝑇𝐸𝑆𝑇 (test): If it is logic 0, the program will be executed.

If it becomes a logic 1, WAIT will wait for it to become 0.
12. READY: It is logic 1 so the instructions are executed

without wait states. If it is logic 0, the wait state will be
inserted.

13. NMI (Nonmaskable Interrupt): When it becomes logic 1,
INT 2 will be called at the end of the current instruction.

14. INTR (Interrupt Request): If INTR is held high during IF
= 1, the 8086/8088 enters into an interrupt acknowledge
cycle after the current instruction is completed.

15. 𝐼𝑁𝑇𝐴 (Interrupt Acknowledge): It is generated by the
microprocessor in response to INTR. It causes the
interrupt vector to be put onto the data bus.

1.2.4. 8086 Pin Functions
16. 𝑀𝑁/𝑀𝑋 (Minimum/Maximum Mode): It is used to

select minimum or maximum mode operation.
17. 𝑀/𝐼𝑂 (Memory or I/O): It indicates if the address bus

contains memory or I/O address.
18. RESET (Reset): if it is held high for 4 clock cycles, the

8086 will be reset and restart at FFFF0H.
19. HOLD (Hold): It requests a direct memory access

(DMA). When 1, microprocessor stops and places
address, data and control bus in high-impedance state.

20. HLDA (Hold Acknowledge): It indicates that the
microprocessor has entered the hold state.

1.2.4. 8086 Pin Functions
21. 𝑅𝑄/𝐺𝑇 and 𝑅𝑄 /𝐺𝑇 (Request/grant) pins

direct memory accesses (DMA) during maximum
mode operation.

22. 𝐿𝑂𝐶𝐾 (lock): An output is used to lock
peripherals off the system. Activated by using the
LOCK: prefix on any instruction.

23. QS1 and QS0 (Queue Status): These bits show
status of internal instruction queue.

QS1 QS0 Function
0 0 Indicates no operation
0 1 Indicates first byte of opcode from queue.
1 0 Empties the queue.
1 1 Indicates subsequent byte from queue.

1.2.4. 8086 Pin Functions
24. 𝑆 , 𝑆 , 𝑆 (Status): They Indicate function of

current bus cycle (decoded by 8288).

2S 1S 0S Function

0 0 0 Indicates an interrupt acknowledge
0 0 1 Indicates an I/O read
0 1 0 Indicates an I/O write
0 1 1 Indicates a halt
1 0 0 Indicates a code access
1 0 1 Indicates a memory read
1 1 0 Indicates a memory write
1 1 1 Remains passive

1.3. Clock Generator (8284A)
 The 8284A is an ancillary component to the

8086/8088.
 It provides the following functions:

 Clock generation
 RESET synchronization
 READY synchronization.
 A TTL level peripheral clock signal.

1.3.1. Pin Functions

Part II:
8086/8088 Hardware

Lecture_14

1.3.1. Pin Functions

1.3.1. Pin Functions

1. Vcc: The +5V, ±10% power supply pin.
2. GND: The ground connection
3. F/𝐶 (Frequency/Crystal): it is used to select

the clocking source for the 8284A.
4. X1 and X2: (Crystal inputs): They are

connected to an external crystal.
5. EFI (External Frequency Input): An input used

to supply the timing.
6. CLK (clock): It provides the CLK input signal

to the 8086/8088 and other devices.

1.3.1. Pin Functions
7. PCLK (Peripheral Clock): It provides a clock

signal to the peripherals.
8. OSC (Oscillator Output): It provides an EFI to

other 8284A clock generators.
9. CSYNC (Clock Synchronization): It is used

whenever EFI input provides synchronization in
systems with multiple processors.

10.𝑅𝐸𝑆 (Reset Input): It is often connected to an
RC network that provides power-on resetting.

11.RESET (Reset Output): It is connected to the
8086/8088 RESET input pin.

1.3.1. Pin Functions

12.𝐴𝐸𝑁 , 𝐴𝐸𝑁 (Address Enable): They are provided to
qualify the bus ready signals RDY1 and RDY2.

13.RDY1 and RDY2 (Bus Ready): They cause wait
states in an 8086/8088-based system.

14.𝐴𝑆𝑌𝑁𝐶(Ready Synchronization Select): It is used to
select either one or two stages of synchronization
for the RDY1 and RDY2.

15.READY (Ready): An output pin connects to the
8086/8088 READY input. It is synchronized with the
RDY1 and RDY2 inputs.

