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ILOs of the Logic Circuit Design EE242 

 

 

1. Comprehend and use the main blocks of combinational circuits, MUXs, ROMs, PLAs, PALs, 

Decoders and Encoders    

2. Design combinational circuits using different blocks. 

3. Carry out a project using the NI- LabVIEW software package to design and test combinational 

circuits, if time allows. 

4. Differentiate between combinational and sequential circuits 

5. Review all types of Flip Flops used in sequential circuits and represent their functions by state 

diagrams. 

6. Convert verbally stated design problems into state diagrams and hence state tables. 

7. Differentiate between Mealy and Moore finite state machines. 

8. Follow up the design procedure of sequential circuits starting from implication tables through 

partition tables, state transition tables, excitations maps and eventually the hardware 

implementation. 

9. Use the Verilog/VHDL language to design come known logic circuits, combinational and/or 

sequential 

10. Comprehend and design synchronous and asynchronous counters 
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CHAPTER 
FOUR 

Implementation of 

Logic Functions ____----I 

The design mechanism of combinational logic circuits is usually a4.1 Introduction 
multi-step process. The realization, and the subsequent minimiza­
tion, of the logic function is not the end of the design. We are 
already familiar with the various schemes for coming· up with the 
reduced logic function either in the SOP or in the POS format. 
These forms can be translated easily into either a familiar AND­
OR or OR-AND pattern of logic circuits. However, we have also 
seen in the last chapter that digital ICs have several practicallimi­
tations that may affect the implementation of circuits. These 
include the fan-in and fan-out limitationS and the fact that ICs are. . 

more frequently available in the NAND and NOR form than in the 
AND and OR form. NAND and NOR gates are easier to realize 
with electronic components and are, therefore, the basic ingredients 
used in ali of the logic families. Consequently, it is important for the 
designer to be familiar with the techniqueS for translating the 
reduced function so that either NAND gates or NOR gates may be 
used. 

Combinational circuits may be realized using a standardized 
combinational unit called a multiplexer (MUX). In the MUX 
some of the input variables are used as input selectors for the unit 
and the remaining variables are entered as data inputs. Two other 
devices, read-only memories .(ROMs) and programmable logic 
arrays (PLAs), are also frequently used to implement combina­
tional networks. This chapter will explore the possibilities of using 
only one type of gate or one of the modules-MUX, ROM, PAL, or 
PLA-for the realiz~tion of combinational circuits. Such exploration 
is extremely useful ~use most· designers usually choose to use 
only one type of basic gate unless there is a particular reason for 
doing otherwise. After studying this chapter, you should be able to: 

o Design combinational circuits using only NAND gates; 
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98 CHAPTER FOUR Implementation of Logic Functions 

4.2 Universal Logic 
Elements 

o Design combinational circuits using only NOR gates; 

o Design combinational circuits using single- or multi­
level multiplexers (MUXs); 

o Design combinational circuits using read-only memories 
(ROMs); 

o Design combinational circuits using programmable 
logic arrays (PLAs); 

o Construct a complex circuit using the outputs of a 
known functional unit. 

In practice many logic circuits are built using only NAND and 
NOR gates because the basic gates in some of the logic families such 
as TTL and CMOS are NAND and NOR, respectively. NAND 
and NOR gates are considered universal logic elements since they 
both can be easily manipulated to obtain all possible logic func­
tions. This simplification follows directly from, Boolean theorems 
that we have discussed in the earlier chapters. 

A close inspection of the truth table of these two functions, as 
described in Section 1.7, reveals that the NAND and NOR opera­
tors are duals of each other. Recall also from Chapter 1 that the 
dual of a Boolean expression is obtained by replacing every OR 
with AND, AND with OR, 0 with 1, and 1 with O. Six of these dual 
properties are listed as follows: 

NAND NOR 


l.a·O=l a+l=O 

2. a:l = a a + 0 = a 
3. a' a = a a + a = a 

4. a' h = a+ b a + b = a' b 
5. a.h= a + b a+ b = a • b 

6. a' = a • b a + b = a + b 

All of the logic functions may be generated using these properties of 
NAND and NOR logic. The corresponding NAND and NOR logic 
circuits for various functions are shown in Figure 4.1. 

The circuits of Figure 4.1 show how NAND-and NOR gates may 
be cascaded to form each of the logic functions NOT, AND, OR, . 
and X-OR Since either NANDs or NORs may be used to imple­
ment all of the logic operations, designers may prefer to use only 

. NANDs or only NORs in order to decrease the inventory oflSpare 
parts. One of the methods by which to realiZe this is the brute force 
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FIGURE 4.1 Logic Functions 
Using NANDs and NORs. 

Gate NAND Circuit NOR Circuit 

NOT A-QJ-A A-£D-X 
A 

AND 

B 

A 

A+BOR ~=L>O-A+B 
B 

AX-DR A 
B B 

scheme, where each of the logic operations of the Boolean function 
is replaced by the corresponding NAND/NOR circuit. Note, how­
ever, that restricting the number of inputs to the gates will not cause 
any major problem if proper use of the involution and DeMorgan's 
laws are made. 

EXAMPLE4.i 

Implement A El) B using only 
NAND gates. 

SOLUTION 

There are two different ways to implement this function: (a) using NAND 
equivalents ofan X-OR gate and of a NOT gate, and (b) using the NAND 
equivalents of either the SOP or the POS tenns. 

a. The first possibility results in the circuit of Figure 4.2. 
h. Otherwise, A El) B can be ~ressed in the SOP fonn as AB 

+ All Consequently: the circuit appears as in Figun: 4.3. The 
circuit of Figure 4.3 can be reduced further since X = X. There­
fore, the circuit reduces to that of Figure 4.4. Note also that the 
function could be expressed in the POS form. Consequently, A El) 
B= (A + B)(A + B), which leads to another variation of an X­
NOR circuit as shown in Figure 4.5. The circuit of Figure 4.5 
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FIGURE 4.2 
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OR 

FIGURE 4.4 

may be reduced further by making use of the law of involution. 
The resulting circuit is shown in Figure 4.6. 

The first and the third fonns, as shown in Figures 4.2 and 4.4, require five 
NAND gates each, and the fifth, as shown in Figure 4.6, requires a total of 
six. NAND gates. 
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FIGURE 4.5 
\ 
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NOT 
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FIGURE 4.6 
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4.3 Function 
Implementation Using 
NANDs 

It is quite easy to realize any SOP function using two levels of 
NAND gates. This method makes use of the fact that comple­
menting a function twice returns the function to its original form. 
This result is achieved in two steps: 

1. 	 The function is complemented by complementing the 
ANDed terms and replacing the OR signs with AND signs. 

2. 	 The original function is then recovered by complementing 
the complement function .. " 

It is not necessary to perform this operation each time a NAND 
realization is required. SOP forms always assume the same two­
level NAND form. 

The output of a NAND gate is also equivalent to the ORed out­
put of the complements of the input. This statement follows directly 
from DeMorgan's theorem. Consequently, we are led to the follow­
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ing set of rules for obtaining the output function of a multi-level 
NAND circuit: 

Rule 1. Consider the gate from which the output signal is derived 
as the first level, the preceding gate as the second level, and so on. 

Rule 2. In odd-numbered levels the NAND gates perform OR 
operations. All ungated input variables entering the odd-level 
NAND gates will appear complemented in the final expression. 

Rule 3. In even-numbered levels the NAND gates perform AND 
operations. All input variables entering the even-level NAND gates 
will appear uncomplementedin the final expression. 

EXAMPLE 4.2 SOLUTION 

Using only NAND gates, implement 
the function given by 

f = ABC + ABc + CD 

f(A,B,C,D) = ABC + ABc + CD which yidds 
=~=~= 

f = ABC' ABc· CD 

The final circuit, therefore, is obtained as shown in Figure 4.7. The circuit 
requires three three-input NAND gates and one two-input NAND gate 
provided Band C inputs are also available in the complemented form. 

FIGURE 4.7 A 
B 	 \r, 

C 

A 
h 
I"'" 	 f(A,B,C,D)

C 

C \. 
D 

t, 

4.4 Function 	 The implementation of an SOP function using only NOR gates is 
Implementation Using possible only if the function is first converted to the equivalent POS 

form. The process includes the following steps: NORs 
1. 	Plot the function on a K-map and obtain the comple­

mented function by grouping all zeros. 
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2. 	 Expand each of the ANDed terms by using DeMorgan)s 
theorem. 

3. 	 Complement the whole Boolean expression. 

NOR realizations of SOP functions always have the same two-level 
structure. Steps 1 through 3 should be followed until the designer is 
confident of the result. 

DeMorgan's theorem may be used to interpret the NOR opera­
tion as well. The output of the NOR gate is equivalent to the 
ANDed output of the complements of the inputs. Rules for the 
interpretation of multi-level NOR circuits are listed as follows: 

Rule 1. Consider the gate from which the output signal is derived 
_L·C as the first level, the preceding gate as the second level, and so on. 

Rule 2. In odd-numbered levels the NOR gates perform AND 
operations. All ungated input variables entering the odd-level NOR 
gates will appear complemented in the final-expression. 

Rule 3. In even-numbered levels the NOR gates perform OR 
operations. Input variables entering the even-level NOR gates will 
appear uncomplemented in the final Boolean expression. 

EXAMPLE 4.3 SOLUTION 

Using only NOR gates) implement The minterms are plotted in a four-variable K-map and the corresponding 
the function given by zeros are grouped as shown in Figure 4.8. This gives 

j(A)B)G,D) = ~m(O)2)4)5,8,1O,13) J= CD + BC +BD + ABD 
=c+D+B+c+B+ +A+B+D 

Therefore, 

j=C+D+B+C+B+D+A+B+D 

FIGURE4.B A 
~ 

1 1 W 1 
r0­-

1 1O 0 

0 0 0 01 
,......., 
 I­

0 11 0 

'----y----' 

B 

The equivalent NOR circuit, therefore, may be obtained as shown in Fig­
ure 4,9. It requires three two-input NOR gates, one three-input NOR gate, 
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and one four-input NOR gate provided the inputs are als9 available in the 
complemented form. 

FIGURE 4.9 	 c----\ 
5----1"---­

8----\ 

C----I 

x..r--- f 

B----\ 

5----1"---­

0----1 

A----; 

"---­

EXAMPLE 4.4 

Write the output expression for the 
multi-level circuit shown in 
Figure 4.1 O. 

SOLUTION 


FIGURE 4.10 


2 

B 
4 

C 

A-----------\ 

f(A,B,C,O,E,F) 

o 
E 

3 
F----------~ 

This is a three-level circuit. Therefore, the involved operations may be 
summarized as follows: ., 

a. 	Gate 1 performs tge OR operation; 

h. 	Gate 2 performs the OR operation, and A must appear uncom­
plemented; 

c. 	Gate 3 performs the AND operation, and F must appear uncom­
plemented; 
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4.5 Function 
Implementation Using 
MUXs 

d. Gate 4 perfonns the 	OR operation, and both Band C must 
appear complemented; 

e. 	Gate 5 performs the AND operation, and both D and E must 
appear complemented. 

Therefore, 

f(A,B,C,D) = [(D' E)' F] + [A + (8 + C)] = DEF + A + B + C 

Function output expressions may also be determined by starting at the 
inputs and making repeated use of DeMorgan's theorem. This latter tech­
nique is best when there is a mix of NOR and NAND gates in the circuit. 

A multiplexer (MUX), known also as a data selector, is a combinational 
network that has up to 2n data inputs, n control inputs, and an out­
put line. Commercial MUXs are limited to values of n of 1 through 
4. An additional input is available that allows cascading of mul­
tiplexers to obtain higher-order devices. The MUX allows the selec­
tion of one of the 2n data inputs as the device output. This selection 
is made by the control lines. A block diagram of a MUX with eight 
data input lines, Do, DI, D2, D3, D4, DSl D6, and D7, is shown in Fig­
ure 4.11[a]. Most MUXs are provided with at least two additional 
lines: Jfor the complemented output and E for enabling the device. 
The internal circuit configuration of the corresponding MUX is 
shown in Figure 4.l1[b]. For every 2n inputs the MUX has exactly n 
control lines. By applying appropriate signals to the control lines, 
anyone of the data lines may be selected. For example, when 121110 
= 011, the D3 input is routed to the output provided E = O. Note 
that whenever E = 1, the MUX is completely disabled; that is, 
regardless of the control variables or the data inputs, the output is O. 
The enable input allows several of these devices to be cascaded 
together. 

A MUX with 2n input lines and n selection lines (such a device is 
also referred to as a 1-of-2n MUX) may be wired to realize any 
Boolean function of n + 1 vaI'iables. This fact will be illustrated by 
implementing the function f(A,B,C,D) = 2:m(0,2,4,5,6,8,1O,13) 
using a 1-of-8 MUX. A 1-of-8 ~X has three control inputs where 
all but anyone of the 'input variables may be entered. For example, 
we may consider A, B, and C inputs as the three control inputs, /2, 
/1' and /0, respectively. The technique, therefore, consists of deter­
mining the function output in terms of the fourth input, D, for every 
possible combination of the control inputs. The values so obtained 
are then entered at the respective data inputs of the MUX. The 
truth table for the said function may then be reorganized as shown 
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FIGURE 4.11 Eight-Input 
MUX: [aJ Block Diagram and [b] 
Circuit. 
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in Figure 4.12. The entries under thef(D) column are determined 
by comparing the entries of the column D with that of the column! 
For any combination of A, B, and C, the following are true: 

1. Iff= 1 irrespective of D, thenf(D) = 1. 

2. Iff= 0 irrespective of D, thenf(D) = O. 

3. Iff= xwhenD = x, thenf(D) = D. 

4. Iff= xwhen D = x, thenf(D) = D. 

FIGURE 4.12 Truth Table for 
f(A,B,CJJ) =Im(0,2,4,5,6,8,10, 

A B C D f f(D) 

0 0 0 0 1 
l5 

1 0 
0 0 1 0 1 

l5
1 0 

0 1 0 0 1 
1 

1 1 

0 1 1 0 1 
l5

1 0 
1 0 0 0 1 

l5
1 0 

1 0 1 0 1 
i5

1 0 
1 1 0 0 0 

D
1 1 

1 1 1 0 0 
0 

1 0 

0 v13). , 
0 (/)
i) 

D 
\) 

I --­'P 
~ 

0 (f) 
0 

0 Q
0 

The function, therefore, is implemented as shown in Figure 4.13[a]. 
The eight values of f(D) are fed respectively into data inputs Do 
through D7• Consequently, for any combination of the three control 
inputs, f(D) would actually appear at the MUX output. The 
implementations of the same function for the other three combina­
tions of the control inputs-B, C, and D; A, C, and D; and A, B, and 
D-can also be obtained in like-manner. The corresponding MUX 
configurations are shown in Figures 4.13[b-d]. The designer might 
even change the order of the control inputs, resulting in a total of 24 
different circuit configurations. In addition, if one of the control 
variables is available only in coIJlplemented form, the variable may 
be used without invertiiig and the inputs rearranged accordingly 
(see Problem 3b). 

It is quite obvious that the use of MUXs provides the designer 
with numerous choices. Consequently, it is necessary to consider 
each of the solutions to determine which is the optimum. In Figure 
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FIGURE 4.13 MUX 
(jImplementation off(A,B,C,D) 

= 2:m(O,2,4-6,8,1O,13): [a] 121tlo 
= ABC, [b] 121lo = BCD, [c] 121110 

= ACD, and [d] 121110 = ABD. 
Do E 
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4.13[a], lJ is seen to be tied to five of the data inputs. The gate that 
provides lJ must then have a fan~out of at least five. If we limit our­
selves to the four choices of Figq.re 4.13, it is apparent that Figure 
4.13[d] provides the most preferable circuit, because the Cvariable 
needs to be fed directly to only two of the data inputs. Example 4.5 
illustrates the meChanism of obtaining a multi-level multiplexer 
circuit. 



109 4.5 Function Implementation Using MUXs 

EXAMPLE 4.5 

Implement the function 

f(A,B,C,D,) = ~m(3,4,8---10,13-15) 

a. by using a l-of~4 MUX and a 
few assorted gates, 

h. by using l-of-2 and l-of-4 
MUXs in two levels. 

FIGURE 4.14: 

SOLUTION 

a. 	The function may be expressed in the SOP form and then 
regrouped as 

f(A,B,C,D) = ABCD + ABCD +ABCD + ABCD + ABCD 
+ ABCD + ABCD + ABCD 

= AB(CD) + AB(CD) + AB(CD + CD + CD) 
+ AB(CD + CD + CD) 

= AB(CD) + AB(CD) + AB(C + D) + AB(C + D) 

Accordingly, the resultant circuit is obtained as shown in Figure 
4.14. 

C 

o 

C 

i5 

E 

Do 

0 1 7 
1-of-4 

O2 MUX 
03 f ((A,B,C,D) 

11 10 

A B 

h. 	Also, 

f(A,B,C,D) = AB[C(O) + C(D)] + AB[C(D) + C(O)] 
+ AB[C(l) + C(D)] + AB[C(D) + C(l)] 

This implies that a two-level MUX circuit would be able to gen­
erate this function. The firSt level of a 1-of-2 MUX essentially 
eliminates the need for discrete gates. The resultant circuit is 
obtained as shown in Figure 4.15. However it can be shown that 

C(O) + C(D) == C(l) + C(D) 

and 

C(D) + C(O) = C(D} + C(l) 

Note also that the MUXs usually are provided with an additional 
output for providing the complemented result. Consequently, two 
of the first-level l-of-2 MUXs may be removed. The resulting 
reduced multi-level MUX circuit is obtained as shown in Figure 
4.16. 
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FIGURE 4.15 
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FIGURE 4.17 Realization of 
f(A,B~C) = i":m(1-3J5J6) Usihg 
l-of-8 MUX. 

FIGURE 4.18 Realization of 
Ji(A~~C) = i":m(I,3,6,7) and 
fo(A~~C) = i":m(O,3-5) Using Two 
l-of-8 MUXs. 

MUXs can also be applied in a more brute force manner. This 
technique involves 1-of-2n MUXs for functions of n variables, while 
Example 4.5 used l-of-2n

-
1 MUXs to implement a function. The 

function values from a function's truth table are transformed 
directly to the inputs of the MUX. The n variables are treated as 
control inputs to the MUX. Figure 4.17 shows the truth table for a 
three-variable function and the corresponding 1-of-8 MUX imple­
mentation. For two functions ofthe same variables, two MUXs may 
be used as shown in Figure 4.18. 
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The technique just discussed is not as efficient as the one before 
in terms of MUX size, but it is certainly easy to implement and is a 
good way to introduce another device that may be used to imple­
ment combinational logic functions. Ifwe put the circuit implemen­
tation of Figure 4.18 in a box, we could show the circuit symboli­
cally as illustrated in Figure 4.19. Such a representation is called a 
black-box representation since the user is not required to know about 
the details of the internal logic. Not knowing what is in the box in 
Figure 4.19, we might explain the circuit action by simply saying 
that ABC forms an address, and iI and Jo are what is stored there. 
This is precisely the explanation of the operation of a device with 
which we can implement multiple functions of a set of variables. 
This device is called a read-only memory (ROM). It can be considered 
as a set of storage cells with every cell having a value for each of the 
multiple functions. These .ROMs can be programmed (Is and Os 
applied to the inputs of each of the function's MUX inputs) by the 
manufacturer or by the designer if he or she has available blank 
ROM chips and an appropriate programmer. The information 
stored in the ROM remains there permanently. The ROM equiva­
lent of the logic of Figure 4.18 is shown by the block diagram of Fig­
ure 4.19. When power is applied,iI andJo have the same values as 
before power was removed. 

FIGURE 4.19 Black-Box 
Representation of the Circuit of 
Figure 4.18. 

Inputs 1: 
12 

11 ROM 

10 

III 
Outputs 

fo 

ROMs come in many sizes. The sizes are determined by the 
number of storage cells (corresponding to the number of MUX 
inputs) and the number of bits stored in each cell (the number of 
functions that can be implemented). In Figures 4.17 and 4.18 there 
are three variables that allow addressing 23 storage cells in our 

nMUX-implemented ROM. In general, n variables would require 2
storage cells and correspond to· n address lines. Each storage cell 
would have one bit (lor 0) for each function of the n variables. 

Commercially available ROMs come in many sizes. They may 
be listed as 2K X 1 or 2K X 8, meaning 2048 storage locations one 
bit wide in the first case and 2048 storage locations eight bits wide 
in the second case. The first would allow implementing a function of 
up to 11 variables, the second up to eight functions of 11 variables. 
The designer selects a ROM of adequate size to implement the 
desired function. . 
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The following section discusses ROMs in more detaiL For most 
function generation applications, ROMs can be vi&ualized as a set 
of MUXs-one for each function of the input variables (addresses). 

EXAMPLE 4.6 

Obtain a multi-bit shifter (see 
Example 2.4 for definition) thathas 
an (n + 2)-bit input, x, an n-bit' 
output,), and three control inpu~: 
s> d, and E. You may use only 
MUXs for the deSign.' 

