TABLE 2.6 ASCII and EBCDIC Codes in Hex.

Character ASCII EBCDIC											
@	40			60		blank	20	40	NUL	00	
A	41	C1	a	61	81	!	21	5A	SOH	01	
B	42	C2	b	62	82	"	22	7F	STX	02	
C	43	C3	c	63	83	\#	23	7B	ETX	03	
D	44	C4	d	64	84	\$	24	5B	EOT	04	37
E	45	C5	e	65	85	\%	25	6 C	ENQ	05	
F	46	C6	f	66	86	\&	26	50	ACK	06	
G	47	C7	g	67	87	'	27	7D	BEL	07	
H	48	C8	h	68	88	(28	4D	BS	08	16
I	49	C9	i	69	89)	29	5D	HT	09	05
J	4A	D1	j	6 A	91	*	2A	5 C	LF	0A	25
K	4B	D2	k	6B	92	+	2B	4E	VT	OB	
L	4C	D3	1	6 C	93	,	2C	6B	FF	0 C	
M	4D	D4	m	6 D	94	-	2D	60	CR	0D	15
N	4E	D5	n	6 E	95	.	2E	4B	SO	OE	
0	4F	D6	-	6 F	96	1	2F	61	SI	OF	
P	50	D7	p	70	97	0	30	F0	DLE	10	
Q	51	D8	q	71	98	1	31	F1	DC1	11	
R	52	D9	r	72	99	2	32	F2	DC2	12	
S	53	E2	s	73	A2	3	33	F3	DC3	13	
T	54	E3	t	74	A3	4	34	F4	DC4	14	
U	55	E4	u	75	A4	5	35	F5	NAK	15	
V	56	E5	v	76	A5	6	36	F6	SYN	16	
W	57	E6	w	77	A6	7	37	F7	ETB	17	
X	58	E7	x	78	A7	8	38	F8	CAN	18	
Y	59	E8	y	79	A8	9	39	F9	EM	19	
Z	5A	E9	z	7 A	A9	:	3A		SUB	1 A	
[5B		\{	7 B		;	3B	5E	ESC	1B	
1	5C		1	7 C	4F	$<$	3C	4C	FS	1 C	
]	5D		\}	7D		$=$	3D	7 E	GS	1D	
\wedge	5E		\sim	7 E		$>$	3E	6 E	RS	1 E	
-	5F	6D	DEL	7F	07	?	3F	6F	US	1F	

in the computer's memory. To print the digit 5 on the EBCDIC printer, a program must be written that will convert the ASCII code 35_{16} for 5 to its EBCDIC code $\mathrm{F} 5_{16}$. The output of this program is FS_{16}. This will be input to the EBCDIC printer. Because the printer only understands EBCDIC codes, it inputs the EBCDIC code F_{16} and prints the digit 5.

Let us now discuss packed and unpacked BCD codes in more detail. For example, in order to enter 24 in decimal into a computer, the two keys (2 and 4) will be pushed on the ASCII keyboard. This will generate 32 and 34 (32 and 34 are ASCII codes in hexadecimal for 2 and 4 respectively) inside the computer. A program can be written to convert these ASCII codes into unpacked BCD 02 and 04 , and then convert to packed BCD 24 or to binary inside the computer to perform the desired operation.

2.3.3 Excess-3 Code

The excess- 3 representation of a decimal digit d can be obtained by adding 3 to its value. All decimal digits and their excess-3 representations are listed in Table 2.7.
The excess- 3 code is an unweighted code because its value is obtained by adding three to the corresponding binary value. The excess- 3 code is self-complementing. For example, decimal digit 0 in excess- 3 (0011) is ones complement of 9 in excess three (1100). Similarly, decimal digit 1 is ones complement of 8 , and so on. This is why some older computers used