1.3.2. Operation of the Clock

1.3.3. Operation of the RESET

1.4. Bus Buffering and Latching

 For very large systems, the buses are buffered.
WHY?

 The address/data bus are multiplexed to save the
number of pins required for the 8086/8088 IC.

 They must be demultiplexed. WHY?
 All computer systems have three buses:

 Address bus
 Data bus
 Control bus

 These buses must be present to interface
memory and I/O.

1.4.1 Demultiplexing the 8088

1.4.2. Demultiplexing the 8086

1.4.3. The Fully Buffered 8088

1.4.4. The Fully Buffered 8086

1.5. Bus Timing
1.5.1. Basic Bus Operation

 Simplified 8086/8088 write bus cycle:

1.5.1. Basic Bus Operation
 Simplified 8086/8088 read bus cycle:

1.5.2. Timing In General
 The 8086/8088 uses the memory and I/O in

periods of time called bus cycle.
 Each bus cycle equal to 4 system-clocking

periods (T states).
 If the clock is operated at 5 MHz, one bus cycle

is completed in 800ns.
 The 8086/8088 reads or writes data at the rate

of 1.25 million times a second.

1.5.2. Timing In General
 During the first clocking period (T1):

 The address is placed on the Address/Data bus.
 Control signals (M/ IO, ALE and DT/ R) specify memory

or I/O, latch the address onto the address bus and set
the direction of data transfer on data bus.

 During the second clocking period (T2):
 The 8086/8088 issues the RD or WR signal for read or

write the data.
 The 8086/8088 issues DEN which enables the memory

or I/O device to receive the data for writes and the
8086/8088 to receive the data for reads.

1.5.2. Timing In General
 During the third clocking period (T3):

 This cycle is provided to allow memory to access data.
 READY is sampled at the end of T2 .

 If low, T3 becomes a wait state.
 Otherwise, the data bus is sampled at the end of T 3 .

 During the fourth clocking period (T4):
 All bus signals are deactivated, in preparation for next

bus cycle.
 Data is sampled for reading.
 Data writes occur for writing.

1.5.3. Read Timing

1.5.3. Read Timing
 Memory specs (memory access time) must match

constraints of system timing.
 Access time is the amount of time that the

microprocessor allows the memory to access the
data for the read operation.

 For example, bus timing for a read operation
shows almost 600ns are needed to read data.

 However, memory must access faster due to
setup times, e.g. address setup and data setup.
 This subtracts off about 110ns .
 Therefore, memory must access in at least 460ns

minus another 30ns guard band for buffers and
decoders.

1.6. READY and the Wait State

 READY input causes wait states for slower
memory and I/O components.

 A wait state (Tw) is an extra clocking period to
stretch the bus cycle.

 If one wait state is inserted, the memory
access time will stretch to (460 + 200) 660 ns.

1.6.1. The READY Input
 The READY input is sampled at the end of T2 and again, if

applicable, at the middle of Tw.
 If READY is logic 0 at the end of T2, Tw will be inserted between

T2 and T3.
 READY is sampled again at the middle of Tw to determine the

next state will be Tw or T3.

1.6.2. RDY and the 8284A
 RDY is the synchronized ready input to the

8284A.
 The timing diagram for this input is as shown:

1.6.2. RDY and the 8284A

1.6.2. RDY and the 8284A
 A circuit that will cause between 0 and 7 wait states.

1.6.2. RDY and the 8284A

1.7. Minimum Mode versus Maximum
Mode

 Minimum mode:
 It is the least expensive way to operate the

8086/8088.
 It costs less because all the control signals are

generated inside the microprocessor.
 It allows the 8085A peripherals to be used.

 Maximum mode:
 It is dropped from the Intel family beginning

from 80286.
 All the control signals must be externally

generated.
 An external bus controller is used.
 It is used only when the system contains

external cooprocessor.

Lecture_15

Chapter 2: Memory Interface

 This chapter will discuss:
 Memory Devices:

ROM, EEPROM, SRAM, DRAM.
 Addressing Decoding.
 8088 Memory Interface.
 8086 Memory Interface.

2.0 8086 Pin Functions

2.1. Introduction
 Every microprocessor-based system has memory

system.
 All systems contain two types of memory:

 Read-only memory (ROM): It stores system software
and permanent system data.

 Random access memory (RAM): It stores temporary
data and application software.