FIGURE 4.20 

Xn 

S 

d 

D2 D1 Do 

11 ~ "-~~-' 

1-of-4 MUX E 

10 
. f f 

SOLUTION 

The characteristics of the shifter could be summarized as follows: 

ifd = 1, s = 1, and E = 1 (left-shift) 

ifd = 0, s = 1, and E = 1 (right-shift) 
)i= 


Xi ifs = 0 and E = 1 (no-shift) 


o ifE=O 

where 0 < i < n - 1. 
A I-of 4 MUX could be used corresponding to each bit of). The vari­

ables sand d can be fed as its selectors, and E as the enable input. The 
inputs Xi) Xi- hand xi+ 1 could be introduced at the MUX data inputs, and 
they could be suitably selected as the shifter output. The multi-bit shifter is 
obtained accordingly as shown in Figure 4.20. Whenever E = 0, the 
MUXs are disabled and the output becomes zero. 

Xn-l Xn-2 x, Xo X-l 

11 

1-of-4 MUX E 

10 

f f 

E 


Yn-l Yo 
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4.6 Function 
Implementation Using 
ROMs 

FIGURE 4.21 Block Diagram of 
a ROM. 

A read-onry memory (ROM), as the name implies, is intended to hold 
fIxed information that can only be read, not altered. The primary 
use of the ROM is to provide a means for storing binary informa­
tion. The storing is done during the fabrication of the ROM and 
may not be altered without undergoing a signifIcantly involved pro­
cess. The same is true for a combinational network that has been 
designed, fabricated, tested, and encapsulated with only the inputs 
and the outputs available. The ROM has become an important 
part of many digital systems because of the ease with which com­
plex functions such as code conversion, program storage, and char­
acter generation can be implemented. The chip count of circuits, for 
which the access time of the ROM is not a restriction, may be 
greatly reduced by using ROMs. 

A 2m X n ROM is an array of memory cells organized into 2m 

wordsofn bits each, as shown by the block diagram of Figure 4.21. 
Such a ROM is accessed by means of m address lines and the stored 
information is retrieved via a total of n data-out lines, one for each 
bit of the word. The ROM corresponds to a combinational network 
with n outputs, where each of the outputs is associated with up to 2m 

different minterms. A ROM may be provided with one or more 
chip-select lines to permit cascading smaller ROMs to form a ROM 
with more words (allowing implementation of functions of more 
variables). 

Address lines -+/--:..~Em 
2,"l x n 

1---7'/'--+ Output lines 
ROM n 

Chip-select --1'---+1 

As indicated in the previous section, a ROM is a combinational 
circuit. A ROM can be implemented by using only diodes, bipolar 
transistors, or MOS transistors. Although the diode matrix ROM 
no longer represents the current ROM technology, it serves as a 
simple model to show the basic concept. Figure 4.22 shows a simple 
diode ROM, where the row and column lines are interconnected 
via diodes placed at the respective intersections. The absence or 
presence of a diode indicates that the corresponding row and col­
umn intersection is programmed with a 1 or a O. If the output is 
buffered with inverterS; the converse is true. The output for the zth 
address depends on the ORing diodes connected to that line. For 
example, if A~lAo = 100, the output will be DaD7 ... DI = 
01000001. For A~iAo = 100 input, a low is produced on the 
decoder output numbered 4. This low. and the pull-up resistor for­
ward biases each of the diodes connected to this row and pulls down 
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FIGURE 4.22 8 X 8 Diode 
ROM. 

0 1 

O2 
12 

3~8jine 0 
3 

11 decoder 0 

Pull-up 
resistors 

OR matrix4 

A2 

A1 . 

Ao 

.. Use ROM to realize the implemen~ 
tation of the integer function 

forO < x <3 

Outputs 

the corresponding colW1Ul outputs to a low. In the absence of a 
diode, a high is maintained at the output due to the pull-up resis­
tors. The capacity of a ROM usually is quoted as the number of 
possible intersections in the matrix, for example, 8 X 8 = 64 bits = 
(1/16)K bits in this case. A total of 1024 intersections is usually 
referred to as lK bits. Examples 4.7 and 4.8 illustrate the use of 
diode ROMs in combinational problems. 

SOLUTION 

The function truth table is obtained as shown in Figure 4.23. A 2-4 line 
decoder would be sufficient to decode the numbers 0, 1, 2, and 3, and it is . . 
apparent that a maximum of five output lines are needed to represent the 
cube of the largest number. The two select lines, Ao and Ah can be used to 

. select anyone of these four outputs. . 

10 
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FIGURE 4.23 x f(x} f(x} in Binary 

0 0 00000 
1 1 00001 
2 8 01000 
3 27 11011 

The resultant diode matrix implementation of il ROM, therefore, is 
obtained as shown in Figure 4.24. 

r---~--~---'--~~-------+VFIGURE 4.24 

E 

Pull-up 
resistors 

11 0 
1 
[)-4I!----t-4t---Hl---+___~f__--+----

2-4 line 
decoder 

~ 02O'--+---~.-~~~~--+----

output 

EXAMPLE 4.8 SOLUTION 

Using a minimal ROM FIGURE 4.25 
implementation, design a seven­
segment-to-BCD code converter. 
The seven-segment display device 
cons~ts of seven LEDs, as shown in 
Figure 4.25, arranged in such a way 
that they could be used for 
displaying data. 

The seven-segment-to-BCD truth table is obtained as shown in Figure 
4.26. The input entries are selected in such a way that the output would be 
displayed only if the corresponding LED segments are lighted. For exam­
ple, when all of the seven segments are turned on, the display will be an 8. 
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FIGURE 4.26 
 Inputs Outputs 

P Q R S T U V D C B A 

1 ·1 1 1 1 1 0 0 0 0 0 

0 1 1 0 0 0 0 0 0 0 1 

1 1 0 1 1 0 1 0 0 1 0 

1 1 1 1 0 0 1 0 0 1 1 

0 1 1 0 0 1 1 0 1 0 0 

1 0 1 1 0 1 1 0 1 0 1 

0 0 1 1 1 1 1 0 1 1 0 
1 1 1 0 0 0 0 0 1 1 1 

1 1 1 1 1 1 1 1 0 0 0 

1 1 1 0 0 1 1 1 0 0 1 

FIGURE 4.27 


p Q R S T Z Y X 

1 1 1 1 1 0 0 0 

0 1 1 0 0 0 0 1 

1 1 0 1 1 0 1 0 

1 1 1 1 0 0 1 1 

1 0 1 1 0 1 0 0 

0 0 1 1 1 1 0 1 

1 1 1 0 0 1 1 0 

FIGURE 4.28 


Note, however, that there could be up to two choices for displaying a 1: 
either U and Tor Qand R. 

A direct implementation of this table requires a 27 X 4 = 512-bit 
ROM. Note that the partitioned table (with inputs P, (b R, S, and T), as 
shown in Figure 4.27, would require only seven of the possible 25 = 32 
combinations. 'This situation suggests that a reasonable improvement is 
possible if the designer is willing to cascade at least two smaller ROMs. 
One of these ROMs should have at the least three outputs-z, Y, and X­
since 23 > 7. The output of the first ROM-Z, Y, and X-can be fed along 
with the other two inputs-U and V-into the second ROM. However, care 
must be taken in organizing the second ROM so that its output becomes 
equivalent to that of Figure 4.26. Accordingly, the compressed truth table 
of Figure 4.28 is obtained such that it incorporates the same logic as that of 
Figure 4.26. The seven inputs have now been replaced by only five inputs, 
where the first three are functions of P, (b R, S, and T and the other two are 
U and V themselves. 

Outputs Z, Y, and X are realizable using a 96-bit (3 X 25) ROM. A 
second ROM can be used where Z, Y, x, U, and V are the inputs. The 
second ROM size is 4 X 25 = 128 bits. Therefore, the total ROM size 
requirement is reduced to only 96 + 128 = 224 bits. 'This solution reduces 

z y X U V D C B A 

0 0 0 1 0 0 0 0 0 

0 0 1 0 0 0 0 0 1 

0 1 0 0 1 0 0 1 0 

0 1 1 0 1 0 0 1 1 

0 0 1 1 1 0 1 d 0 

1 0 0 1 1 0 1 0 1 

1 0 1 1 1 0 1 1 0 

1 1 0 0 0 0 1 1 1 
0 0 0 1 1 1 0 0 0 

1 1 0 1 1 1 0 0 1 
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the ROM size to about half of the originaL The ROM implementation of 
the circuit, therefore, is given by the multi-level circuit of Figure 4.29. 

FIGURE 4.29 p 

Q 

R 

Inputs jf 
-

B 
Outputs 

A 

Although the diode matrix serves to demonstrate the ROM con­
cept, ROMs are presently manufactured using bipolar and MOS 
transistors, as shown in Figure 4.30. The presence of a connection 
from a row line to either a transistor base or a MOSFET gate repre­
sents a logic 0, and the absence of such a connection represents a 
logic 1. For economical reasons MOS ROM is preferred to bipolar 
ROM for large numbers of bits. Access time for bipolar ROM, 
however,is much less than that ofMOS ROM. 

FIGURE 4.30 [a] Bipolar m X n 
ROM and [b] MOS m X n ROM. 

--~t---+Vee -----41-- +Vee 

~--~--~---+--. ··-4-----jr--Row1 

_4,------jI-- Row 2 

-4--~-Rowm 

-+----t--- Row 1 

-4-~r--'---~-"'-'---4---Row2 

-+----f--- Row m 

Column 1 Column 2 Column n Column 1 Column 2 Column n 
[a] [b1 
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4.7 Function 
Implementation Using 
PLAs and PALs 

FIGURE 4.31 12 x 32 x 8 PLA 
Using Diodes. 

<f-4- ­

+v 

4.7 Function Implementation Using PLAs and PAls 

Examples 4.7 and 4.8 illustrated how a ROM may be used to 
implement SOP logic expressions. There is another aspect of the 
ROM that deserves attention, however. A ROM consists of a level 
of AND gates, which constitute the decoder part, followed by a sec­
ond level of OR gates (made up ofdiodes or transistors), which con­
stitute the encoder section. A ROM may be thought of as a 
programmable array of logic gates. With this array of AND and 
OR gates, every combination of minterms of the input variables 
(addresses) can be formed. This flexibility is costly in that, when 
implementing complex functions, not all minterms are necessary to 
realize a given expression. For example, a ROM that processes 12 
variables requires a total of 4K byte (eight bits are called a byte) 
memory. For example, such an arrangement is needed for the Hol­
lerith code conversion circuit that has up to 12 input variables, but 
has only 96 eight-bit output combinations of these variables. This 
situation implies that 4000 out of 4096 bytes will remain unused. 
Such waste can be eliminated by the use of a programmable logic array 
(PLA). 

A PLA consists of an array of AND-OR logic along with inverters 
that may be programmed to realize the desired output. In essence a 
PLA may be regarded as being made up of two separate ROMs: an 
AND ROM and an OR ROM. A typical PLA configuration is 
shown in Figure 4.31 in a 12 X 32 X 8 format. The circuit consists 

AND array ---+. +-- OR array --t> 

.---e-----+----i II 

... . . . . .. . ..... 
. 

~---.,v~-~ 

Inputs Outputs 
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FIGURE 4.32 PLA 
Implementation. 

A 

B 

c 

Inputs 
D 

E 

F 

of an initial AND array, which can implement anyone or more of 
the 32 product teIlllS of up to 12 variables. The inclusion of an 
inverter with each input variable allows any minterm to be formed. 

A PLA may be used as a Boolean function generator in much the 
same way as a ROM. As a simple example, Figure 4.32 shows a 
small PLA layout with six inputs, twelve product teIlllS, and four 
outputs. The dots in the matrix of the top section can be thought of 
as AND inputs and those on 'the bottom part can be interpreted as 
OR inputs to generate the outputs. The output functions are easily 
determined as follows: 

01 = liD + D + AD + lieF = A + D + lieF 

O2 = BDF + DE + eE + "CDEF 

03 = "CD + AE + DE 

04 = "CD + liDF 


AND matrix 

Ltxt 
Ltxt 
4: 

'"'" 

Lr>~ 

Ltxt 

OR matrix Outputs
03 

0 4 , 
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FIGURE 4.33 PIA Expansion 
Scheme: [a] Product Term 
Expansion and [6] Output 
Expansion. 

4.7 Function Implementation Using PLAs and PALs 

Larger numbers of prod~ct terms and/or outputs may be 
obtained when more than one PLA is cascaded. Some of these 
expansion schemes are shown in Figure 4.33. The product terms 
essentially are increased by tying the outputs in parallel. This con­
figuration resembles the wiring of open-collector outputs. Corre­
spondingly, an increase in the word size could be accomplished by 
unhooking the outputs. 

- ...-­
--; .­
· PLA · PLA · · · · 

-4' ,..08 

L...­ '-­

· PLA PLA 
· · 

- -

08 

[a] [b] 

The designer must use care in choosing the mintel1llS to be 
formed in the AND section of the PLA. In order to use PLAs opti­

. mally, it is necessary to have as many output functions as possible 
that have common minterms. It is not necessary for each function to 
be minimized; the goal is to minimize the total number of minterms 
required to implement the set of functions. 

It would be appropriate now to discuss an additional program­
mable device known as programmable array logic (PAL). It also allows 
the systems engineer to design his or her "own chip" by fusible links 
to configure AND and OR gates to perfonn the desired logic func­
tions. The PAL is b~ically a programmable AND array driving a 
fixed OR array. In comparison, both of the arrays of PLA are 
programmable, while the programmable version of ROM, known 
commonly as PROM (to be discussed in detail in Chapter 12), has 
a fixed AND matrix and programmable OR array. 
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FIGURE 4.34 Logic Diagram of 
a Simple PAL. 

In the PAL circuit, as shown in Figure 4.34, an AND array 
allows the designer to specify the product terms required and con­
nect them to perform the required SOP logic functions. The PALs 
are available in a number of different part types, however, that vary 
the OR gate format. Specifying the OR gate connection, therefore, 
becomes a task of device selection rather than of programming. 

A B 

Fusible links 

I 

Output 

A B 

Consequently, PALs totally eliminate the need for a second matrix 
without any significant loss of flexibility. 

In general PALs offer cost-effective capabilities for improving the 
effectiveness of existing logic designs by expediting and simplifying 
prototypes and board layouts. Figures 4.35[a-b] respectively show 
the PLA and PAL configurations of a four-input-four-output 
AND-OR circuit. The PLA provides the most flexibility for imple­
menting logic functions since the designer is equipped with com­

J 
plete control over all inputs and outputs. However, this flexibility .j 

makes PLAs expensive and somewhat formidable to comprehend. 

In comparison, the PAL combines much of the flexibility of the 

PLA with the low cost and easy programmability of the PROM. 


.i 
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FIGURE 4.35 A Four-Input, 
Four-Output AND-OR Circuit 
Using [a] PLA and [6] PAL 

A B C o 

A B c o 


y v 

~ ~ ~ ~ 

~, ( () () 

, 
=<
--I 

OR array 
(programmable) 

A 

t-- ..- ...- ...- OR array 

~ 
fixed 
"------~ 

( () () 

AND a!ray AND array 

(programmable) 
 (programmable) 

[a] [b] 

" indicatesa.fusible link. Links are removed where no connection is desired. 

4.8 Bridging 
Technique 

The bridging technique is not so much a self-contained design algo­
rithm as it is a way to bend the c4aracteristics of a Boolean function 
that cannot be reduced further. If after using K-maps or the Q-M 
technique, the function is still large and unwieldy due to the 
minterms being logically separated, the function might be bridged by 
using known functions that exhibit similar patternS of logically sep­
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FIGURE 4.36 Examples of 
Several X-OR Functions. 

A 

A 

C{ 
0 1 0 1 

0 1 0 1 

arated minterms. The X-OR function frequently is used in the 
bridging process. 

Consider the K-maps of several X-OR functions, shown in Fig­
ure 4.36. It is obvious that such K-maps are not reducible without 
the X-OR function. A close examination of these maps reveals that 
there are equal numbers of Is and Os on each half. In addition, the 
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complement of the X-OR function may be obtained either by com­
plementing the whole function or by complementing odd numbers 
of variables. An X-OR function can be changed to another equiva­
lent X-OR function as long as either (a) an even number of vari­
ables have been complemented, or (b) the entire function and an 
odd number of variables have been complemented. For example, 

AffiBffiCffiD= AffiBffiVffiD=A ffiBffiVffiD 
= A ffi B ffi Cffi D = A ffi B ffi C ffiD 

The X-OR functions are often very useful in implementing func­
tions that have logically isolated minterrns. 

As long as the function to be implemented bears the characteris­
tic of an X-OR function, it can be realized using one or more X­
OR gates. However, the problem becomes more difficult when the 
K-map closely resembles that of an X-OR function but is not one. 
The bridging technique then is used to connect the desired function 
and a closely resembling X-OR function. The technique consists of 
the following steps: 

1. 	Match the function K-map, F, as closely as possible to a 
known X-OR K-map,j. 

2. 	 Realize the function F using bridging such that F = f' X 
+ Y, where X and Yare two separate functions of the same 
input variables. X and Y are determined by closely com­
paring K-maps of F andj. 

Example 4.9 illustrates the idea behind the bridging scheme. 

EXAMPLE 4.9 	 SOLUTION 

Using X-OR and other·· assorted The function K-map is obtained as shown in Figure 4.37. By comparing 
gates, implement the function the K-map of Figure 4.37 with those of Figure 4.36, it would become obvi­

ous that the closest match occurs with! = A El1 B El1 C El1 D. However,
F(A,B,C,D) = ~m(O,1,3,6,9,lO,15) 

FIGURE 4.37 ) 
1 0 0 o i 

1 0 0 1 

1 0 1 O· 

0 1 0 1 

'-----v----' 

B 
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FIGURE 4.38 

A 

1 0 0 0 

1 0 0 1 

1 0 1 0 

0 1 0 1 

'--v----' 
B 

FIGURE 4.39 

F f X Y 

0 0 - 0 
0 1 0 0 
1 0 1 

1 1 d d 

FIGURE 4.40 


they are not exactly alike. They differ at three minterm locations: 1,5, and 
12. The two functions may be bridged, therefore, as shown in Figure 4.38. 
The bridging between the two functions F andf required that certain con­
straints, as listed in Figure 4.39, be met in determining X and Y functions. 
These constraints follow directly from the equation F = f . X + Y. 

1 0 1 0 

0 1 0 1 

1 0 1 0 

0 1 0 1 

d - 0 -

0 d 

d d 

d d 

+ 


d 0 I 0 0 

1 0 0 d 

d 0 d 0 

0 d 0 d 

~ ~ -----.,,- ­
B B B 

The d's in the table of Figure 4.39 indicate that either X or Y or both 
must equal 1. In other words, X and Y cannot simultaneously be 0 when F 
= f = 1. This use of d, however, permits many choices for the selection of 
X and Y. It can be seen that if all d's in X are set equal to 0, then F = Y, 
which is contrary to what is expected in bridging. When F = Y no bridg­
ing is needed. On the other hand, if all d's in X are set equal to 1, then 

Y =ABCD 
X=B+C 

Therefore, 

F = (A EB B EB C EB D) • (B + C) + ABC 

The resultant circuit is obtained as shown in Figure 4.40. This bridged cir­
cuit is certainly better than the circuit that could be obtained by using only 

A------j.....-:~\­o-------I'--....J 

B-+......-I 

F 
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a K-map. If a designer was limited to using only a K-map, the function 
would have reduced instead to 

F(A,B,C,D) = ABC + ABD + BCD + ABCD + ABCD + ABCD 

The bridge scheme is very general and it does not have to involve 
only X-OR functions. This technique ~an be used for generating a 
complex function when a like function of the same variables already 
exists (see Problem 16). 

4.9 	Summary In this chapter various practical techniques were introduced for 
realizing combinational circuits. In particular, circuits using only 
NAND gates, only NOR gates, only MUXs, only ROMs, only 
PLAs, and only PAls were discussed. In addition, the bridging 
technique was introduced to handle functions that are otherwise not 
reducible. 

1. 	 Obtain the circuit for the following functions using only Problems 
NAND gates: 

a. 	 f(A,B,C,D) = ~m(I,4,10,11,13,15) 
b. 	 f(A,B,G,D) = ~m(I,3,4;9,1O,13) 
c. 	 f(A,B,C,D) = ~m(I,8-1O,15) 
d. 	 f(A,B,G,D,E) = ~m(I,3-7,11,14-17,22,24-27,30) 
e. 	 f(A,B,C,D,E) = ~m(I,8-1O,13-17,21,25-27,30,31) 

2. 	 Obtain NOR circuits for the functions of Problem 1. 

3. 	 a. Use a single level of l-of-8 MUXs and a few assorted 
gates (if needed) to obtain a combinational circuit for 
each of the functions of Problem 1. 

b. 	 For each of your solutions, complement one variable and 
rearrange the inputs so that the function is still correct. 

4. 	 Using l-of-4 MUXs, obtain a two-level MUX circuit for each 
of the functions of Problem 1. 

5. 	 Obtain the circuit for the functionf(X,Y,2:,U, V) = ~m(0,1,6, 

7,9,12,13,15,18,20,22,24-26,28) using two levels of l-of-4 
MUXs and a few assorted gates. 

6. 	 Use bridging to implement the following functions using X­
OR gates: 
a. 	 f(A,B,C,D) = ~m(I,2,5,7,8,10,13,14) 
b. 	 f(A,B,G,D) = ~m(2,3,6,7,9,11,12,13) 

c. 	 fCW,X,Y,Z) = ~m(0,2,3,6-8,1O,13) 
d. 	 f(W,X,Y,Z) = ~m(0,6,9,1O,15) 

7. 	 Implement the functions of Problem 6 using ROMs. 

8. 	 Implement the functions of Problem 6 using PLAs. 
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9. 	 Given the function j{A,B,C,D) = ~m(0,4,9,1O,11 ,12) and Jl 
= B EB D, determineJ2 andJ3 for the circuit of Figure 4.PI. 

FIGURE4.Pl 

;:---lr--)----i-~)r---f(A,B,C,D) 
~------------------~--~-

10. 	 Use a ROM to design a binary-to-Gray code converter. 

11. 	 Draw the logic diagram of an 8 X 2 ROM that produces the 
full adder function as described in Chapter 1 (Table 1.4). 

12. 	 Use a ROM to achieve four-bit by four-bit binary multiplica­
tion. 

13. 	 Design a four-input network that squares each of the binary 
inputs using (a) a ROM, (b) a PLA, and ( c) a PAL. Assume 
that both input and output are unsigned. 

14. Design a five-input logic network that fmds the 2's comple­
) ment of a positive number using (a) a ROM, (b) a PLA, and 

(c) a PAL. 

15. 	 Design a network that accepts trigonometric angles in degrees 
(between 0° and 10° in steps of 1°) and gives out the corre­
sponding tangent value correct up to five significant places. 
Use (a) a ROM and (b) a PLA. 

16. 	 Consider the truth table for the full adder of Table 1.4. Bridge 
the carry-out function with Ai EB Bj , where Ai and Bj are the 
augend and addend, respectively. 
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A combinational logic circuit, as shown by the block diagram of Figure 5.1 Introduction 
5.1, is defined as a combination of logic devices whose output is a 
function of the present values of the input variables and indepen­
dent of the past values. After propagation time through the circuit, 
input variable changes cause output changes that are dependent 
orily on the present input values. 

\ 

FIGURE 5.1 Block Diagram of a 
Combinational Network. · • Combinational · · OutputsInputs · logic... ·· 

In Chapters 1, 2, and 4 we introduced the necessary tools to 
design combinational logic circuits. The design algorithm leading to 
the realization of a complex combinational circuit consists of the fol· 
lowing essential steps: 

1. 	The complex logic problem is intuitively analyzed and 
decomposed into a set of smaller but nontrivial functional 
units. 

2. 	 The number and characteristics of both input and output 
variables for each of the functional units are identified. 

3. 	 A truth table for each of the functional units is determined. 

4. 	The output functions for each of the functional units are 
simplified using one of the ininimization schemes covered 
in previous chapters. 

5. 	The circuits corresponding to each of the functional units 
are assembled and tested individually and then connected 
to form the desired complex function. 
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In practice, the designer would have to consider various practical 
limitations such as the number of logic gates, interconnections, gate 
inputs, fan-out, and the length of propagation delay. In the not too 
distant past the only option available to the designer was to assem­
ble the entire logic circuit with a sack full of SSI chips. However, at 
this time we have better alternatives because many more complex 
logic circuits are available in IC form. The only limitation to the 
use ofeither the MSI or the LSI is that we may not be able to locate 
a device that exactly meets our requirements. In that event the 
designer must modify the standard device by externally combining 
it with other SSI or MSI chips. 

In this chapter applications of these combinational logic design 
tools will be considered. The design and application of MSI devices, 
including adders, subtracters, decoders, encoders, and error-control 
logic, is presented. These devices play an important part in the 
development of more advanced digital systems. The application of 
the MSI devices considered is not governed by a set of design proce­
dures as well defined as those procedures for individual logic gates. 
Experience and intuition (horse sense) become important. There is 
no substitute for understanding exactly what the MSI devices can 
do. After studying this chapter, you should be able to: 

o Break a complex design into manageable subunits; 

o Design individual subunits and be able to cascade them 
together; 

o Understand the working principles and design process 
of various combinational binary adders and/or sub­
tracters; 

o Understand the working principles and design process 
of various code converters; 

o Understand the working principles and design of BCD 
arithmetic circuits; 

o Understand the working principles and design of vari­
ous decoders and encoders; 

o Understand the working principles and design of vari­
ous error-correcting circUits. 

Most arithmetic operations are reducible to simple addition or sub­
traction processes that can be performed repetitively for more com­
plex operations such as multiplication and division. If the addition 
circuit has no carry-in, the addition of the least significant bits 
involves only two operancls, the addend and augend. The addition 
of the remaining bits, however, requires the carry-in from the addi­
tion of the previous column. 
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5.2.1 Half Adder (HA) 

FIGURE 5.2 Half Adder: [a] 
Block Diagram and [hJ Truth 
Table. 

A multi-bit adder can be realized in various ways, each having 
different speed and cost characteristics. A two-level network would 
obviously prove to be the fastest. However, this network would 
require a large number of gates and gate inputs. It would be neces­
sary to have 22n NAND gates of 2n + 1 inputs and one NAND gate 
of 22n inputs to add two n-bit numbers. This number of gates and 
inputs is quite significant for even small values of n. The alternative 
to this expensive design is quite straightforward. It follows directly 
from our observation of the algorithm of an n-bit add operation. 
Irrespective of the number of bits, the process of adding augend and 
addend is identical at each of the columns except at the least signifi­
cant position. The design of a parallel n-bit addition circuit, there­
fore, is accomplished by designing a total of n single-bit addition cir­
cuits. In order to allow n single-bit adders to be connected together 
to form an n-bit adder, the single-bit adder stages need to be full 
adders (adders with three inputs). The least significant carry-in is 
tied to a 0, and each of the remaining carry-in inputs is tied to the 
carry-out of the previous single-bit addition. 

As an introduction to adder design, we shall first consider a half 
adder (adder with only two inputs, addend and augend). The resul­
tant circuit will have application in the design of a full adder. In 
fact, an n-bit adder circuit using n- 1 full adders and one half adder 
also can be designed. 

The half adder (HA) unit is a simple multiple-output combina­
tional circuit used for adding two bits without a carry-in. The truth 
table for the two inputs, Ai and Bi, and the output sum, Si' and 
carry-out, Gi, are shown in Figure 5.2. 

Augend Addend 

HA 

Carry-out Sum 

Ai Bi Cj Sj 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 

[a] [b] 

Using a Karnaugh map, the equations for the sum, Sj, and carry, 
Gi , are as follows: 

S· = A·ll + A·~· = A· lD B· [5.1]I I I rut I W t 

C· = A·B· [5.2]t I I 

Ther;e are several ways to implement these functions. Figure 5.3 
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FIGURE 5.3 HA Circuit: [a] illustrates four ways to implement the HA functions. Circuits using 
Using AND and X-OR Gates, [b] [a] an AND and an X-OR gate, [b] NOR gates, [cJ NAND gates, 
Using NOR Gates, [c] Using and [dJ multiplexers are shown. 
NAND Gates, and [d] Using 
MUXs. 

A 

C; Cj 

A D-Si 
B; 

Bj 
Sj 

[a] 	 [bJ 

Bj 0 B; Bj 

Sj 

Aj E 

Cj 

Cj S; 
[c] [d] 

5.2.2 	Full Adder (FA) Afoll adder (FA) is a three-input, two-output logic circuit that 
adds two binary digits, Aj and Bi, and a carry-in from the i-I bit 
position, Gi - 1• The block diagram and the corresponding truth 
table are shown in Figures 5.4[a-b]. The K-maps for the sum bit, Si, 
and the carry-out, Gil are constructed from the truth table and 
shown in Figure 5.4[c]. The equations for the sum and carry-out 
can then be obtained from the K-maps as follows: 

Si(Ai,Bj,Gi - 1) = AjB,ci-l + AJ3,Ci-l + A;B,Ci - 1 

. + AJ3jGi- 1 [5.3] 

= :4',,+ 'Bj + Gi- 1 + Ai + Bi + Vj- 1 + Ai + Bi 
+ £:';-1 + Ai + Bi + Gj - 1 	 [5.4] 

and 

Gi(Aj,Bj,Gj_l) = AiBi + A,ci-l + B,ci-l 	 [5.5] 

= Aj + Bi + Ai + Ci- 1 + Bi + Ci - 1 [5.6] 

10 
1-of-2 
MUX 
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FIGURE 5.4 Full Adder: [a] 
Block Diagram, [6] Truth Table, 
and [c] K-Maps for the Carry-Out 
and the Sum. 

Design of Combinational Circuits 

Inputs 

Ai 8; Ci - 1 

0 0 0 

0 0 1 

0 1 0FA Carry-in 
0 1 1 

1 0 0 

1 0 1 

1 1 0 

1 1 1 

[a] [b] 

A;8i Ai8 j 

Ci - 1 

O· 0 

0 

00 00 01Ci- 1 

o o 

1 

Outputs 

Ci S; 

0 0 

0 

0 

1 

1 

1 
0 

0 

1 

1 

1 

0 

0 

1 1 
i 

11 10 

0 IT] 0 IT] 
lIT] 0 IT] 0 

[c] 

There are several ways to implement the FA equations. The 
direct implementation of Equations [5.3] and [5.5] leads to FA cir­
cuits using only NAND gates; If Equations [5.4] and [5.6] are used, 
the equivalent NOR circuits may be obtained. Figures 5.5[a~] 
respectively show the typical FA circuits using only NAND and 
only NOR gates. Each of these circuits requires a total of 12 gates 
and 31 gate inputs. However, by making use of the bridging tech­
nique, the number of gates can be reduced. 

Note that the K-map for the sum output is irreducible, produc­
ing a cumbersome circuit. Note also that the K-map for Sj is that of 
a three-input X-OR function. A review of Figure 4.36 indicates that 
the sum equation may be reduced to 

Si = Ai EB Bi EB Ci~l [5.7] 

Examining the carry-out K-map reveals that it could be bridged 
with an X-OR function as follows (see Chapter 4, Problem 16): 

I W [5.8]c·I = (A· l1:\ B·)C·I 1-1 + A·~·P, 

Now recall that Ai EB Bj is the sum output and A/3i is the carry­
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FIGURE 5.5 FA Circuit: [a] 
Using Only NAND Gates and [b] 
Using Only NOR Gates. 

A 
fj. 

- I 

Ci- 1 

Ai 
Bi 


Ci- 1 


(a] 

(b] 

out for an HA. Thus. the HAs designed in the last section may be 
used for realizing an FA. Expressing the FA equations in terms of 
the HA equations, Equations [5.1] and [5.2], gives 

Si = Si(HA) E11 Ci- 1 [S.9] 

Ci = Si(HA) • Ci - 1 + Ci(HA) [S.10] 

where Si(HA) and Ci(HA) are the sum and carry-out of the HA. Note 
also that Equation [5.9] involves an X-OR operation between the 
carry-in and the HA sum. If the sum output of the HA and the 
carry-in are fed into a second HA, the final sum output will be the 
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FA sum, Si' In addition, if the carry-outs from both of the HAs are 
ORed together, the FA carry-out, Gi, is obtained. Figure 5.6[a] 
shows the FA circuit using two HAs and an OR gate. The circuit 
corresponding to Equations [5.7] and [5.8] also may be imple­
mented using only NAND gates or only NOR gates. The resultant 
NAND equivalent circuit is shown in Figure 5.6[b]. This NAND 
circuit requires only nine NAND gates and a total of 18 gate inputs. 
We have designed an FA circuit using three fewer gates and 13 
fewer gate inputs than would be necessary had we not made use of 
the X-OR K-map structure and bridging. 

FIGURE 5.6 FA Circuits: [a] 
Using HAs and [b1 Using Only 
NAND Gates. 

Augend Carry 
I 

Augend Carry 

Addend Sum Addend Sum Si 

HA HA I 
Ai 

Bi 
Ci 

Ci- 1 

[aJ 

Ci _ 1--------I-----------l 
D------Ci 

[b] 

We have completed the design of half and full adders. These 
devices are also commercially available in the form of MSI devices. 
Four F As usually are connected and are commercially available in 
an MSI four-bit adder Ie. Using a commercially available four-bit 
adder, two quantities, A:0~lAo and BsBzBIBo, can be added. The 
resultant sum is SSS~lSO' and the carry-out is from the As, Bs, and 
G2 addition. Figure 5.7 demonstrates the connection of n FAs to 
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FIGURE 5.7 n-Bit Parallel 
Adder Circuit: [a] Using n FAs 
and [b] Using n- 1 F As and One 
HA. 

AI B, Ao Bo 

X Y 

FAn-2 Cj FAa Ci 0 

Co SCo S S 

Co 

Co S 

SI 

[a] 

Ao Bo 

FA2 Ci 

S 

C, 

FAn-2 CjFAn I Cj HAo 

Co 

So 

[b] 
X =augend Co carry-out 

Y =addend S sum 

Cj carry-in 


make an n-bit adder.· The delay of this n-bit ripple adder is n!:J. 
FIGURE 5.8 Multiplication of where !f:. is the propagation delay of the carry-out of a single FA.
Two Three·Bit Numbers. 

This delay is accumulated when the carry into the multi-bit adder 
has to propagate through all.ofthe F As to get to the final carry-out. 

B2 B, Bo 
Consequently, this delay beComes more and more significant as n 

A2 . A, Ao 
becomes larger. 

AoB2 AoB, AoBo Multiplication of binary numbers makes use of addition just 
A,B2 AlB, A,Bo as multiplication of decimal numbers does. The multiplication of 

A2B2 A2B1 A2Bo two three-bit numbers, A = A~ lAo and B == Br/3IBo, is symbolicilly 
obtained as shown in Figure 5.8, where P5P.,;P3P'lflPO forms the prod­
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uct. Note that for the multiplication of two n-bit numbers, the product 
has the possibility of 2n bits. 

Later in the text sequential design techniques will be presented 
that will allow designing a multiplier that uses a repetitive algo­
rithm for multiplication. It is possible, however, to design a combi­
national circuit using F As that will pedorm the multiplication of 
two binary numbers by pedorming the sum of the three partial 
products of two numbers. This combinational circuit must be able 
to add columns of bits. Example 5.1 will demonstrate how FAs can 
be used to do similar functions. 

EXAMPLE 5.] 

Design a circuit using FAs that may 
be used for adding a column of six 
single-bit numbers. 

SOLUTION 

Let the column of numbers be llo, ah a2, a3, a4, and as. The sum ifall were 1 
would add up to 110, so there will be three outputs: S2, Sh and So. How- . 
ever, an FA may add up to only three single bits. Two FAs may be used to 
obtain two partial sums of the six bits as follows: 

where XI and X2 are the carry-outs and YI andyz are the respective sums. As 
a next step the least significant bits,YI andY2, may be added as follows: 

YI 
Y2 
o 

where X3 and So are the carry-out and the sum, respectively. Finally, Xb X2, 

and X3 could be fed into a fourth FA to yield the carry-out, S2, and the sum, 
Sil as follows: 

The complete circuit, therefore, would require four FAs. The resulting cir­
cuit is obtained as shown in Figure 5.9. 

. . 
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FIGURE 5.9 as a4 a2 81 

1 
B 

FA C, FA C,a3 

X1 

80 

S 

Yl 

BA 

0FA Cj FA Cj 

• - % ';";;;-:;.'~ 

SCo S 

So 

A augend Co carry-out 
B == addend S == sum 
Cj == carry-in 
rsmr L 11 

Another example of the application of adders in digital systems is 
given in Example 5.2. This example also demonstrates how a com­
puter that is designed to handle binary quantities of n bits can per­
form operations on 2n-bit quantities. In programming, such an 
operation is commonly called a multiple-precision operation. 

EXAMPLE 5.2 

Use four-bit multipliers and four-bit 
binary adders to design a circuitfor 
multiplying two eight-bit numbers. 
The block diagrams of the 
multiplier and adder units are . 
provided in Figure 5.10. The four­
bit multipliers are assumed to be 
ROMs. The two four-bit quantities 
to be multiplied make up an eight­
bit address. Each ROM storage 
location is the eight-bit product of 
the two four-bit quantities that 
make up its address. 

SOLUTION 

. FIGURE 5.10 

Multiplier Multiplicand 

4-bit multiplier ROM 

Product 

,­

V 
/ 

/ 
/4 / 

/4 

Augend Addend 

4-bit FA 1/
Carrry-out Carry-in / 

Sum 

/ 
v4 
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FIGURES.II 

4-bit 
multiplier ROM 

4·bit FA 

w 

V 

4-bit 
multiplier ROM 
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CO

U V 
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4-bit 

multiplier ROM 


4 

4 AO- 3 

A4- 7 

U V U V 


Co 4-bit FA 

w 

Cj Co 4-bit FA 

w 

Ci 

4 4 

4 

Y 

4-bit 
multiplier ROM 

Z 

4 4 

y x 

o 8 

- 3 

4 4 

4 
U 

Co 4-bit FA Cj DO- 3 

W 

4 

P8-11 PO- 3 

x =:: multiplier v =:: addend 
Y multiplicand W sum 
Z =:: product C; =:: carry-in 
U augend Co = carry-out 

A good approach to any design problem is to break the given problem into 
several simpler problems. This procedure is necessary in this example i.p. 
order to make the problem fit the devices that are provided. Consider the 
mqItiplication of two eight-bit numbers, Xl and X2, each consisting of a 

http:FIGURES.II
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least significant four bits, Li , and a most significant four bits, Mi' The eight­
bit number can then be expressed as the sum of the two four-bit parts: 

x = 24(M·) + LI ! ! 

where Mi is shifted to the left four places (multiplied by 24) before being 
added to Li. The product, P, may now be expressed as 

P = [24(Ml) + Ld[24(M2) + L2] 


= 28(MtM2) + 24(M\L2 + M~\) + (L)L2) 


Each of these four partial products may be obtained using four four-bit 
multiplier units. The four multiplier units would respectively have (a) Ml 
and M2, (b) MI and ~, (c) M2 and LI , and (d) Ll and ~ as inputs. This 
configuration would result in a total of four eight-bit outputs: AJ BJ C andJ 

D, respectively. Since two eight-bit quantities are being multiplied, a 16­
bit product is expected. Note also that D should be added to the sum of B 
and C that have been shilled to the left four places, and this in tum should 
be added to A that have been shilled to the left eight places. A network of 
six four-bit F As may be employed, as shown in Figure 5.11, to obtain the 
16-bit sum of the shilled partial products. The final product is obtained by 
adding the partial products. Care must be taken to connect the partial 
products at the correct bit positions relative to their power of2. The shill­
ing is implicit in the interconnection pattern of the adder modules. 

Note that a single ROM for multiplying two eight-bit numbers would 
require a total of 1,048,576 bits, that is, 16 bits of address and 16 bits in 
each location, to store the 16-bit product, or 216 X 16 bits. Each ROM 
that we used in this example had a size of only 2048 bits, giving a total of 
8192 bits. This design would probably be less expensive but would be 

. slower due to the time required to perform the additions. Such time and 
money trade-otfs will be a typical design decision that must be made by 
every engmeer. 

5.3 	Binary Subtracters Many arithmetic circuits also require a unit for subtraction. A sub­
tracter circuit could be designed from scratch. However, recall from 
Chapter 1 that subtraction also is possible by adding the comple­
ment of the subtrahend to the minuend. Consequently, rather than 
designing a straightforward subtracter, a multi-bit subtracter can 
be made using complement arithmetic. This design would involve 
the use of a multi-bit parallel adder circuit that isfed with the com­
plemented subtrahend and the minuend. 

In order to accoinplodate the multi-bit parallel adder to the 
requirement of our preseIlt desigy{, certain modification is necessary 
for complementing the subtrahend. If each bit of the subtrahend is 
individually complemented, the corresponding 1 's complement will 
be obtained. A 2's complement could be formed by adding a one to 
the LSB of the corresponding 1 '8 complement, that is, by making 
the carry-in to the LSB position of the adder a 1. To perform the 
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complementing of each bit, we can use an X-OR gate. An X-OR 
has a useful characteristic that makes it perform as a programmable 
inverter. Consider a two-input X-OR gate for which one input is a 
bit of the subtrahend and the other input is tied to a select line, E. 
When E = 1, the output will be the complement of the subtrahend 
bit. VVhen E =0, the output will be the uncomplemented bit, since 
from the X-OR truth table, 

IffiY=Y 
OffiY=Y 

The property of an X-OR function provides the possibility of 
having both an adder and a subtracter out of the same circuit. Such 
a circuit is shown in Figure 5.12 where the enable, E, allows the cir­
cuit to add or to subtract by taking the 1 's complement and adding 
a one to the LSB. When E = 0, the circuit adds with a carry-in of 
0, and when E = 1, the circuit complements B and adds that to A 
with a carry-in of 1. 

FIGURE 5.12 Four-Bit Adder/ 
Subtracter Unit. 

~----------~~----------~~----------~~----'---E 

x 

FA 

S 

B1 Bo 

Ao 

X X Y X 

Cj FA Ci FA Ci FA Ci 

S Co S Co S 

C2 C1 Co 
C3 S3 S2 Sl So 

X = augend 
y addend 
S sum 

Ci 

Co 
carry-in 
carry-out 

EXAMPLE 5.3 SOLUTION 

Obtain a combinational circuit for From Section 1.4 we know that the LSB of a number always remains 
realizing the 2's complement of a unchanged when obtaining the 2's complement. If the LSB, llo, is 1, then 
five-bit binary number, the next higher bit, a" is inverted. An X-OR gate in the fonn of flo ED al 
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FIGURE 5.13 


5.4 Carry Look~Ahead 
(CLA) Adders 

5.4 Carry Look-Ahead (CLA) Adders 

may be used to accomplish this. The next higher bit, ~, is complemented if 
either al or flo is 1. This line of argument could be carried out for all of the 
remaining bits. Such logical tests can be implemented by peIforming flo 
+ al + . . . + am-I> which would indicate whether or not a 1 is present in 
the least significant m bits. 