2.2. Memory Devices

2.2.1. Memory Pin Connections
a) Address Connections

 All memory devices have address inputs.
 They select a memory location within the

memory device.
 Address inputs are labeled from A0 to AN.
 N is the total number of address pins minus 1.
 Example: The 2K memory:

 It has 11 address lines.
 The labels are (A0-A10).
 If the start address is 10000H so the end address is:

10000H + ((2*1024)10 = 800H) - 1=107FFH

2.2.1. Memory Pin Connections
b) Data Connections

 All memory devices have a set of data outputs or
input/outputs.

 They are used to enter the data for storage or extract
the data for reading.

 Data pins are labeled from D0 through D7 for a byte-
wide memory.

 That means the memory stores 8 bits of data in each
memory location.

 Memory devices are defined by memory locations
times bit per location.

 Examples: 1K8, 16K1, 64K4. Memory Organization
 Capacity : 8Kbits, 16Kbits, 256Kbits

2.2.1. Memory Pin Connections
c) Selection Connections

 Each memory device has one or more inputs that
selects or enables the memory device.

 They can be)S(Select or)CE(Enable Chip),CS(Select Chip

If they are active (logic 0), the memory device
performs a read or write operation.
If they are inactive (logic 1), the memory is disabled
and do not do any operation.
If more than one selection connection is present. All
must be activated to read or write.

 All memory devices have some control input or
inputs

2.2.1. Memory Pin Connections
d) Control Connections

A RAM device has either one or two control inputs

 If two control inputs, they are labeled)G(or OE and),W(or WE

2.2.2. ROM Memory

 ROM permanently stores system software.
 It does not change when the power is

disconnected.
 It is called nonvolatile memory.
 It is available in different forms:

 PROM (Programmable Read-Only Memory).
 EPROM (Erasable Programmable Read-Only

Memory).
 EEPROM
 Flash Memory, faster but erasable in large pieces.

2.2.2. ROM Memory
 The 27XXX series of the EPROM includes:

 2704 (512 8). 2708 (1K 8).
 2716 (2K 8). 2732 (4K 8).
 2764 (8K 8). 27128 (16K 8).
 27256 (32K 8). 27512 (64K 8).
 271024 (128K 8).

 Each EPROM has:
 Address pins
 8 data connections
 One or more selection inputs and one output enable

pin.)OE(EnableOutput),CE(Enable Chip

2.2.2. ROM Memory

Example: 2716 (2K 8) EPROM

2.2.3. Static RAM

 Static RAM memory devices retain data as long
as the DC power is applied.

 They are called volatile memory. Because they
will not retain data without power.

2.2.3. Static RAM
 Example: 52256 (32K 8)

2.2.4. Dynamic RAM

 DRAM retains the data for only 2 or 4 ms on an
integrated capacitor.

 In the DRAM, the entire contents of the memory
are refreshed with 256 reads in 2 or 4ms
interval.

 Refreshing also occurs during a write, a read or
during a special refresh cycle.

2.2.4. Dynamic RAM
 Example: TMS4464 (64K 4)

2.2.4. Dynamic RAM
 When RAS is active (0), the first eight bits are

placed on the pins and strobed into an internal
row latch.

 When CAS is active (0), the next eight bits are
placed on the pins and strobed into an internal
column latch.

 The 16-bit address is held in the internal latches.
 The CAS performs the function of the chip select.

2.2.4. Dynamic RAM

Address Multiplexer

2.2.4. Dynamic RAM
 Example: 41256 (256K 1)

30- and 72-pin SIMM DRAM

4M x 9

4M x 36

168-pin DIMM DRAM XM x 64

2.3. Address Decoding
 The microprocessor has 20 bits address.
 The memory device has less than 20 bits

address.
 The solution is to use decoder.
 For a 2KB chip only 11 bits are connected to

the memory and the other 9 bits are decoded.
 A simple NAND Gate decoder is shown

2.3. Address Decoding

 The address range is: from 1111 1111 1000 0000 0000
to 1111 1111 1111 1111 1111

2.3.1. The 3-to-8 line Decoder
 The 74LS138 3-to-8 line decoder

2.3.2. Sample Decoder Circuit
 The 74LS138 can be used to connect 8X8KB

EPROMs.

	Lecture_1
	Lecture_2
	Lecture_3
	Lecture_4
	Lecture_5
	Lecture_6
	Lecture_7
	Lecture_8
	Lecture_9
	Lecture_10
	Lecture_11
	Lecture_12
	Lecture_13
	Lecture_14