It is apparent, therefore, that X-OR and OR gates can be used to real­
ize the necessary circuit for performing 2's complement of a number. The 
OR gates would perform tests and the X-OR gates would complement bits 
if necessary. The resulting circuit for a five-bit number a4a3a~laO is 
obtained as shown in Figure 5.13. 

2's complement of the input 

The particular multi-bit parallel adder circuit developed in the pre­
vious section is sometimes referred to as a ripple adder because a 
carry from one unit of the adder may have to ripple through several 
units before the sum is obtained. Such ripple adders have also been 
used to form either 2's complement, or l's complement sign-and­
magnitude binary adder/subtracters. The performance of a ripple 
adder/subtracter, however, is limited by the time required for the 
carries to ripple through all of the stages of the circuit. For such 
devices the maximum delay is directly proportional to the number 
of FA units. 

One particular method of speeding up the combinational addi­
tion process is known as carry look-ahead (CLA). In Figure 5.14 it may 
be seen that the carry-out is the same as the carry-in as long as one 
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FIGURE 5.14 FA Conftgurations 
Resulting in a Carry-Out. 
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Co S Co S 
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X = augend 
Y = addend 
C, = carry-in 

Co 
S 

carry-out 
sum 

o o 

of the other two inputs is a 1. Also, the carry-out is always a 1 inde­
pendent of the carry-in when both of the other inputs are Is, and 0 
if both are O. Consequently, two useful functions can be defined: the 
carry-propagate, Pi, and the carry-generate, Gi 

p·=A·ffiB·1 I \Il I 

G· = A·' B·I I I 

[5.11] 

[5.12] 

where Ajand Bi are the addend and augend, respectively, of the ith 
full adder. 

The FA equations, Equations [5.7] and [5.8], can then be rewrit­
ten as 

s· = p. ffi C· II 1 \Il 1­

C· = G· + Pc. II I I 1­

[5.13] 

[5.14] 

For a four-bit adder the carries for the various stages are as follows: 

Co 

CI 

C2 

= Go + POC- I 

= GI + PICO 

= G1 + P1GO+ PIPOC- 1 

= G2 + P2Cr 

=P2 + P2G1 + P2P1GO+ P~IPOC-I 

[5.15] 

[5.16] 

[5.171 

and 

C3 = G3 + P3C2 

= G3 + P3G2 + P~2Gl + P~2PIGO + P3P2PIPOC-I 
I 

[5.18] 
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i
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~r . 

I
c/,·~Si'..........•..
~ ~:." 

, 

~~:~ 

while the sum bits are 

So = Po EB C_ I [5.19] 

SI = PI EB Co [5.20] 

S2 = P2 EB CI [5.21] 

and 

[522] 

In Equations [5.15-18] the carry-out for each of the stages is 
dependent only on the initial carry, C _ b and the corresponding 
propagate and generate functions. The equation for C3 can be 
implemented with a two-gate level circuit. Since each of the gener­
ate and propagate functions can be expressed in terms of the two 
data bits, C3 is available after two gate delays, resulting in a fast 
addition process. The block diagram of a four-bit CLA adder is 
shown in Figure 5.15. It consists of three sections, each having four 
subunits. The PG j section generates the carry-propagate and carry­
generate functions. The CLi section intakes the outputs of the previ­
ous section and generates the carries. Finally, the SUi section gener­
ates the sum bits. However, the carry units are different for every 
bit, and their complexity increases as they move further away from 
the LSB. 

The internal hardware for the four-bit CLA adder is shown in 
Figure 5.16. Each propagation-generation unit requires five NAND 
gates, each sum unit requires four NAND gates, and the n-bit carry 
section requires a total of (n2 + 5n)12 NAND gates. A four-bit CLA 
adder, therefore, requires a total of 54 NAND gates and involves a 
total of eight units of gate delay. In comparison, addition in a four­
bit ripple adder requires 12 units of gate delay. The four-bit CLA, 
therefore, cuts down the time factor by about one-third. Similarly, a 
64-bit CLA adder requires almost five times as many NAND gates 
as a 64-bit ripple adder, but reduces the propagation delay by a 
factor of 17. It follows, therefore, that the CLA adder will provide a 
faster addition time, especially when the number of bits is higher. 

An inventory of the n-bit CLA adder reveals that the sum and 
the carry subunits require a total of9n two-input NAND gates. The 
carry section, however, requires (2n + 1) two-input NAND gates 
and (n + 3 - m) m-input NAND gates for 3 m n + 1. There­
fore, from a practical standpoint C}:.A for too large n turns out to be 
quite problematic. It was seen in Chapter 3 that NAND gates with 
too many inputs are hard to come by. This limitation is com­
pounded by the fact that the carry-in, C _ b must drive a total of n 
+ 1 gates. In addition, the propagate functions will be subjected to 
a fan-out requirement on the order of (n + 1)2/4. All of these 
together result in a serious fan-in problem for n too large. 
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FIGURE 5.15 Four-Bit CLA 
Adder: [a] Block Diagram and [6] 
Internal Circuitry. 
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. Commercially available four-bit adders perform an internal 
CLA for a four-bit add. These outputs are available and labeled as 
P for propagate and G for generate. These outputs when used with 
another MSI device called a look-ahead carry generator provide signifi­
cant acceleration in the add operation, particularly for large num­
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FIGURE 5.16 [a] Single 
Propagation-Generation Unitt [b] 
Single Sum Unitt and [c] Carry 
Units of a Four-Bit CLA Adder. 
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FIGURE 5.17 Hi·Bit Addition 
with CLA Modules. 

hers of bits. Figure 5.17 shows the connections for performing the 
addition of two 16-bit numbers with CLA. 

Carry-propagate and carry-generate functions for more than 
four bits can be derived continuing the same process used for deriv­
ing C3 and S3' Circuit complexity makes such implementation 
impractical except for special-purpose, high-speed requirements. 
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EXAMPLE 5.4 SOLUTION 

Design an eight-bit fast adder 'J11e modified carry equations for an eight-bit fast adder are derived as 
where the fan-in and fan-out follows: 
problems are avoided by allowing 
the carries to ripple through after Co = Go + C-1Po 
the addition of every four bits. C1 = G1 + GoPl + C-1PoPl 

C2 = G2 + G1P2 + GoPIP2 + C,,-lPoPIP2 

C3 = G3 + G2PS + G1P2P3 + GoPIP2P3 + C- 1PoPIP2P3 

C4 = G4 + C3P4 

95 = G5 + G~5 + C3P~5 
C6 = G6 + GsP6 + G~5P6 + C~~5P6 
C7 = G7 + G~7 + G5P~7 + G~5P~7 + C3P~5P~7 
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The first four equations are similar to Equations [5.15-18]. The last four 
equations have asimilar form, but C3 is treated as the carry-in to the fifth 
bit. The resultant circuit may now be obtained, as shown in Figure 5.18, by 
having two separate units for the carry section . 
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It was pointed out in Chapter 1 that many different binary codes 
exist that are used in various digital subsystems. Sometimes it is nec­
essary to transfer data from one subsystem to another. Code converter 
circuits are required to convert one form of binary code to another. 
Many of these converters use combinational logic, and there are 
many that use sequential logic as well. 

The following examples will illustrate the combinational tech­
niques in the design of various code converters. We shall consider 
several conversion schemes: Gray -to-binary, binary-to-Gray, 
binary-to-BCD, and BCD-to-binary. 

i 

http:FIGURES.I8
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EXAMPLE 5.5 

Design a circuit for converting a 
five-bit Gray code into its binary 
equivalent. 

FICURE5.J9 

SOLUTION 

The Gray code is a reflected binary code such that the Gray code for one 
number differs from the next number in only one bit position. In binary 
space the codes are one unit distance apart. The truth table of Figure 5.19 
shows the corresponding Gray and binary numbers. 

Gray Binary 

G4 G3 G2 G1 Go B4 B3 B2 B1 Bo 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 1 

0 0 0 1 1 0 0 0 1 0 

0 0 0 1 0 0 0 0 1 1 

0 0 1 1 0 0 0 1 0 0 

0 0 1 1 1 0 0 1 0 1 

0 0 1 0 1 0 0 1 1 0 

0 0 1 0 0 0 0 1 1 1 

0 1 1 0 0 0 1 0 0 0 

0 1 1 0 1 0 1 0 0 1 

0 1 1 1 1 0 1 0 1 0 

0 1 1 1 0 0 1 0 1 1 

0 1 0 1 0 0 1 1 0 0 

0 1 0 1 1 0 1 1 0 1 

0 1 0 0 1 0 1 1 1 0 

0 1 0 0 0 0 1 1 1 1 

1 1 0 0 0 1 0 0 0 0 

1 1 0 0 1 1 0 0 0 1 

1 1 0 1 1 1 0 0 1 0 

1 1 0 1 0 ,­ 0 0 1 1 

1 1 1 1 0 1 0 1 0 0 

1 1 1 1 1 1 0 1 0 1 

1 1 1 0 1 1 0 1 1 0 

1 1 1 0 0 1 0 1 1 1 

1 0 1 0 0 1 1 0 0 0 

1 0 1 0 1 1 1 0 0 1 

1 0 1 1 1 1 1 0 1 0 

1 0 1 1 0 1 1 0 1 1 

1 0 0 1 0 1 1 1 0 0 

1 0 0 1 1 1 1 1 0 1 

1 0 0 0 1 1 1 1 1 . 0 

1 0 0 0 0 1 1 1 1 1 

The next step in the design process normally would be to produce five 
five-variable K-maps for detennining B4, B3, B2, Bb and Bo as functions of 
Col, G3, G2, Gh and Go- Note, however, that G4 and B4 are exactly alike. In 

http:FICURE5.J9
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FIGURE 5.20 


5.5 Code Converters 

addition, B3 is seen to be a 1 when only one of G4 and G3is a 1; B2 is a 1 
when only an odd number of G4, G3, and G2 are 1; BJ is a 1 when an odd 
number of G4, G'j, Gz, and G1 are 1; and, finally, Bo is a 1 when an odd 
number of the five Gray code inputs are 1. These observations eliminate 
the need for the K-map minimization scheme, although as a general rule, 
K-maps should be used and will always give a correct, if not minimum, 
solution. As in this particular case, however, careful observations may at 
times reduce complex problems to simpler ones. With our prior experience 
the application of X-ORs to this problem should become obvious. The 
binary outputs are obtained as follows: 

B4 = G4 


B3 = G3 E9 G4 


B2 = G2 E9 G3 E!1 G4 


BI = G1 E!1 Gz E9 G3 E9 G4 


Bo = Go E9 G1 E9 G2 E9 G3 E!1 G4 


Four two-input X-OR gates may be cascaded, as shown in Figure 5.20, to 
realize the desired Gray-to-binary conversion circuit. This design could be 
extended to an n-bit converter by cascading an additional (n - 5) two­
input X-OR gates. 

::~9-r5-=i==:: 
}---+----- 8 2 

G1 ----f'----

GO _____________~~BO 

EXAMPLE 5.6 SOLUTION 

Design an n-bit code converter for The truth table of Example 5.5 could be used again to solve for Go through 
converting binary to the equivalent G4 in tenns of Bo through B4• Checking for patterns in the bit relationships 
Gray code. to avoid going through a lengthy minimization process, we note that Go is a 

1 only when either Bo or BI is a 1. Likewise, G1 is a 1 when either Bi or B2 is 
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a 1; G2 is a 1 when either B2 or B3 is a 1; and, similarly, Gn- J is a 1 when 
Bn - 1 is a 1. Using our knowledge ofX-ORs we obtain 

G3 = B3 EEl B4 

G2 = B2 EEl B3 

G1 = Bl EEl B2 

Go = Bo EEl BJ 

The logic circuit of an n-bit binary-to-Gray converter is obtained as shown 
in Figure 5.21. 

FIGURE 5.21 

EXAMPLE 5.7 SOLUTION 
. 

Design a four-bit module that could The partially complete truth table for the binary-to-BCD conversion is 
be used to obtain an n-bit binary­ obtained as shown in Figure 5.22. It can be seen that the LSB of both the 
to-BCD conversion circuit. binary and the BCD numbers are the same. We could, therefore, design a 

circuit that will convert the remaining binary bits to the corresponding 
BCD bit: DJJ.fJ-Pl' A close examination of the truth table reveals that 

(BJ33BzBl) 

DJJ~-Pl =. 

(BJ3~zBl + 0011) otherwise1 

The regular design ofthe conversion module would consist of obtaining the 
minimized Boolean expressions for D4, D3, Dz, and Dl from the correspond­
ing K-maps as shown in Figure 5.23. In the K-map, however, the output 
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FIGURE 522 
Binary BCD 

8 4 8 3 8 2 8 1 8 0 0 7 0 6 Os 0 4 0 3 O2 0 1 Do 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 0 0 0 1 

0 0 0 1 0 0 0 0 0 0 0 1 0 

0 0 0 1 1 0 0 0 0 0 0 1 1 

0 0 1 0 0 0 0 0 0 0 1 0 0 

0 0 1 0 1 0 0 0 0 0 1 0 1 
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0 0 1 1 1 0 0 0 0 0 1 1 1 

0 1 0 0 0 0 0 0 0 1 0 0 0 
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0 1 0 1 0 0 0 0 1 0 0 0 0 

0 1 0 1 1 0 0 0 1 0 0 0 1 

0 1 1 0 0 0 0 0 1 0 0 1 0 

0 1 1 0 1 0 0 0 1 0 0 1 1 

0 1 1 1 0 0 0 0 1 0 1 0 0 

0 1 1 1 1 0 0 0 1 0 1 0 1 

1 0 0 0 0 0 0 0 1 0 1 1 0 

1 0 0 0 1 0 0 0 1 0 1 1 1 

1 0 0 1 0 0 0 0 1 1 0 0 0 

1 0 0 1 1 0 0 0 1 1 0 0 1 
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FIGURES.24 

FIGURES.2S 

Des'of Combinational Circuits 

corresponding to the inputs 10-15 may be considered as don't-cares. The 
equations for the BCD digits are found to be 

D4 = B3Bl + B3B2 + B4 

D3 = B.lJl + Bsl12Bl 

D2 = B2BI + B4Bl + B3B2 

DI = B~3Bl + B3B2Bj + B~l 

The implementation of the conversion module, as shown in Figure 5.24, is 
now reasonably straightforward using the preceding equations. 

I I I 
The equations found for D4, D3, D2, and Dl are the equations that 

would be implemented in a commercial binary-to-BCD Ie. Another solu­
tion using an adder would involve designing a circuit that outputs a 1 
whenever B.lJ3B2Bl > 0100. The circuit output is tied to the least signifi­
cant two addend inputs of a foUr-bit adder while B4, B3, B2, and Bl are tied 
to the corresonding augend inputs. The sum outputs of the four-bit adder 
unit, as shown in Figure 5.25, would yield the desired BCD output. 

4-bit adder 

Before the module designed in Example 5.7 is used for conver­
sions of more than five bits, a thorough understanding of the inter­
relationship between a binary number and its BCD equivalent 

http:FIGURES.2S
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FIGURE 5.26 Shifted BCD 
Digits. 

5.5 Code Converters 

number is necessary. The decimal value of an n-bit binary number 
was given by Equation [1.4] as 

(Nl)\O = ((... (((an-l)2 + an-2)2 + an-3)2 + ... + a2)2 
+ at)2 + ao 

where each of the coefficients, aj, is either °or 1. This nested multi­
plication by two can be carried out by shifting the binary number 
(0.an-tan-zan-3 ... a3a2atao) to the left n times. As these bits are 
shifted left, each group of four consecutive bits, beginning with the 
binary point, represents a decade. Within each decade each left-shift 
represents a multiplication by two. However, if a bit passes from the 
MSB of one decade to the LSB of the next higher decade, its value 
increases from 8 to 10 only (instead of 16). Figure 5.26 shows the 

, nine possible BCD digits, their values after being shifted left without 
correction, and their values after being corrected and then shifted. 

Note that for values less than or equal to 0100, the shifted value 
gives the correct BCD digit. If the BCD digit is greater than 01 00, 
the shifted number can be corrected by adding a binary 0110 to the 
shifted bits. An equivalent correction can also be made by adding 
0011 to the BCD digit prior to the shifting. The device already 
designed in Example 5.7 adds 0011 to the four-bit input if the four 
bits represent a value greater than binary four. 

BCD Digits Shifted BCD Digits Corrected and 
BCD Digits Left One Bit Then Shifted Left One Bit 

0000 00000 00000 
0001 00010 00010 
0010 00100 00100 

0011 00110 00110 
0100 01000 01000 
0101 01010 10000 

0110 01100 10010 

0111 01110 10100 

1000 10000 1 0110 

1001 10010 11000 

In order to provide an understanding of the use of multiple 
binary-to-BCD converters in converting binary digits of more than 
five bits, an example involving seven bits will be solved with expla­
nations of each step. The steps will lead us to an algorithm that can 
be used for the conversion of any n-bit number. The converter mod­
ule we designed is used to correct a BCD digit prior to the necessary 
shifting mechanism. The process of shifting bits is achieved by 
means of hard-wiring between separate stages of converter modules. 
A separate stage of converter module would be necessary for each of 
the shift operations. 
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EXAMPLE 5.8 

Convert 12710 = 11111112 to BCD. 

SOLUTION 

Step 1. Correct-Shift: Note that for the first two left-shifts of 0.1111111 2 no 
converter module would be necessary. The third shift, however, results in an 
integer larger than four. Therefore, the integer needs to be corrected before fur­
ther shifting of bits: 

0111.1111 X 24 uncorrected 

1010 . 1111 X 24 corrected BCD prior to shift 

1 0101 . 111 X 23 hybrid number after shift 

Mer completing Step 1we have a hybrid number; the integer portion is in 
BCD while the fractional portion is in binary. The value of this hybird 
number is 

23[15 + (7/8)] X = 12710 

Step 2. Correct-Shift: The four bits on the immediate left of the binary point 
could be larger than 0100, and in the present case they are. A new correct-shift 
operation is required, therefore: 

231 0101 . 111 X from previous operation 

231 1000 . 111 X corrected BCD prior to shift 

11 0001 . 11 X 22 hybrid number after shift 

Also, 

[31 + (3/4)] X 22 = 12710 

Keep in mind that the shift operation just performed brought in a.bit from 
the right of the binary point to be included in the BCD portion. This move 
is valid since our four-bit input binary-to-BCD converter actually converts 
five bits, the four connected and the one immediately to the right of those 
connected. 

Prior to shifting, we again add 0011 to those BCD digits that could be 
greater than 0100. The left-most BCD digit can at most be 0011, so no cor­
rection prior to shifting is necessary. 

Step 3. Correct-Shift: 

11 0001 . 11 X 22 from previous stet> 

11 0001 . 11 X 22 corrected BCD prior to shift 

110 0011 . 1 X 21 hybrid nuinber after shift 

The hybrid number giveS [63 + 112] X 21 = 12710­

Step 4. The next correction prior to shifting requires two devices since there 
are sufficient bits in both BCD, digits to have values greater than 0100. Again, 
the left-most binary-to-BCD has one input coruiected to 0 to allow for the pOs­
sibility of a four-bit output with only three bits in: 
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FIGURE 5.27 


01100011 . 1 X 21 from previous step 

1001 0011 . 1 X 21 corrected BCD prior to shift 

10010 0111 .0 hybrid nwnber after shift 

The process is now complete. 
You would discover after reviewing the preceding steps that the bit posi­

tions can remain constant provided the converter modules are moved right 
to effect a left-shift. The process gives the circuit of Figure 5.27. 

m 

Binary-to-BCD 

Binary-la-BCD 

0 4 03 O2 0, 

I I 
Binary-to-BCD 

Binary-to-BCD Binary-to-BCD 

Consider the pattern in the circuit of Figure 5.27. The conversion 
of an n-bit binary number to BCD can be performed using the con-· 
verter designed in Example 5.7 as follows: 

1. 	Add a 0 to the left of the MSB position of the binary 
number. Connect to the inputs ofa four-bit converter mod­
ule a 0 and the three MSBs of the binary number. 
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2. 	 Take the three least significant processed bits and the most 
significant unprocessed bit as inputs to a converter module. 
The most significant processed bit (MSPB), which is the MSB 
of the left-most converter module, is considered in the next 
step. 

3. 	 If there are three MSPBs, connect a 0 to the MSB position 
of a converter module and the three MSPBs to the remain­
ing three inputs; otherwise carry the MSPBs from above 
operations to the next leveL 

4. 	 Once a converter module is added to a level, the number of 
converter modules remains the same until three MSPBs 
accumulate, at which time another is added. 

5. 	This process is continued until the LSB is the only unpro­
cessed bit. 

EXAMPLES.9 

Use several of the modules designed 
in Example 5.7 for converting the 
binary number 110101101002 to its 
BCD equivalent. 

SOLU110N 

The logic circuit necessary for obtaining the conversion of this II-bit 
binary number follows directly from the previous discussion of the n-bit 
binary-to-BCD conversion algorithm. The resulting circuit configuration is 
shown in Figure 5.28. After every three levels, the number of modules per 
level increases by one. The output of the network is 1716BCD as expected. 

EXAMPLE S.10 

Design a four-bit module suitable 
for the BCD-to-binary conversion of 
five bits. 

SOLUTION 

Since the LSBs of the binary and BCD numbers are equal, the design will 
consider the four MSBs of the five-bit BCD value. The design involves 
undoing the conversion of binary-to-BCD numbers considered in the pre­
ceding few examples. Intuitively we might assert that this will involve shift­
ing right and then correcting the resultant values by subtracting 0011. 
Accordingly, the combinational module that could be used for this algo­
rithm has the following characteristics: 

otherwise 

j 

1 
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FIGURE 5.29 
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I
8 4 8 3 8 2 81 

The truth table for such a module is obtained as shown in Figure 5.29. 
The don't-ca.res in the binary table occur for six different input values that 

will never appear as uncorrected BCD digits. For example, a 0101 will never 
occur since that would imply the presence of an unlikely BCD number, either 
1010 or 1011, prior to the shift-right operation. Examination of the truth table 
indicates that BCD digits equal to or less than 0100 require no modification. 
However, for BCD digits 8 through 12 a value of 3 must be subtracted for 
correction. G:mstructing and minimizing the corresponding K-maps for B4, B3, 

B2, and B1gives the following Boolean equations: 

0 0 

0 0 
0 0 
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- -
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The circuit for the BCD-to-binary module may now be obtained as shown 
in Figure 5.30. 
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EXAMPLE 5.11 

Use the module designed in 
Example 5.10 to periorm the 
conversion of12710 and 
consequently develop an algorithm 
for use inann-bit BCD-to-binary 
conversion. Note that 

12710 = 000100100111 BCD 

SOLUTION 

As mentioned previously, this process should be the reverse of the binary­
to-BCD conversion scheme developed earlier. 

Step 1. Shift the BCD quantity to the right by one bit, which will replace 
one bit to the right of the decimal. We are considering a hybrid number again. 
The digits to the right of the radix point will be binary and those to the left 
BCD. The process of shifting results in uncorrected BCD values. The BCD-to­
binary converter is used to correct these uncorrected results: 

1001 0011 . 1 X 21 uncorrected BCD 

01100011 . 1 X 21 corrected BCD 

The hybrid number is [63 + (112)] X 2 = 12710­

Step 2. Note that the left-most 0011 needs no correction: 

0011 0001 . 11 X 22 uncorrected BCD 

0011 0001 . 11 X 22 corrected BCD 

The hybrid number still gives [31 + (3/4)] X 4 = 12710, 

Step 3. Correct-Shift: 

0001 1000. 111 X 23 uncorrected BCD 

0001 0101 . 111 X 23 corrected BCD 

And, [15 + (718)] X 23 = 12710, 

Step 4. At this point we have five bits of BCD left to convert to binary: 

1010. 1111 X 24 uncorrected BCD 

0111 . 1111 X 24 corrected BCD 

And, [7 + (15/16)] X 24 = 12710, 

The resultant value 11111112 is indeed equal to 000100100111BCJ)' The 
resulting circuit using the converter is obtained as shown in Figure 5.31. 

An algorithm now may be developed for extending the process just 
examined to the conversion of n-bit BCD numbers: 

Step 1. Starting at the right end, skip the LSB and connect four-input, 
BCD-to-binary converter modules to all remaining bits. If two or less bits 
would be connected to the left-most converter, leave it off and extend the bits to 
the next leveL If all bits at a level are connected to a converter module, the 
MSB of the output will be zero and should not be carried to the next level. 

Step 2. Skip the least significant processed bit at each level and reassign bits 
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as directed in Step L Continue until the MSB (processed or unprocessed) from 
an upper level is included as the most significant input to a converter. Remem­
ber not to bring down bits that would be zeros from upper MSB positions (see 
Figure 5.31). 

FIGURE 5.31 0 0 0 0 

!I I I I I 
I 

I I 
04 03 O2 0 1 04 03 O2 0 1 

BCD-to-Binary' BCD-to-Binary 

8 4 83 

o 

82 8 1 8 4 83 82 

BCD-to-Binary 

8 4 8 3 82 8 1 

BCD-to-Binary 

BCD-to-Binary 

8 1 

5.6 BCD Arithmetic 
Circuits 

Even though most computers use regular binary numbers for their 
arithmetic operations, some special-purpose computers and calcula­
tors operate in the decimal number system using BCD. BCD-based 
systems require morem~mory to store information because of less 
efficient coding and complex arithmetic circuitry. However, the 
final results in these systems do not have to be decoded prior to dis­
play as decimal digits. BCD arithmetic is usually complicated by 
the fact that some of the sums or differences are invalid. When two 
BCD numbers are added on a binary adder, it is possible to obtain 
16 different sUms, of which six are undefined. In addition, when 
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FIGURE.5.32 Table for the 
Uncorrected and Corrected BCD 
Sums. 

there is a carry-out, four additional conditions turn out to he unde­
fined as well. Figure 5.32 shows the to-he-corrected and the corre­
sponding corrected BCD sums and carry. The largest uncorrected 
sum could be 10011, corresponding to the sum of two BCD nines 
and a carry-in of one. Note that the sums that are greater thaI'). 1001 
are all undefined and are in need of correction. 

Uncorrected Corrected 

C3 S; S2 S; S~ C3 S3 S2 S1 So 

0 0 0 0 0 
... . . . 

0 1 0 0 1 

0 0 0 0 

~1. .. . . . 
0 1 0 0 

0 1 0 1 0 1 0 0 0 0 
0 1 0 1 1 1 0 0 0 1 
0 1 1 0 0 1 0 0 1 0 
0 1 1 0 1 1 0 0 1 1 

0 1 1 1 0 1 0 1 0 0 
0 1 1 1 1 1 0 1 0 1 

1 0 0 0 0 1 0 1 1 0 
1 0 0 0 1 1 0 1 1 1 
1 0 0 1 0 1 1 0 0 0 
1 0 0 1 1 1 1 0 0 1 

No correction needed 

A BCD adder could be designed using the design techniques we 
have already studied. Such an adder circuit would have a. total of 
nine inputs and five outputs. Of the nine inputs, four inputs would 
be for the augend, another four for the addend, and the ninth input 
would he the carry-in. Of the five outputs, one would he for the 
carry-out and the remaining four would he for the sums. Therefore, 
the truth table would consist of 29 = 512 different input combina­
tions, many of which would lead to don't-care conditions. The two 
obvious design choices for such a circuit would he 

L Make use of a ROM or PAL or PLA. 

2. 	 Minimize the function using the Q-M technique and then 
generate the circuit using combinational gates. 

In either case, the d(,!Sign would he too involved to pursue further. 
The easiest route to a BCD adder design is to base its operation 

on a four-bit FA module. If the sum of the corresponding nine 
inputs exceeds nine, a carry is generated and the sum is corrected 
by means of a correction circuit. It should be noted from Figure 
5.32 that the corrected sum is obtainable from the uncorrected sum 
simply by adding a (0110)2 to it. Furthermore, it can he seen that 
C3 becomes 1 only when correction becomes necessary. The condi­

http:FIGURE.5.32
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tion for the generation of a carry-out can be found, therefore, from 
-the minimization of the K-map for C'j shown in Figure 5.33. The 
Boolean expression for the corrected carry-out becomes 

[523] 

FIGURE 5.33 K.Map for the 
Corrected Carry Bit. 

S3 C3 

r-­-
-11 0 -0 -0 

- --1 10 00 

- -1 1 1 -0 0 

- -1 -1100 
'-­

._.--.,----' 

S2 

An analysis of our previous discussion would reveal that the 
single-decade BCD adder would involve the following subunits: 

a four-bit FA for addition, 

a carry decoder circuit, 

a second four-bit FA circuit for correction. 

An adder made in this way is shown in Figure 5.34. The sum bits of 
the first adder unit are introduced at the augend inputs of the sec­
ondadder unit. When the corrected carry-out, C3, is a 0, theuncor­
rected sum remains unchanged. When it is aI, the uncorrected sum 
is added to 0110 to give the corrected sum at the output of the sec­
ond four-bit FA. 

At this time the designer may be concerned with the amount of 
worst-case propagation delays; The propagation delays basically 
arise .from the two FA subunits used in this circuit. A close examina­
tion of the circuit, however, reveals that the correction does not 
need all four of the single-bit F As. So never needs any correction. An 
improved version of the BCD adder may be obtained by having 
only two HAs and on~ FA in the correction unit. This improved cir­
cuit is shown in Figure 5.35. Another approach for designing BCD 
adders would be first to convert the BCD numbers into binary, add 
the resulting binary numbers, and then transform the binary sum 
into the correct BCD sum. This design requires both postcorrection 
and preconversion circuitries and, therefore, is more expensive than 
the one already designed. 
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FIGURE 5.34 BCD Adder 
Circuit. 

S3 
s~ 

4-bit FA 

Sum 
So 
s; 

Addend 

4-bitFA 

Next consider the design of a BCD subtracter. Subtraction is 
more complex than BCD addition, since the possibility of having a 
negative difference exists. Recall from earlier observations made in 
Sections 1.4, 1.5, and 5.3 that there are at least two ways to handle 
negative BCD numbers: either by 1O's complement or by 9's com­
plement. The technique using 10's complement would result in a 
circuit similar to that of Figure 5.12. The scheme using 9's comple­
ment, however, would require an end-round-carry into the system. 
The BCD subtracter using 9'8 complement co1J.ld be designed using 
a BCD adder and a 9'8 complementer circuit. In order to obtain the 
9's complementer circuit, consider the truth table in Figure 5.36. 

Using the table ofFigure 5.36, we would obtain 

03 = r;.r;.~ = II + 12 + 13 

O2 = II E9 12 

01 = II 
00 = To 
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FIGURE 5.35 Improved BCD 
Adder Circuit. 

FIGURE 5.36 Truth Table for 
the BCD 9's Complement. 

Carry-out S3 

Addend 

4-bit FA 

Sum 
So 

S; 

Sl So 

BCD Input 9's Complement 

13 12 11 10 03 O2 0 1 00 

0 0 0 0 1 0 0 1 

0 0 0 1 1 0 0 0 
0 0 1 0 0 1 1 1 

0 0 1 1 0 1 1 0 
0 1 0 0 0 1 0 1 

0 1 0 1 0 1 0 0 

0 1 1 0 0 0 1 1 

0 1 1 1 0 0 1 0 

1 0 0 0 0 0 0 1 
1 0 0 1 0 0 0 0 

A BCD 9's complementer circuit using the preceding equations is 
shown in Figure 5.37[a]. Figure 5.37[b] shows how a four-bit adder 
may be used to achieve the same goal. The latter circuit performs 
the l's complement of the BCD digits and then adds to it the 2's 
complement of six (1010). 

FIGURE 5.37 9's Complementer: 
[a1 Using Simple Gates and [b1 
Using a Four-Bit FA 

4-bit FA11-~-.--;D- 0, 

'-------- 0 1 

10 -----1[:>----0 0 '-----v-----' 
9's complement 

[a] [b] 
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FIGURE 5.38 A Single-Decade 
BCD Adder/Subtracter Unit. 
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5.6 BCD Aritlunetic Circuits 

Once the 9's complementer is designed, the rest of the steps are 
obvious. If X-OR gates are used in place of the inverters of Figure 
5.37[b], a combined BCD adder/subtracter unit may result. The 
BCD adder/subtracter unit so designed is shown in Figure 5.38. 
Each decade unit consists of three four-bit F As. The first one works 

Augend/Minuend Addend/Subtrahend 
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as the 9's complementer unit, the second as the adder unit, and the 
third works as part of the correction circuit. When the SUBI ADD 
input is a 0, the unit performs simple addition as the complementer 
unit leaves the addend unchanged. When SUBI ADD is a 1, the 
subtrahend is complemented and is then added to the minuend. 
Consequently, the sum appears at the final output when the SUBI 
ADD input is a 0 and the difference is obtained otherwise. When 
several such units are cascaded to make a multi-decade BCD 
adderlsubtracter, the carry-out from the most significant decade 
unit is fed into the carry-in of the least significant decade unit. This 
arrangement guarantees the inclusion of an end-around-carry to 
satisfy the need of the 10's complement system. 

EXAMPLE 5.12 

Use the XS3 code for designing a 
BCD adder/subtracter unit. 

FIGURE 5.39 

9's Complement 
Decimal XS3 ofXS3 

0 0011 1100 
1 0100 1011 
2 0101 1010 
3 ! 0110 1001 
4 0111 1000 
5 1000 0111 
6 1001 0110 
7 1010 0101 
8 1011 0100 

9 1100 0011 

SOLUTION 

As you can see from the truth table in Figure 5.39, the 9's complement of 
an XS3 number may be obtained simply by taking its 1's complement. 
Consequently, it is easier to obtain the 9's complement of an XS3 than that 
of its BCD equivalent. 

It would be worthwhile to review Example 1.17 at this time. Notice that 
correction would be necessary for obtaining the true XS3 sum. Corre­
sponding to the expected decimal numbers 3 and 7, the sum yielded 1001 
and 1101, respectively, and no carry-out. However, 1000 and 0000 were 
respectively obtained along with a carry-out in place of decimal numbers 8 
and O. It can now be concluded that there are two simple rules that must 
be followed while adding numbers in the XS3 code: 

a. 	If a carry is produced, 0011 is added. 

b. 	 If a carry is not produced, 0011 is subtracted. This subtraction is 
usually done by adding the 2's complement of 0011 (1101) and 
ignoring any carry if so produced. 

These rules should be better understood by examining the following cases. 

Case I. 4710 011110102 

+ 3410 + 01100111 2 

81 to 111000012 

+ 1101 00112 correction 

1 1011 0100 
(8 1)10 

XS3 

011110102Case II. 
+ 100110002 9's complement 

1000100102 

l "12 

00110011 2 correction 

0100 0110 

(1 3ho 
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Case III. 3410 0110 0111 2 

- 4710 + 10000101 2 9'8 complement 

- 1310 1110 11002 

1101 1101 2 correction 

1011 1001 2 

-+ 0100 01102 = - (13)10 

A positive result is indicated when adding the 9's complement results in a 
carry-out of the MSB. This carry-out is used as the end-around-carry. Fig­
ure 5.40 shows a BCD adder/subtracter circuit that has incorporated the 
rules of XS3 addition and subtraction. 

BCD 
Augend/Minuend 

BCD 
Addend/Subtrahend 

XS3 
converter 

XS3 
converter 

To 

next +----+-+--+--+--------------+-t--.--t--1f----t--t---.-- SUB/ADD
higher 

decade 


Carry to 

next higher Carry-in fromdecade 
next lower 
decade 

--.---fCo 

Augend Addend 

4-bitFA 
Sum 

Augend Addend 
4-bit FA 

~_r~~--!-._-+_~--_r~f__------INVERT 

~----------~v~-----------

Sum/Difference 
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5.7 Arithmetic Logic 
Unit (ALU) 

When the SUB/ADD input is a 0, the addend arrives at the first adder 
along with the augend. Otherwise, the complement of the subtrahend is 
added to the minuend. The output of the first adder is added to either 0011 
or 1101, depending on whether or not a carry is generated. The INVERT 
input is activated when there is no end-around-carry, and in that event the 
output is complemented to yield the final result. 

The examples presented in previous sections have shown some of 
the multi-bit arithmetic functions that are used in digital systems. 
Many times it may as well be necessary to perform bit-by-bit logic 
operations between two multi-bit operands. A multi-function circuit 
that can operate on groups of bits, therefore, proves to be extremely 
advantageous in many complex digital systems. Combinational 
design techniques generally are used to design such multi-fonction cir­
cuits, otherwise known as arithmetic logic units (ALUs). The various 
operations are usually selected by means of several control or select 
lines. 

The various logic operations are realized by routing the inputs to 
circuits that perform various logic functions and using a MUX to 
select anyone of the possible logic operations. There are commer­
cially available ALUs that operate on two four-bit values with 32 
arithmetic and 16 logic operations selectable by the combination of 
four control inputs, a mode selector, and a carry-in. In this section 
the design of a relatively less complex ALU will be considered to 
demonstrate the process and some typical functions. 

Consider an ALU with two four-bit inputs, A3A2AIAo and 
B3B2BIBo. Let us fIrst consider bit-by-bit logic operations of several 
types. Between any two inputs, X and Y, there could be a total of 16 
different types oflogic outputs: 0, 1,.X, Y, X, Y, X + 1', X + 1', X 
+ Y, Xl', Xl', xY, X + Y, XY, X EB Y, and X EB Y. All of these 
outputs are achievable by means of logic gates. 

Figure 5.41[a] shows a logic circuit consisting of a l-of-8 MUX 
and only eight logic gates. This circuit is able to perform up to eight 
different logic operations between its inputs, Ai and B,. A specillc 
operation is selected by means of the three control inputs: S2, Sh 
and So. The enable input, S3, is set to a °to enable the MUX in all 
of these eight cases. The truth table in Figure 5.41 [b] lists the possi­
ble logic operations and the corresponding control conditions. For 
example, when control input is O1QO, the D4 input of the l-of-8 
MUX is activated, and consequently AtBi becomes available at the 
MUX output. This l-of-8 MUX could have been replaced with a 
l-of-16 MUX for realizing 16 different logic operations. In that 
case, however, an additional control input would be necessary. 

The arithmetic section may be designed around a four-bit ripple 
or CLA adder circuit. If the carry-in is utilized, it is possible to 
obtain a larger number of arithmetic operations for the. same 
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FIGURE 5.41 Logic Section of 
an ALU: [a] Circuit and [b] 
Function Table. 

S3 

Enable
A; 0 0 

B; 0 1 

O2 

0 3 

1-of-8 T 
MUX 

f F;0 4 

! 

[a] [b] 

number of control inputs. For every control condition the arithmetic 
output when Cj = 1 is always one greater than the corresponding 
output when q = O. Figure 5,42[a] shows an arithmetic circuit cor­
responding to a single-bit input. It may be used to obtain a total of 
16 different arithmetic operations. This circuit consists of a 1-of-8 
MUX, a full adder, -and five logic gates. In order to differentiate 

,;1~ between the arithmetic and the logic operations, 3'; is used to select 
~~., 

Ii 
I arithmetic operations. The output of the MUX unit is fed into one 

of the adder inputs while another of the FA inputs is tied to Ai 
ilf~ directly. 

Figure 5.42[b] lists all of the arithmetic operations and the corre­
sponding control inputs needed for operating this arithmetic unit. 

~~:~ 
-2":
-,.;."< The MUX output carries into the adder either a function of both Aj 

<:········· 
" 

~~ 

~\ .
1

Control Inputs Output 

S3 S2 S1 So Fi 

0 0 0 0 Ai 
0 0 0 1 Bi 
0 0 1 0 A;Bi 
0 0 1 1 Ai+ B; 
0 1 0 0 A;B; 
0 1 0 1 A;+Bi 
0 1 1 0 Aj(t)B j 

0 1 1 1 AEBB; 
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FIGURE 5.42 Arithmetic Unit of 
an ALU: [a] Circuit and [b] 
Function Table. 
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DO 

~C> 0 1 

0 O2 

1 .0 
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~ 

04 

L 
0 5 

~ -

1 06 
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E 

1-of-8 fp-
MUX 
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12 11 10 

~ 
Xi Yi 

From
FA! Cj +-­FAi - 1IS2 ISl Iso 

-
Co Sf 

(8] I ~ To FAi + 1 

Control Fi 

S3 S2 Sl So Cj=O Cj = 1 

1 0 0 0 Ai+Bi A;+ Bj + 1 

1 0 0 1 . A;+ H; A+ 8j+ 1 
1 0 1 0 A Aj+ 1 
1 0 1 1 A; ­ 1 A 
1 1 0 0 Aj+AiBi A+ABi+ 1 
1 1 0 1 A+AilJ" .f I A+AiBi+ 1 
1 1 1 0 Ai + (Ai + Bj) Ai + (A + Bj ) + 1 

1 1 1 1 Ai + (Ai + 8d A + (Ai + B;) + 1 

[b] 
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and Bi, or a 0, or a 1. For example, when the control input is 1100, 
the D4 input of the MUX is activated, which introduces Aj, Aft;, 
and the carry-in as inputs to the FA. Thus the sum becomes Ai plus 
Afti in the absence of a carry-in, and Ai plus AiBi plus 1 otherwise. 
Consequently, four l-of-8 MUXs, twenty (5 X 4) discrete gates, 
and a four-bit FA may be connected to fonn an aritlunetic unit for 
processing two four-bit binary inputs. Note when the control input 
is 1011 and q = 0, the four bits of A are added to a string of four 
Is. This operation is equivalent to adding A to the 2's complement 
of 0001. 

Both of these units, aritlunetic and logic, may now be combined 
together to make an ALU, as shown by the block diagram in Figure 
5.43. The two basic units could be internally ORed together to pro­
duce the ALU output. The ALU processes four bits of A and four 
bits of B simultaneously. IfS'j = 0, one of the eight logic operations 
would be realized, and when S'j = 1, one of the 16 arithmetic oper­
ations would be available. Consequently the ALU consists of four 
single-bit arithmetic units and four single-bit logic units, and it 
could perfonn a total of 24 different operations. If the word size 
exceeds four bits, several four-bit ALUs may be cascaded by tying 
the carry-out of one ALU to the carry-in of the next ALU. 

FIGURE 5.43 Block Diagram of 
a Four-Bit ALU. 4/ 

AI 

4/4/ F IB/ 

ALU 
4/ 1/$3-S0I Co I 

1/ 
I r Ci 

-

5.8 Decoders and 
Encoders 

Very often in digital systems it is necessary to convert one code to 
another. The process that detennines what character, dIgit, or 
number a code represents is called decoding. A decoder is an integral 
part of this process. It is a specially organized combinational circuit 
that -translates a code to a more useful or meaningful fonn. In this 
section we shall look at just a few of the many decoding functions. 

One of the frequently used decoders is a BCD-to-seven-segment 
decoder. This particular type of decoder accepts as inputs BCD and 
provides outputs to drive a seven-segment LED display device, as 
shown in Figure 5.44, in order to decode bits into readable digits. 
The decimal inputs to a circuit are first changed to equivalent 
binary fonn by means of BCD-to-binary converter modules for the 
desired binary operation. The resultant binary output is finally 
reconverted back to equivalent BCD output and is usually dis­
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FIGURE 5.44 Seven-Segment 
Display Device. 

FIGURE 5.45 Truth Table for 
Seven-Segment Decoding 
Function. 

played by means of seven-segment display devices. These devices 
are used often in calculators. 

The display device consists of seven light-emitting segments that 
represent each of the ten decimal numbers when activated in suit­
able combination. As an example, segments a,j, g, c, and d have to 
be illuminated to represent a 5. There are two choices for represent­
ing a 1: eitherf and e or band c. The normal decimal code for these 
indicators is shown in Figure 5.45. A Boolean expression corre­
sponding to each segment of the display may now be found. The 
Boolean equations for the illumination of display segments may be 
obtained as follows: 

a(D,C,B,A) 

b(D,C,B,A) 

c(D,C,B,A) 

d(D, C,B,A) 

e(D,B,C,A) 

f(D,C,B,A) 

g(D,C,B,A) 

= (D + C + B + /1) + (D + 'C + B + A) 

+ (D + r: + B + A) 

= (D + C + B + /1) + (D + r: + B + A) 

+ (D + r: + B + A) 

= (D + C + B + A) + (D + C + B + A) 

= (D + C + B + A) + (D + r: + B + A) 

+ (D + r: + B + A) + 7J5 + C + B + 11) 

= (D + C + B + 11) + (D + 'C + B + A) 

+ (D + r: + B + A) + (D + C+ 71 + A) 

+ (D + C + B + A) 

= (D + C + B + A) + (D + C + B + A) 

+ (D + C + B+ A) 

= (D + C + B + A) + (D + C + B + A) 

+ (D + r: + B + 11) 

Segments 

Number a b c d e f 9 

o DCBA 1 1 1 1 1 1 0 
1 DCBA 0 1 1 0 0 O. 0 

2 DCBA 1 1 01 1 0 1 
3 DCBA 1 1 1 1 0 0 1 
4 DCBA 0 1 1 0 0 1 1 ,5 DCBA 1 0 1 1 0 1 
6 OCBA 0 0 1 1 1 1 1 
7 [5CBA 1 , 1 0 0 0 0 
8 DCBA 1 1 1 1 , 1 1 

9 DCBA 1 1 1 0 0 1 1 
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These Boolean expressions for the segments lead to the implementa­
tion of the desired decoder circuit as shown in Figure 5.46. The 
NOR circuit requires 16 gates and a total of 59 gate inputs while 
the NAND circuit requires 17 gates and a total of 87 gate inputs. 

FIGURE 5.4{) BCD-to-Seven­
SegmentDecoder Circuit: [a] 
Using NOR Gates and [b] Using 
NAND Gates. 
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FIGURE 5.47 2-4 Line Decoder: 
[a] Block Diagram and [b] Circuit. 

( 

E 
DO 

A 'I 2-4 DIP 
line 

B 10 decoder D2 

D3 P 

[a] 

We shall consider next a slightly different decoder scheme that 
accepts n bits of binary information and converts them to up to 2n 

unique outputs. For example, two bits of binary information would 
result in four unique output values. One such decoder scheme is 
shown by the circuit of Figure 5.47. This decoder is commonly 
known as a 2-4 line decoder. If the enable input E is 0, the decoder 
is enabled, and when E is 1 the decoder is disabled. When E is 0, all 
outputs are 1 except for the line corresponding to the decimal value 
of the input bits. For example, when AB = 00, only Do is 0. Such a 
scheme would allow us to activate four different circuits by means of 
the four decoder outputs. In that case the operations of these four 
peripheral circuits could be controlled by means of two select 
inputs, A and B. 

Do 

~~o! 

10 

O2 

E 

D3 

[b] 

With proper connections a demultiplexer circuit can be made 
from a decoder. A demultiplexer (DMUX) receives data on a single 
entry line and outputs this data on one of its many output lines. Fig­
ure 5.48 shows a 1-4 line DMUX circuit where the decoder inputs 
are treated as the DMUX selects. The enable input E is connected 
to the input data, which appear at the output specified by the val­
ues of A and B. 

There are times when several decoder/DMUX circuits may be 
cascaded together to form a larger decoder/DMUX. Figure 5.49 
shows how two 2-4 line decoders are combined by means of their 
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FIGURE 5.48 1-4 Line 
Demultiplexer: [a] Block Diagram 
and [b] Circuit. 

Do 

1-4 0 1 

E line 
DMUX O 
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0 3 

A B 

[a] 
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E 

I, 

10 

Do 

0 1 

O2 

0 3 

[b] 

enable inputs. When C = 1, only the top decoder is enabled and 
the lower one is disabled. When C = 0, the top decoder is disabled 
and the bottom decoder is enabled. The combined circuit functions 
as a 3-8 line decoder. 

The decoders that have been discussed thus far are often con­
structed using transistors in AND formation. The number of transistors 
used in each of the gates is approximately equal to the number of 
inputs to each gate, and the number of gates present is on the order of 
the number of decoder outputs. Therefore, the number of transistors 
required in a decoder circuit increases as 2n with increasing inputs. 
O:msequendy designers would like to see a decoder scheme whose sum 
of gates and gate inputs is reasonably small. Figure 5.50 shows a par­
ticular configuration for a 4-16 line decoder that uses a reduced 
number of transistors. Such a configuration is commonly known as the 
tree-type decoding network. An examination would show that 64 tran­
sistors are needed to fabricate such a circuit. OJmparatively, a regular 
4-16 line decoder designed similarly to that shown in Figure 5.47 
would require a total of 72 transistors. 

The decoder network also may use an innovative scheme called 
the balanced decodingScheme, illustrated in Figure 5.51. It requires 
only 56 transistors. The significance of this improvement becomes 
more important as larger decoders are considered. The regular 
decoder network of Figure 5.47 is still the fastest because it involves 
only two stages of NAND gates. The inclusion of an enable input 
in a 4-16 line decoder, however, would involve an additional 18 
transistors. 
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FIGURE 5.49 3-8 Line Decoder 
Using Two 2-4 Line Decoder 
Units. 
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An encoder is· a combinational circuit that accepts a digit on its 
inputs and converts it to a coded output. In fact, an encoder 
reverses the function of a decoder. As an example, let us consider 
the design ofa decimal-to-BCD encoder. The device has a total of 
10 inputs-one for each decimal digit-and four outputs to represent 
the corresponding BCD numbers. These decimal inputs could possi­
bly be the keys on a hand-held calculator. 

The truth table for the encoder is listed in Figure 5.52[a] from 
which the following expreSsions may readily be obtained: 

A=I+3+5'+7+9 


B=2+3+6+7 


C=4+5+6+7 


D=8+9 


The resulting circuit is very straightforward, as shown in Figure 
5.52[b]. 
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FIGURE 5.50 4·16 Line Tree­
Type Decoder: [a] Block Diagram 
and [b] Circuit. 
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FIGURE 5.51 4w16 Line 

Balanced Decoder Circuit. 
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FIGURE 5.52 Decimal-to-BCD 
Encoder: [aJ Truth Table and [b] 
Circuit. Decimal Input 

BCD 

DCBA 

0 0000 
1 0001 
2 0010 
3 0011 
4 0100 
5 0101 
6 0110 
7 0111 
8 1000 
9 1001 

[a] 

9 --------t----4 

o 
8 ----+----1 

'--­

7----~~-~ 
6 ---H-i'--l 

5 ---_...I-H---I 

4 ---t-t-H'r-L---"" 

B3 ---'-+-1--1--1 
2 --t-f-I--If-L_--"" 

A 
1-----"-_ 

[b] 

EXAMPLE 5.13 

Consider the seven-segment display 
device of Figure 5.44. Design a 
scheme to store up to five BCD 
integers such that the left-most 
BCD zeros are not displayed. For 
example, 00932 should be displayed 
as only 932. 

FIGURE 5.53 

SOLUTION 

This design may be accomplished by modifying the already-designed 
BCD-to-LED display of Figure 5.46. Each unit accepts four BCD inputs 
and outputs seven LED outputs, as shown by the block diagram of Figure 
5.53. The circuit of Figure 5.53 requires an added feature that suppresses 
the display of leading zeros. First it must be determined if the MSB is a O. 
If it is, the next significant bit is tested, and so on. The first nonzero bit 
stops further testing. Accordingly, one may design a circuit for the ith bit if 
it is a zero or not, as shown by the block diagram of Figure 5.54. 

a 
b 

o ----l 
cBCD-to-C 

7,-segment I I d 
LED e 

B decoder 
f 

9A I I 

A high TDS input to the decoder implies that Tftis Decoder needs to he 
§.earched. A high NDS output similarly implies that the Next Decoder needs to he 
Searched as well. The NDS output of one input may be introduced to the 
~ext unit on the right as the IDS input, and so on. This feature may be 
accomplished by adding a circuit such as shown in Figure 5.55 to the 
already available circuit. 
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FIGURE 5.54 DeB A 

TDS --+I BCD-to-7· segment \---.. NOS 
decoder 

7 

I-I 
I-I 

1 1 


FIGURE 5.55 C D 
X>------ NOSA B 

TDS-----~-~ 

""-_____	To all the 10 first-stage 
NAND gates of Figure 5.46[b] 

When the BCD digit corresponds to a 0 and the TDS input is high, the 
above circuit disables the decode circuit and suppresses the display. At the 
same time the resulting NDS becomes a 1, resulting in further search for 
zeros if there are any. Ifthe BCD digit is not a 0, the .decoder.is ..not dis­
abled and further search is abandoned. The overall five-bit circuit is 

FIGURE 5.56 	 obtained as shown in Figure 5.56. 

BCD Inputs 

f4 	 f4 f4 f4 f4 
Decoder 

TDS NOS ­
DecoderDecoder DecoderDecoder 

TDS NOS r- ­TDS NOS ,....-­TDS NOSTDS NOS ­ --

17 	 17 f7 17 17 

- ,-, -, I-II-I I -,, -, 1I -
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EXAMPLE 5.14 

Design a four-input priority encoder 
such that when two inputs, Dj and 
Dj , ard:tigh simultaneously, Di has 
priority over Dj when i > j. The 
encoder produces a binary output 
code corresponding to the input 
that has the highest priority. 

FIGURE 5.57 

FIGURE 5.58 

00 01 O2 03 t1 to 

1 0 0 0 0 0 

1 0 0 0 1 
- - 1 0 1 0 
- - " - 1 1 1 

" ·"~'i:";":":" 

FIGURE 5.59 


SOLUTION 

The block diagram for such a device may be as shown in Figure 5.57. As a 
beginning step, the corresponding truth table needs to be known. The truth 
table for such a device is easily obtained as shown in Figure 5.58. The 
don't-cares are introduced under input columns whenever appropriate. 
The Boolean equations for the outputs are obtained directly as follows: 

fo = Ds + DID2 

It = D2 + Ds 

The four-input priority encoder circuit is obtained accordingly, as shown 
in Figure 5.59. The request indicator, M, shows whether or not any of the 
four inputs are active. 

Request 

00 

01 

O2 

03 

M 

to 

t1 

E 
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Enable 
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D3 
Enable 
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11 
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5.9 Error-Control 
Circuits 

Errors may occur as digital codes are transmitted from one system 
or subsystem to another. There is always a possibility, albeit small, 
that a random-noise pulse will change a zero to a one or a one to a 
zero. It is possible, however, to code the data so that the occurrence 
of an error can be detected after the data have been received. The 
simplest approach is to add an extra bit, called a parity bit, to each 
of the number codes. If the coded data including the parity bit have 
an even number of ones, the code is said to have even parity. If the 
coded word including the parity bit has an odd number of ones, the 
code is said to have odd parity. Prior to sending a code, the number of 
ones are counted and the parity bit is set to make the number of 
ones odd or even as determined by the parity scheme chosen. At the 
receiving end, a check is made to see how many ones are present in 
the coded word. If odd parity is used and an even number of ones 
are received, it implies that an error has occurred. However, the 
proposed parity bit scheme cannot detect the occurrence of an even 
number of errors. For situations where the probability of multiple 
errors is high, a more sophisticated coding scheme must be used. In 
computers or communications equipment the possibility of random 
noise causing changes in more than one bit is low. 

In order to check for or generate the proper parity bit in a given 
code, it is necessary to determine whether an odd or even number of 
ones are present. An X-OR gate functions in such a way that the 
output of an even number of ones is always a 0, and the output of 
an odd number of ones is always a 1. As an example, the circuit of 
Figure 5.60 makes use of these gates to generate an even parity bit 
for normal BCD input and to check for a possible error that may 
have been caused during transmission. The parity generator circuit 
at the source end examines the contents of the four data lines and 
. accordingly generates a parity bit so that the encoded message (five 
bits in all) has even parity. At the receiver end the parity-checking 
circuit determines if an error has occurred or not. A high output at 
the parity-checking circuit indicates the occurrence of an error dur­
ing transmission. This circuit could be made suitable for odd parity 
by simply replacing the final X-OR gates of both generator and 
checker circuits with X-NOR gates. 

Several other schemes are also available, especially for coding 
decimal digits. The most common of these are the 2-out-of-5 code 
and 2-out-of-7 code. They are listed along with parity-coded BCD 
in the table of Figure 5.61. The 2-out-of-7 code is also known as the 
biquinary code. The zeroth through the sixth bit have positional 
weights ofO, 1,2,3,4,0, and 5 respectively. In both of these m-out­
of-n codes, there are m ones and (n - m) zeros. The advantages of 
these schemes are understood by comparing the different permissi­
ble codes. Two codes are said to be at a distance p if the codes differ 
from each other in p locations. Clearly~ each code in an m-out-of-n 
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FIGURE 5.60 Even Parity 
Generator-Checker Circuit. 

Source Receiver 
Ds---*----------------------------------+---------------------------Ds 
D4 D4 
~ .;' ~ 

~ ~ 

Generator 
Checker 

FIGURE 5.61 Some Codes with 
Error Control. Decimal 

0 
1 
2 
3 
4 

5 
6 
7 
8 
9 

BCD with 

Even Parity 


00000 
00011 
00101 
00110 
01001 
01010 
01100 
01111 
10001 
10010 . 

BCD with 

Odd Parity 


00001 
00010 
00100 
00111 
01000 
01011 
01101 
01110 
10000 
10011 

2-out-of-5 

00011 
00101 
00110 
01001 
01010 
01100 
10001 
10010 
10100 
11000 

2-out-of·7 

0100Q01 
0100010 
0100100 
0101000 
0110000 
1000001 
1000010 
1000100 
1001000 
1010000 

scheme is at least distance two away from the next code. Conse­
quently, these codes can be used to detect single errors. 

To correct k errors the minimum distance between two code 
words must not be smaller than 2k + 1. A total of k errors would 
produce an error word· k distance away from the correct code word. 
To be able to correct this error, no other Ie errors should be able to 
produce this same error word. The error word, therefore, should be 
at a distance at least k + 1 from any other code word. Accordingly, 
the minimum distance between two code words should be 2k + 1. 
A minimum <iistance of two provides single-error detectability; any 
single error moves the code closer to where it was than to any other 
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FIGURE 5.62 Block Diagram of 
the Hamming Code. 

possible code. A circuit could be designed to move it back to its cor­
rect position. Of course, this minimum distance code could also be 
used instead for double-error detection. A minimum distance of four 
will provide both single-error correction plus double-error detec­
tion. A minimum distance of five would allow double-error correc­
tion. Next we will examine a code for which both error detection 
and error correction are straightforward. 

One of the most useful codes is the Hamming code. This scheme not 
only provides for the detection of an error, but also locates the bit 
position in error so that it may be readily corrected. A block dia­
gram of the implementation of this scheme is shown in Figure 5.62. 
The mbits of data are encoded with p parity bits before transmis­
sion. The received word is tested by a checking circuit to see if any 
error has occurred. The decoder then locates the exact position of 
error and, accordingly, the data are corrected by a corrector circuit. 

~ Encod~r 
rri +p m+p m 

~Channel , Corrector 

11m +p 

12f! 

Checking circuit 
P 

Decoder t-­

The Hamming code uses multiple parity bits placed at specific 
locations of the coded word. The general rules for the generation of 
parity bits are summarized as follows: 

1. 	 If m is the number of information bits, then the number of 
parity bits, p, is equal to the smallest integer value of p that 
satisfies 2P m + p + 1. 

2. 	 Parity bits are placed at the locations 1,2,4,8, 16, and so 
on, of the coded word. Information bits are placed in order 
at locations 3,5,6, 7,9, 10, and so on. 

3. Each parity bit individually takes care of only a few bits of 
the coded word. To determine the bits of the coded word 
that are checked by a parity bit, every bit position is 
expressed in binary. A parity bit would check those bit 
positions, including itself, that have a 1 in the same loca­ j 
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tion of their binary representation as in the binary repre­
sentation of the parity bit. 

Example 5.15 illustrates the coding mechanisms involved. 

EXAMPLES.IS 

Determine the Hamming-coded 
word for the,m,essage 10 10 1 \iSing 
even parity. 

SOLUTION 

The number of bits is m = 5; therefore, p = 4. This coding would result in 
a nine-bit coded word. The corresponding message bits (10101) are posi­
tioned respectively in locations 3, 5, 6, 7, and 9. These locations are speci­
fied in the table of Figure 5.63 as M I , M2, Ms, M'I> and Ms respectively. To 
determine the exact value of each parity bit, each of the position designa­
tions is expressed at first in binary. The parity bits are generated from the 
following observations: 

a. 	PI checks bit positions 1, 3, 5, 7, and 9 since all of these locations 
have a 1 in the LSB of their binary representations. The message 
bits present at four of these locations are, respectively, 1,0,0, and 
1. The parity bit at location 0001, therefore, should be a 0 to 
maintain an even parity. 

h. 	P2 checks bit positions 2, 3, 6, and 7 because they all have a 1 at 
the same location in their binary representations. Bits 3, 6, and 7 
house, respectively, a 1, 1, and O. Therefore, P2 must be a O. 

c. 	Ps checks bit positions 4, 5, 6, and 7. Bits 5, 6, and 7 house, 
respectively, 0, 1, and 0, which requires that Ps be a 1. 

d. 	P4 checks bit positions 8 and 9 and should be a 1 to maintain an 
even parity. 

Therefore, the coded word is 001101011. 

I 

I 

Bit Designation Pl P2 Ml P3 M2 M3 M4 P4 Ms 

Bit Position 1 2 3 4 5 6 7 8 9 
0001 0010 0011 0100 0101 0110 0111 1000 1001 

Message Bits 1 0 1 0 1 

Parity Bits 0 0 1 1 

As mentioned earlier, the Hamming code also provides a means 
to detect and correct a single error. The general detection algorithm 
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consists of the following steps: 

step 1. Check parity on each parity bit Pn and the bits for which it 
provides parity. 

Step 2. If the test indicates the preservation of assumed parity, a 0 
is assigned to the test result. A failed test is indicated by a 1. 

Step 3. The binary number formed by the score of parity tests 

indicates the location of the bit in error. 


Example 5.16 illustrates the detection mechanisms. 


EXAMPLE 5.16 

Detennine if any bit is in error in 
the coded word 0011 01111. The 
message was coded with even 
assumption. 

FIGURE 5.64 

SOLUTION 

The bit position table, as shown in Figure 5.64, is first prepared and then 
the coded bits are placed in their proper places. The following observations 
can be made regarding the coded word: 

PI checks bits 1,3,5, 7, and 9. Consequently the 
first test fails since there are three Is-..:; 1 (LSB) 

P2 checks bits 2, 3, 6, and 7. This test also 
fails since there are three 1 s -..:; 1 

P3 checks bits 4, 5, 6, and 7. This test also 
fails since there are three 1 s -..:; 1 

P4 checks bits 8 and 9. This is a good check 
since there are two Is -..:; 0 (MSB) 

The test score is 0111. The bit in error is the seventh bit (0111); therefore, 
the seventh bit is changed to O. Therefore, the correct coded word should 
be 001101011. This result agrees with the earlier findings of Example 5.15. 

Bit Designation P1 P2 M1 P3 M2 M3 M4 P4 Ms 

Bit Position 1 2 3 4 5 6 7 8 9 

0001 0010 0011 0100 0101 0110 0111 1000 1001 

Received 
Message 0 0 1 . 1 0 1 1 1 1 

The hardware implementations of the Hamming code scheme 
are relatively easy to achieve. Consider as an example a logic circuit 
for processing five bits of data, just as in the last two examples. The 
parity bit generator circuit is to generate four additional bits: Pi) P2, 
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FIGURE 5.65 Hamming-Coded 
Message Generator. 

5.9 Error-Control Circuits 

P3, and P4' The rules for the generation of parity bits, as stated ear­
lier, may be used to obtain 

PI = Ml EB M2 EB M4 EB Ms 


P2 = Ml EB M3 EB M4 


P3 = M2 EB M3 EB M4 


P4 = Ms 


The generator circuit may be implemented with X-OR gates. The 
resultant circuit is shown in Figure 5.65. Correspondingly, for an 
odd parity assumption the final X-OR gates of all stages need to be 
replaced with X-NOR gates and M5 inverted to generate P4• It is 
important to note that the minimum distance between two code 
words is three because one change in the data bits produces at least 
two changes in the parity bits. 

Using similar reasoning the parity-checking circuit may also be 
designed. The parity of each parity bit and its corresponding data 
bits are tested. The Boolean " equations for the nine-input parity-test­
ing circuit are readily obtained as follows: 

C1 = Y1 EB Y3 EB Y5 EB Y7 EB Y9 


C2 = Y2 EB Y3 EB Y6 EB Y7 


C3 = Y4 EB Ys EB Y6 EB Y7 


C4 = Ya EB Y9 
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where Yb Y2, ••• , Ya, and Yg correspond, respectively, to Ph P2, Mb 
Ps, M21 Ms, M4, P4, and Ms of the generator circuit. The parity­
checking circuit is again realized using X-OR gates and is shown in 
Figure 5.66[a). The value C4C3C2C1 points to the bit in error and 

FIGURE 5.66 [a1 Parity­
Checking Circuit and [b1 
Correction Circuit. 
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~---------------------------------------~ 
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Corrected 
data 
bits 

I 
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5.10 SUlDlllary 

Problems 

may be used to correct the bit. Our interest is in recovering the cor­
rected data bits. Making use of the X-OR programmable inverter 
function, the equations for the corrected bits are obtained as 
follows: 

D\ = (C4 ' C3 • G2 • G1) EB Y3 


D2 = (C4 • G3 • C2 • G1) EB Y5 


D3 = (V4 • G3 • G2 • VI) EB Y6 


D4 = (C4 • G3 • Gz • G1) EB Y7 


D5 = (G4 ' ('3 • V2 • G1) EB Yg 


For example, if the parity test results are 0111, then the fourth data 
bit (i.e., the seventh bit of the coded word) is in error. The bit in 
error is corrected by complementing Y7• All of the other bits remain 
unchanged. The corresponding error-correcting circuit is shown in 
Figure 5.66[ b]. 

In this chapter different aspects of combinational circuit design 
were presented. Primary emphasis was placed on designing smaller 
and manageable modules, several of which were then cascaded 
together to realize a robust system. In particular, the design and 
working principles of binary and nonbinary adders/ subtracters, 
code converters, decoders, encoders, and various error-correcting 
circuits were explored. Many of these devices will be used time and 
again throughout the rest of this text for developing more advanced 
concepts. 

1. 	 Design an FA circuit using logic gates suitable for adding two 
bits of addend, two bits of augend, and carry-in input. 

2. 	 Obtain a single-bit FA using only MUXs. 

3. 	 Design a single-bit FA using only NOR gates. 

4. 	 Use the F As designed in Problem 1 to perform addition of six­
bit numbers. Show the configuration of the setup for adding 
(llOllOh and (OOOOlOh. 

5. 	 Design a four-bit FA using combinational logic. 

6. 	 Design a four-bit FA using ROM technology. 

7. 	 Use bridging to implement a standard full subtracter circuit 
(three inputs and two outputs) using X-OR gates. 

8. 	 Verify Equations [5.4] and [5.6]. 

9. 	 Design a circuit for dividing a Jour-bit number by a four-bit 
number. 

10. 	 The following message needs to be transmitted using the 
Hamming code under even parity assumption. Determine the 
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parity bits and the order in which the coded message will be 
sent. The to-be-coded message is 1010111001011. Show the 
corresponding circuit. 

11. 	 Design a half subtracter circuit using (a) only NOR gates and 
(b) only MUXs. 

12. 	 The Hamming-coded message received under odd parity 
assumption is 10 10 111001011. Determine if the message has 
any error and write out the correct message bits only. Obtain 
the corresponding correction circuit. 

13. 	 Design a full subtracter using half subtracter modules. 

14. 	 Using only a four-bit binary adder, design decimal code con­
verters for the following conversions: 
a. 8-4-2-1 to XS3 
b. XS3 to BCD 
c. XS6 to XS3 
d. BCD to XS3 

15. 	 Remove the combinational F As from the drcuit of Example 
5.2 and replace these with equivalent ROMs. Show the ROM 
logic for one of these units and determine the total ROM size 
needed for the complete circuit. 

16. 	 Design a combinational circuit capable of comparing two 
eight-bit binary integers (without sign bits) X and Y. The out­
put Z should be a 1 whenever X > Y. 

17. 	 Design a controllable, dual-purpose, four-bit converter that 
converts binary to Gray and also Gray to binary. 

18. 	 Use the module of Example 5.7 for obtaining the following 
conversIOns: 
a. 	 15-bit 
b. 20-bit 
c. 25-bit 

Justify your designs using exemplary nontrivial binary inputs. 

19. 	 Use the module of Example 5.10 for obtaining the following 
conversIOns: 
a. 15-bit 
b. 20-bit 
c. 25-bit 

Justify your designs using exemplary nontrivial BCD inputs. 

20. 	 Design an adderlsubtracterusing cascaded ALUs. Show how 
it works when adding and when subtracting if A = 84 and B 
= 32. Repeat the problem using base-16 equivalents of the 
numbers. 

21. 	 Design a 12-bit FA in which carries are allowed to ripple after 
the first six bits of addition. 
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22. 	 Show how the ALU can be used to (a) subtract one from and 
(b) add one to a number. Show the setup if the number is 7610, 

23. 	 Show how a 3-8 line decoder could be used to generatej(A,B, 
C) 	= ~m(0,1,3,5). 

24. 	 Design a logic circuit that multiplies an input decimal digit 
(in BCD) by five. The output is also in BCD form. Show that 
the outputs can be obtained from the input lines without using 
any logic gates. 

25. 	 Implement the FA circuit of Problem 1 using MUXs. 

26. 	 Obtain the most minimal circuit that squares a three-bit 
binary number. 

27. 	 Design a special-purpose unit using FAs (a) for adding 12 
single-bit binary numbers and (b) for adding 17 single-bit 
binary numbers. 

28. 	 Design a four-bit CLA circuit where the propagate function is 
defined as p. = A· + B· instead of p. = A· & B· How does theI I I I 1 \I7 I' 

current design differ from the one discussed in Section 5.4? 

29. 	 Use the techniques considered in Section 5.4 to obtain a four­
bit fast subtracter. 

30. 	 Obtain the CLA carry equations when n > 13 and show that 
the maximum fan-out is dependent on variable P(n-2)/2 and is 
equal to {[(n + 1 )2/4] + 2} for odd n. Also show that for even 
n, the maximum fan-out is dependent on both p(nl2)-t and 
P{nI2) and is equal to {[n(n + 2)]/4 + 2}. 

31. 	 Design an n-bit binary comparator circuit to test if an n-bit 
number A is equal to, larger than, or smaller than a second n­
bit humber B. The problem could be broken into one unit of a 
half comparator module and n - 1 units of full comparator 
modules, as shown in Figure 5.Pl. Each of the modules gives 
out two outputs: G and Ln, such that n 

a. 	 Gn = 1 and Ln = 0 if An > Bn 

b. 	 Gn = 0 and Ln = 1 if An < Bn 

c. 	 When An = Bm then Gn = Gn- t and Ln = L n- t for a full 
comparator and Gn = Ln = 0 for a half comparator. 

1 
Fe 

A, B, Ao Bo 

1 1 
G3 G2 G, Go ... 
L3 Fe L2 Fe L, Fe Lo He 

http:FIGURES.PI
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Suggested Readings 


Describe the working principles of the design and show how 
you could improve upon this design. 

32. 	 Design an n-bit comparator module different from that of 
Problem 31 such that the comparison process begins from the 
MSB and moves toward the LSB until the final decision is 
made. 

33. 	 Obtain the circuit for a 16-input, 4-output priority encoder. 

34. 	 Design a serial-to-parallel converter circuit that routes a long 
sequence of binary digits into four different output lines as 
specified by external control signals. 

35. 	 Design a BCD adder circuit that first converts the BCD num­
bers into binary, then adds the resulting binary numbers, and 
fmally converts the binary sum to the correct BCD sum. 
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Sequential 
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6.1 Introduction 
 A circuit is known as combinational as long as its steady-state out­
puts depend only on its current inputs. If, on the other hand, the 
present value of the outputs are dep<mdent on both the present val­
ues of the inputs and the past values of the inputs, the circuit is con­
sidered to be a sequential circuit. One of the important applications of 
digital techniques is where digital signals are received and inter­
preted by the system, and control outputs are generated in accor­
dance with the sequence in which the input signals are received. 
Therefore, such systems require circuits that respond to the past his­
tory of the inputs. In general, sequential circuits have the capability 
of storing information. Consequently, sequential circuits find wide 
application in digital systems as counters, registers, control logic, 
memories, and other complex functions. 

The most common sequential circuit is the flip-flop. A jlil-flop 
(FF) is an electronic device that has two stable states. One state is 

. assigned the logic 1 value arid the other the logic 0 value. The out­
put of the FF can assume either of the stable states based on input 
events, and the output can be checked to determine what event 
occurred in the pair. There are a number of FFs in common usage 
in digital circuits, and they differ from one another in the number of 
inputs they have and in the manner in which the binary state is 
affected by the inputs. The possible changes in the FF outputs gen­
erally have a direct correspondence to the frequency with which the 
input is changing value. However, there is a type of sequential cir­
cuit memory, device, known as a monostahle multivibrator, that pro­
duces circuit output independent of the input frequency. This chap­
ter iritroduces the logical behavior and control bf various types of 
FFs. Mer studying this chapter, you should be able to: 

o UnderStand the design and working principles oflatches; 

o Understand the design and working principles ofFFs; 

196 
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FIGURE 6.1 Latch for Storing 
Logic 1. 

FIGURE 6.2 AND-OR Latch. 
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o Understand the design and working principles of the 

monostable multivibrator; 


o Understand the importance and significance of sequen­

tial circuits in generaL 


A latch is a bistable circuit that is the fundamental building block of 
a flip-flop. The latch is basically a combinational circuit that has 
one of its outputs fed back as an input. It can be realized from an 
OR gate with its complemented output fed back as one of its inputs, 
as shown in Figure 6.1. We have considered /);.t to be the lumped gate 
delay (total of all propagation delays) of the gates that are used. If 
the input II is held at logic 1, the OR output results in a 1 and, 
therefore, the complemented output, O2, is a O. This O2 output is fed 
back to the OR gate after a time equal to the lumped delay. As a 
result the output of the OR gate is held at logic 1. Once the OR 
output is set to this· condition, the gate output will remain in this 
same state. This phenomenon is commonly known as the latching 
effict. Consequently, this circuit could be used for the storage oflogic 
1. This latching condition will prevail until the feedback path is 
broken. 

The NOT gate of Figure 6.1 may now be replaced by an AND 
gate to provide for the storage of logic O. Such provision is known as 
the unlatching of the gate, which is illustrated in Figure 6.2. This cir­
cuit, however, is able to store both logic 1 and O. Each of the two 
latch outputs, 0 1 and O2, is a logical complement of the other. Ifone 
holds 12 input to logic 0, the feedback route between the input and 
the output of the OR gate will be logically broken and the OR gate 

)--4_-0, 
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FIGURE 6.3 Characteristic 
Table for a Basic Latch. 

will return to its initial condition. When the input 12 is a 0, the out­
put O2 is maintained at logic 0, and when I, is held at logic 1, the 
output 0 1 remains at logic 1. 

The latching concept developed in this section will be used next 
to come up with a standardized latch suitable for subsequent devel­
opment of FFs. An FF has the capability of storing a single binary 
bit of information. When the values stored in the FFs change, we 
say that the sequential circuit changes state. Generally, however, an 
FF should have two outputs, called Qand Q, that are complements 
of each other. The characteristic table of Figure 6.3 details the per­
tinent working principles of one such basic latch unit, where t is 
used to denote the time variable and 6.t is the short time duration 
between a change in the input and a possible change in the output. 
The interval 6.t is equivalent to the lumped delay of the circuit. The 
two inputs S (set) and R (reset) are used to control the output based 
on the current state of the output. IfR = 0 and S = 1, the output is 
turned on if not already on. If R = 1 and S = 0, the output is 
turned off if not already off. When S = R~= 0, no output change 
occurs. The to-be-designed latch circuit, however, manifests an 
undesirable condition when both inputs go to 1 simultaneously. 
When S = R = 1, the two outputs, Qand Q, would no longer be 
complements of each other. In addition, the behavior of the latch 
would become unpredictable once the inputs returned to 0, Conse­
quently, the simultaneous existence of S = R = 1 is forbidden. 

Inputs Output. 

R(t) S(t) Q(t) Q(t + Clt) 

0 0 
0 0 

1 1 

0 1 
0 1 

1 1 

1 0 
0 0 

1 0 

1 1 
0 -

1 

The circuit may be determined accordingly, using the K-map of 
Figure 6.4[a]. The equation for Q(t + 6.t) is obtained as follows: 

Qit + 6.t) = Set) + R(!jQ(t) 

= S(t) . R(t)Q(t) [6.1] . 



FIGURE 6.4 RS Latch: [a] K­
map and [b] Circuit. 

R(t)S(t) 

o(t) 00 

0 

1 

[a] 

FIGURE 6.5 Revised RS Latch 
Characteristic Table. 

OCt) R(t) O(t + Llt) 

0 0 S(t) 

0 1 0 

1 0 1 
1 1 0 

"~ 

FIGURE 6.6 SR Latch: [a] Block 
Diagram, [b] NAND Circuit, and 
[c] NOR Circuit. 

S 

R 

[al 
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0 1 - 0 

1 1 - 0 

01 11 10 

R---i 
L-----'" o---e--Q

5---------------1 
O(t + Llt) 

[b] 

This equation, known also as the next-state equation, states that after a 
short time, b.t, the new value of Qis determined by the values of Q, 
R, and S at time t. The corresponding circuit is shown in Figure 
6.4[b]. If Rand S values change at time t, a new value of Qwill 
result b.t time later. b.t time in this circuit is the total gate delay of 
the two NAND gates. The output of NAND gate 1 is traditionally 
known as the Qoutput since the outputs of two NAND gates are 
complements of each other. 

The revised characteristic table of Figure 6.5 shows the corre­
sponding characteristics of the RS latch (also called reset-set latch) 
where the don't-care of the forbidden state is assumed to be equal to 
a O. The equation for Q(t + b.t) may also be obtained as follows: 

Q(t + b.t) 	= Q(t)R(t)S(t) + Q(t)R(t) 


= R(t)[Q(t) + Q(t)S(t)] 


= R(t)[Q(t) + S(t)] 


= R(t) + 	[Q(t) + S(t)] [6.2] 

This NOR form of latch could also be derived by grouping the 
zeros of the K-map of Figure 6.4[a]. The two circuits, NAND and 
NOR latches, are respectively known as RS and SR flip-flops or 
more commonly as latches. The corresponding latch circuits are 
obtained as shown in Figure 6.6. 

S---.o.o 
0-'-0 	 0--....... 0 


R---JR 
"----­

[b] 	 (c] 
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Note that the latch outputs are always complements of each 
other: When Qis aI, Qis 0, and when Qis a 0, Qis 1. The forbid­
den state occurs when S = R = 1 at the same time. As long as S 
and R are both set at 1, Qand Qare forced to be at the same logic 
value simultaneously, thus violating the basic complementary 
nature of the outputs. 

EXAMPLE 6.1 

Obtain the response of a periodic 
square wave of period 8 units, when 
it is fed into the sequential circuit of 
Figure 6.7. Assume that the NAND 
gate has a total delay of 1 unit 

FIGURE 6.8 

SOLUTION 

FIGURE 6.7 

X 

The output, Z, is given by 

Z(t + at) = X(t)Z(t) = X(t) + Z(t) 

Consequently, the timing diagram is obtained as shown in Figure 6.8. 
Whenever X changes from a 0 to aI, the output Z starts oscillating with a 
period of 2M (2 units in this case). However, when X changes from a 1 to a 
0, the output Z becomes 1 after a time delay of at. 

X ~I I 
4 8 12 

L 
16 

Z 
0 5 6 7 8 13141516 

1 
Y 

0 
4 5 6 7 12131415 

Time---+ 
ililmISt 

The SR latch described earlier has its time delay lumped 
together. However, there is another form of the latch model known 
commonly as the distributed gate delay model. Consider, for example, 
the NAND latch of Figure 6.6[b] where the gates numbered 1 and 2 
are assumed to have gate delays tl and t2, respectively. Accordingly, 

Q(t + t1) = Set) • Q(t) = Set) + Q(t) [6.3] 

Q(t + t2) = R(t) • Q(t) = R(t) + Q(t) [6.4] 



FIGURE 6.9 Timing Diagram of 
a NAND Latch. 
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These two equations now may be combined to yield 

Q(t + tl + t2) 	= R(t + [I) • Q(t + t l ) 

= R(t + t1) [S(t) + Q(t)] [6.5] 

Therefore, 

Q(t + t\ + t2) = R(t + tl)[S(t) + Q(t)] 	 .[6.6] 

Assuming equal gate delays for a total of dt delay, the resulting 
equation becomes 

Q(t + dt) = R t -( + :2dt) [S(t) + Q(t)] 	 [6.7] 

The timing diagrams of Figure 6.9 show the behavior pattern of 
a NAND latch corresponding to the distributed gate delay modeL 
For simplicity it has been assumed that both of the gates have 1 unit 
length of gate delay and also that Qand Qat time t = 0 are, respec­
tively, 0 and 1. This timing diagram shows that the latch works as 
intended. However, under various input conditions the latch may 
have problems. Example 6.2 will illustrate one of these input condi­
tions and its consequences. 

1 
S 

0 
6 9 

R 
0 

14 18 

Q 
0 

7 16 

Q 
0 

8 15 

Time .. 

SOLUTION 

Obtain the timing diagram for the FIGURE 6.10 
latch of Figure 6.10 when the input 
II changes from 1 to 0 for a 
duration much shorter than the 
total gate delay. 

For this example the gate delays for the NAND and NOT gates are chosen 
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to be 3 units and 2 units, respectively. Accordingly, the timing diagrams of 
Figure 6.11 are obtained. The output is oscillatory in nature and is not 
latched to any fIxed value. 

FIGURE 6.11 
11 

0 

6.3 Clocked SR 
Flip-Flop 

O2 ;~ n n n 

8 	 9 13 14 18 19 

0 1 ;1 	 U LJr---u 
10 11 15 16 20 21 

Time ----+ 

In the last section we introduced circuits for the SR FF. For depend­
able operation of such devices one must attempt to prevent tran­
sient pulses from appearing on either of the inputs. It is advanta­
geous to control the times when the SR FF output is allowed to 
change by means of an additional input. This additional signal is 
commonly called a clock. The clock pulses (CK) can be periodic or a 
set of random pulses. Almost always, however, they are periodic. 

The purpose of the clock input is to force the FF to remain in its 
rest (or hold) state while changes occur on the set and reset inputs. 
CK is set to logic 1 once the inputs have settled. The NAND and 
NOR latches with clock input are shown in Figure 6.12. In order to 
operate these devices effectively, the following conditions must be 
met: 

1. 	The FF inputs should be allowed to change only when CK 
= 0. 

2. 	 The clock input should be long enough so that the outputs 
will be able to reach steady states. 

3. 	The condition S = R = 1 must not be allowed to occur 
when CK is equal to logic 1. For proper operation, there­
fore, S(t)R(t) should always equal zero. 

It can be seen that the circuit action can occur only when the CK 
signal is high. When CK = 0, the FF outputs do not change. The S 
and R inputs may, however, be simultaneously high when the clock 
is absent since the FF will be inhibited. The overall functioning of 
the gated SR FF is illustrated by the characteristic table of Figure 
6.13. Note in the timing diagram shown in Figure 6.14 that it is 
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FIGURE 6.12 Clocked SR FF: 
[al Logic Symbol, [b] NAND Gate 
Circuit, and [el NOR Gate Circuit. 

S Q 

CK CK 

R Q 

S 

Q 

Q 

R 

[a] [b] 

R 

Q 

CK 

Q 

S 

[c] 

FIGURE 6.13 Characteristic 
Table for the Clocked SR FF. 

Inputs Outputs 

CK(t) S(t) R(t) Mode Q(t + At) Q(t + lit) 

0 
Jl.. 

Jl.. 

Jl.. 

Jl.. 

-
0 
0 
1 
1 

-
0 
1 
0 
1 

No action 
Hold 

Reset 
Set 
Invalid 

Q(t) Q(t) 
Q(t) O(t) 

0 1 
1 0 
- -

FIGURE 6.14 Timing Diagram 
of a Clocked,SRFF. CK o 

S 
o 

R 
0-----' 

Q 
o 

necessary to consider the circuit only at the time CK changes from 
low to high to see if the output changes. 

It is now appropriate to introduce several operational character­
istics that are, commonly associated with the FF usages. Figure 6.15 
shows some of these specifications, of which setup and hold time are 
the most important ones. The setup time, ts , is the time· necessary for 
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FIGURE 6.15 Timing 
Characteristics under Worst-Case 
Condition for Maximum Clock 
Frequency Determination. 

1 t I+- th-+l 1 
,... s -H ---'"-----~---___ 14 tNS 
, I , 1 
I 1 
I I I I 

--,-~ 1"'4--~1------ tp .1 
, I I 1 
I 14 I ITcK I ~ 

Inputs must be stable Inputs must be stable 

the input data to stabilize before the triggering edge of the clock Its 
value is extremely critical since it manifests itself either by ignoring 
actions or by resulting in partial transient outputs, commonly 
referred to as partial set and partial reset outputs. Consequently, it is 

. possible to begin a set or reset mode, causing the output to start to 
change, but to withdraw back to its initial state. In some cases the 
output might even end up in a metastable state in which the FF is 
neither set nor reset. Again, the hold time, th, is the time necessary for 
the data to remain stabilized beyond the triggering edge of the 
clock This is also a critical parameter in determining the correct 
behavior of a FF. 

The maximum allowable clock frequency for an FF is usually 
determined from a knowledge'of setup time; hold time; FF propa­
gation delay, tp; and propagation delay of the next-state decoder, 
tNS' The maximum clock frequencY,!cK, under worst-case condition 
is obtained from 

[6.8] 


The constraint of Equation [6.8] must be met when using any FF, 
integrated or not. 

EXAMPLE 6.3 SOLUTION 

Obtain Q(t + Ilt) as a function of FIGURE 6.16 
the inputs and Q(t) in the circuit of 

Figure 6.16. x---\ 
S Q. 

CK 

Y--..._---------i R Q 
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FIGURE 6.17 


X(t) Y(t) Ott) O(t + M) 

0 0 0 1 

0 0 1 1 
0 1 0 0 
0 1 1 0 

1 0 0 0 
1 0 1 1 

1 1 0 0 
1 1 1 0 

6.4 JK Flip-Flop 

From Equation [6.1] the next-state equation follows as 

Q(t + at) = Set) + R(t)Q(t) 

In this circuit Set) = X(t) + yet) = X(t) • Yet) and R(t) = Yet). Note also 
that S(t)R(t) = X(t) • Yet) • yet) = O. Hence, Set) and R(t) are not simulta­
neously equal to 1 and, therefore, the circuit meets all conditions necessary 
for a perfect operation. Consequently, we may obtain 

Qit + at) = X(t)Y(t) + Y(t)Qit) 

The table, as shown in Figure 6.17, lists all possible combinations of the 
inputs and the corresponding outputs. 

6.4·J~~Flip-Flop 

/ 

FIGURE 6.18 JK FF: [a] Block 
Diagram, [b] Logic Circuit, and [c] 
Characteristic Table. 

We saw in the last section that the clocked SR FF has an indetermi­
nate state. When using clocked SR FFs the designer is required to be 
cautious about the FF inputs. This troublesome restriction can be 
removed by modifying the SR FF; the refmed FF is known as theJK 
FF. This modification involves feeding the outputs of the FF back 
into the inputs of the circuit shown in Figure 6.12[a]. The resulting 
circuit, its block diagram, and its functional behavior are shown in 
Figures 6.l8[a-c]. 

J 0 

CK 

K 0 
K----I 2 

J-----l 

CK 

[a] 	 [b] 

Mode J(t) O(t + At)K(t) Ott) 1 

0 0 	 I 
Hold 00 

1 1 	 I 

I0 0 
Reset 0 1 

1 0 

0 1 
Set 01 

1 1I 
0 1 

1 
iToggle 1 

01 

Ie] 
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FIGURE 6.19 [a]JK FF 
Flowchart and [b] Pulse Width 
Problem inJK FF. 

Even when the] and K inputs are both 1, the outputs of NAND 
gates 1 and 2 cannot simultaneously be O. With Q= 0, NAND gate 
2 outputs ai, and when Q = 1, NAND gate 1 outputs a 1. Conse­
quently, the input restriction of the SR FF is automatically elimi­
nated. The additional feedback provides for an additional switching 
mode, called toggle, to the FF. The characteristic table of Figure 
6. 18[c] describes in detail the actions of the FF. The next-state equa­
tion may accordingly be obtained as follows: 

Q(t + /).t) = ](t)OJ.t) + K(t)Q(t) [6.9] 

If] = 1 and K = 0, the FF is set to an output of 1 ifnot already set. 
Similarly when] = 0 and K = 1, the FF resets to 0 if not already 
reset. If] = K = 1, the FF output is complemented (toggled), and 
when} = K = 0, no change takes place. 

In spite of many advantages the]K FF still has a serious limita­
tion, which is illustrated in Figure 6.19 and should be understood 
by the designer. When the clock input goes high, the FF responds 
according to the] and K inputs. The flowchart of Figure 6.19[a] 
shows the desired circuit operation and the consequence of having a 
clock pulse that is too long. If the Qoutput changes before the ter­
mination of the clock input, then the input conditions to NAND 
gates 1 and 2 change again, and this leads to subsequent change in 
the Qoutput. As a consequence, Qmay be indeterminate at the ter­
mination of the clock input. Such a possibility exists as long as /).t is 
less than TCK' It is desired that only one FF change occur during 
each clock input. This may be easily accomplished by maintaining 
the clock width much smaller than the total delay time. 

Compu1eJK 
inputs 

1 
J

No 0 

K I0 I-t--TcK---+1 

CK 1 I0 

QChange FF 
1 nJI 

outputs 
0 

_____I At I+-­
[a] [b] / 
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Another way to eliminate the problem caused by a clock pulse 
width that is too long is to design the FFs to respond to only transi­
tions of the clock, either 1 -? 0 or 0 -? 1. Edge-triggered FFs are 
provided with a pulse-narrowing circuit, as shown in Figure 6.20. 
As you can see, there is a small delay on one of the NAND gate 
inputs so that the inverted clock pulse arrives at the gate input a 
couple of nanoseconds later than the true clock pulse. This results in 
an output spike of an extremely small time duration at the very 
beginning of the clock pulse. This narrow pulse is then used for the 
clock input of theJK FF, eliminating the necessity for narrow clock 
pulses. It is appropriate to consider the effect this narrow pulse 
might have on the FF actions. Depending on the parameters of the 
gates that are being used in the circuit of Figure 6.20, the resulting 
pulse could be too narrow to trigger an FF. In such an event more 
than one, but only an odd number of, NOT gates could be used in 
place of the first NOT gate. Again the number of NOT gates should 
not be too large, because a clock input that is too wide might result. 

FIGURE 6.20 Pulse-Narrowing 
Circuit. CK 

To the CK 
input Of the FF 

FIGURE 6.21 Logic Symbols for 
Edge-Triggered FFs. 

Edge-triggered devices are of two types. Positive edge-triggered 
devices respond when the clock input makes the transition 0 -? 1, 
and the negative edge-triggered devices respond when the clock 
input makes the transition 1 -? O. Figure 6.21 shows the logic sym­
bols for both positive edge-triggered and negative edge-triggered SR 
and JK FFs where the arrowhead input corresponds to the CK 
input. Another way to achieve edge triggering is to use a special FF 
known as the master-slave FF that appears to trigger only on the 
clock edge. 

SR JK SR JK 

S Q 
 J Q S Q J Q 

K QR Q KR Q 

Positive edge-triggered Negative edge-triggered 
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EXAMPLE 6.4 

Obtain the timing diagram for the 
sequential circuit shown in Figure 
6.22 for at least six clock cycles. 
Assume that QI(0)Q2(0) = 00. 

FIGURE 6.23 

SOLUTION 


FIGURE 6.22 


r-- J2 O2 

! 

K2 O2 

I 
,---JJ, 0, ,- ­~ 

-c~ 

'--- ­ K, 0, 

CK 

Figure 6.23 shows the timing diagram that is obtained readily by making 
use of the function table of aJK FF. It may be seen that within two cycles 
QI is set and Q2 is reset. The waveform will not change until Ql is reset 
externally. 

CK 

O,------.....J 


EXAMPLE 6.5 SOLUTION 

Obtain the response of the circuit of FIGURE 6.24 
Figure 6.24, where each of the gates 
is assumed to have 1 unit of gate 
delay. The input x remains high for 
a duration longer than 4 units. 

The input, x, is assumed to be 5 units wide. The timing diagram is then 
obtained as shown in Figure 6.25. This circuit locates the trailing edge of 
the input pulse. Note that the circuit of Figure 6.20 functions likewise but 
locates the leading edge of an input. 
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FIGURE 6.25 
x 

:1 3 8 

y 

:1 4 9 

<If---___---ln'----__ 
9 10 

Time ,. 

6.5 Master-Slave 
Flip..Flop 

FIGURE 6.26 Master-Slave SR 
FF. 

The master-slave concept is introduced into the FF circuitry to 
eliminate the requirement for limiting the clock width of a value 
determined by the circuit gate delays. This type of FF is composed 
of two sections: the master section and the slave section. This device 
is dependent not on the synchronous clocking of both units, but 
rather on their alternate turn-on and turn-off characteristics. The 
logic circuit of an SR master-slave FF is shown in Figure 6.26. It 
consists of a master FF, a slave FF, and an inverter for achieving 
out-of-phase clocking of the two units. 

Master Slave 

SM OM Ss Os 

i'> 

RM OM Rs Os 

~ 
V 

oS 

CK 

R 

As a result of the presence of the inverter, the master unit is 
turned on. and the slave unit is turned off when CK = 1. When CK 
= 0, the master unit is turned off and the slave unit is turned on. 
The circuit works as follows: for all inputs of Sand R, except when S 
= R, QM = Sand QM = R when CK = 1. At this time the slave 
unit remains turned off. When the clock input goes to 0, Qs = QM, 
Qs = QM, and the master uI1it is turned off. 



210 CHAPTER SIX Sequential Devices 

FIGURE 6.27 Timing Diagram 
of a Master-Slave SR FF. 

The timing diagram shown in Figure 6.27 illustrates the 
sequence of operations that takes place in a master-slave SR FF. 
The overall master-slave outputs appear to change at the negative 
edge of the clock input. However; there are many Ie FFs that are 
the positive edge-triggered type. The master-slave cascading may 
be accomplished for any FF by similar introduction of an inverter 
between the two sections. As another example, Figure 6.28 shows 
the logic diagram of a master-slaveJK FF. This is .slightly different 
from that of a master-slave SR FF in that the outputs of NAND 
gates 7 and 8 are introduced as inputs to NAND gates 2 and 1, 
respectively. We have learned from Figure 6.19 that the Qand Q 
outputs might change several times during a wide clock pulse, lead­
ing to an unpredictable FF condition.. Similar clock inputs would 
still cause the master outputs, QM and QM, to change; but the slave 
outputs, Qs and Qs, would not change becauSe the inverted clock 
pulse disables the slave section. The values for J and K are still 
determined by the preclock values of Qs and Qs. When the clock 
input to the master section goes low, the clock input to the slave sec­
tion goes high, transferring QM and QM to the slave section. We 
have thus eliminated the problem of clock pulses that are too wide 
by the master-slave principle. A representative timing diagram for 
the master-slaveJK FF is shown in Figure 6.29. 

CK 	1 
0 

1 
I IS 
I I0 I I 

l 
t I 	 I I 
I I 	 L L1 

R ~ 
I 
I I I 

I0 I I 
I I 

I1 
OM II 	 I I 

0 

1 
Os I 	 l0 

1 
0 I 	 I0 

A master-slaveJK FF is also not without problems. The master 
section of the FF is vulnerable during the period when the clock is 
high and, therefore, may be set or reset by appropriate changes of 
the input. This results in "Is and Os catching" problems. When Qs 
..:... 0, Qs = 1, and the clock is high and while still high, the J input 
becomes high, QM is set, and consequently Qs "catches" a 1 on the 
trailing edge of the clock input. Again when Qs = 1, Qs = 0, and 
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FIGURE 6.28 Master-Slave JK 
FF. 

CK--~------------~ 

K-,.,-------1 

7 D---e--+--OS 

8 o--+--+--Os 
6 

FIGURE 629 Master-SlaveJK 
FF Timing Diagram. 
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CK~ 

J ----' 

K ----------' 

Os---------.....J 

K becomes a 1 after the clock has already become high, QM is reset, 
and Qs "catches" a 0 on the trailing edge of the clock input. It is 
important, therefore, to make sure that no such input changes can 
gain entry into the FF. 

Often an edge-triggered JK FF is also provided with two addi­
tional control inputs: preset and clear. The preset (PR) and clear 
(eLR) inputs allow initializing the FF to either a set (Q = 1) or a 
reset (Q = 0) condition. Addition of these two control inputs 
requires alteration of only the slave section of the FF. Figure 6.30 
shows the logic diagram and the corresponding slave section of the 
FF that allows preset and clear inputs. Throughout this text both 
preset and clear inputs are considered to be active when low. Often 
these two FF control inputs are not labeled in the FF logic diagram . 
In such cases preset and clear inputs are always indicated by verti­

.'. 
,;;. 

~r· 
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FIGURE 6.30 Complete Master­
SlaveJK FF: [a] Logic Diagram 
and [b1 Slave Circuit. 

PR 
J 0 

K 0 
CLR 

[a] 

6.6 Delay and Trigger 
Flip-Flops 

FIGURE 6.31 D FF: [a] Logic 
Diagram, [b] Characteristic Truth 
Table, and [c] Circuit 
Implementation. 

D 0 


[a] 

CK 

D----+--Os 

[b] 

cal inputs (with a bubble) respectively at the top and bottom of the 
corresponding FF logic diagram. 

There are two other types of flip-flops that are commonly used: the 
delay (D) and the trigger (T) FFs. Unlike those in the previous sec­
tions, these two FFs have only one control input line besides the 
clock (excluding set and preset). Both of these FFs can be realized 
by externally manipulating the inputs of aJK FF. 

Often it is necessary to have a sequential device that simply 
retains the input data value between clock pulses. The D FF per­
forms this function. The FF output follows the FF input whenever a 
clock pulse is 1 and holds the value the input had when the clock 
changed to O. The logic diagram and the characteristic table for a 
D FF are shown in Figures 6.31[a-b]. A comparison of this charac­
teristic table with that for theJK FF (Figure 6.18[c]) reveals that a 
D FF is realizable from a JK FF by making K =J and using J as 
the D input, as illustrated in Figure 6.31 [c]. The next-state equation 
of the D FF is given by 

Q(t + dt) = D(t) [6.10] 

D(t) O(t) O(t + At) 

0 0 
0 

1 0 

0 1 
1 

1 1 

D----It------I J 

'------I K 

[b] [c] 

0 
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o--~I--Q 

FIGURE 6.33 
Diagram, [b] Characteristic Table, 
and [c]Circuitlmplementation. 

T Q 

5 

6.6 Delay and Trigger Flip-Flops 

If severe restrictions placed on the clock input of an SR FF pose 
no problem, the SR FF can also be used to produce a D FF. The 
resulting circuit is shown in Figure 6.32[a]. Figure 6.32[b] shows a 
slight variation of the circuit of Figure 6.32( a] where advantage is 
taken of the special properties of NAND gates to eliminate one gate 
and still retain the characteristics of a D FF. 

TFF: [a] Logic 

CK--~---------~ 
'---_..-' 

[b] 

The T (trigger) FF, often called a toggle FF, has a single input 
that causes the output to change each time a pulse occurs at the 
input. The output remains unchanged as long as T = O. The logic 
diagram and the characteristic table for a T FF are shown in 
Figures 6.33[a-b]. It should be noted that theJK FF has this mode 
available. The JK FF can be reorganized for realizing a T FF, as 
shown in Figure 6.33[c]. As long as both the T input -and the CK 
input are high, the FF output will change. Its next -state equation, 
therefore, is obtained as follows: 

Q(t + 6.t) = Q(t) ffi T( t) [6.11] 

T(t) Q(t) Q(t + M) 

0 0 
0 

1 1 

0 1 
1 

1 0 

T---e----j J Q 

'-'----i K 

A different version of the T FF involves a one-input device. Both 
J and K inputs of the JK FF are tied to a 1 to realize this unclocked 
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FIGURE 6.34 Unclocked T FF: 
[a] Block Diagram and [b] Logic 
Circuit. 

FIGURE 6.35 Conversion of an 
Unclocked T FF to a Regular JK 
FF. 

T FF. The input data are then introduced at the original clock 
input The corresponding circuit for the unclocked T FF is shown in 
Figure 6.34. 

o J o 

T 

o K o 

The unclocked T FFs are very important but are not made com­
mercially. The logic usually is obtained using aJK FF as shown in 
Figure 6.34. One may even obtain this function from aD FF. In fact 
it is also easy to transform an unclocked T FF back to a JK FF. 
Such a conversion circuit is shown in Figure 6.35. 

J-----t 

CK O---CI>T 

K-----i 

EXAMPLE 6.6 SOLUTION 

Analyze the circuit of Figure 6.36. FIGURE 6.36 

n----ID 01----..-­

y-----l 

Ol---e-­CK 
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6.7 Monostable 
Flip-~Iop 

" 

FIGURE 6.37 Retriggerable 
One-Shot FF: [a] Logic Diagram 
and [b] Trigger Conditions. 

6.7 Monostable Flip-Flop 

The next-state equation of this circuit is as follows: 

Q(t + !J.t) 	 = D(t) 


= Y(t)Q(t) + X(t)Q(t) 


A close examination of this equation reveals that it is very similar to Equa­
tion [6.9] in that Y acts like the J input and X acts like the K input. In 
other words, this circuit functions exactly like aJK FF. 

fn 

The monostable FF, also known as a one-shot, is an edge-triggered 
device used for producing output pulses of a duration independent 
of the input frequency. It produces an output pulse of specified 
width that is initiated by an input trigger signal. After a specified 
period of time the output returns to its quiescent state. The pulse 
duration is determined by the parameters of the resistor-capacitor 
network located external to the one-shot. 

One-shots are of two types: nonretriggerable and retriggerable. 
In the nonretriggerable one-shot, if the device receives two succes­
sive trigger pulses of separation t less than the width Ot of the output 
pulse generated by a single trigger, the second trigger input is 
ignored by the device. The retriggerable one-shot would be acti­
vated by the second trigger pulse, resulting in an output pulse of 
width approximately t + Ot. By applying a succession of trigger 
pulses separated by t < Ot, the output of a retriggerable one-shot 
could be maintained high (logic 1) as long as desired. 

A one-shot may be designed using basic logic gates and a resis­
tor-capacitor network. However, it is more convenient to use an Ie 
one-shot because they are widely available and relatively inexpen­
sive. Figure 6.37 shows the logic diagram and the function table of a 
standard retriggerable one-shot. The four inputs, Ah A2, Bl , and B2, 

are available to provide flexibility of operation. The capacitor, C, 

c R 
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6.8 Sequential Circuits 

FIGURE 6.38 Block Diagram of 
a General Sequential Circuit. 

and the resistor, R, are external to the Ie one-shot and are used to 
control the duration of the output pulse. Note that the trigger pulse, 
T, is given by Al • A2 • BI • B2. The triggering conditions, as shown 
in Figure 6.37[ b], cause T to change from a 0 to a 1. 

The duration of the output pulse, lJt, is determined by the resis­
tor-capacitor network. Adjustable resistors and I or capacitors may 
be used to trim the output pulse to the desired width. In general, 5t 
is given by 

& = f(R,C) [6.12] 

wheref(R,C) is a function of the resistor and capacitor. The manu­
facturer provides the exact numerical relationship or curves, giving 
the output pulse width as a function of the timing resistors and 
capacitors. The minimum output pulse usually is realized using no 
external capacitor. Note, however, that there will be some stray 
capacitance existing between the terminals even in the absence of 
the external capacitor. 

The retriggerable one-shot may be transformed into a nonretrig­
gerable one-shot by feeding the Qoutput as one of the NAND gate 
inputs, say, A2, while the other input A1 is treated as the only trig­
gering input. The remaining two inputs, BI and B2, should be tied 
to a 1. if 

It is advisable to use monostable FFs only when no other solution 
can be found. Circuits with a number of monostables are very diffi­
cult to troubleshoot. Monostables can be falsely triggered by noise 
in the power supply voltage, causing serious circuit malfunctions. 

The general form ,of a sequential circuit .is shown .in}i'igure 6.38. 
The circuit in consideration has p inputs, q outputs, and r FFs used 
as memory. The combinational part of the circuit monitors the 

Xp--'-'--.J circuits 1-----'-'--+ Zq 
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J=O­

6.8 Sequential Circuits 

SR 01 K = 1 
[a] [b] 

T=1 

D 0 T=1 

FIGURE6:J9 FF Control 
Characteristics. 

FIGURE 6.40 Transition 
Diagrams: [a] SR FF, [b]JK FF, 
[c] DEF¥and,[dJ TFF.' 

input values, A;-, checks the FF states, Q.b and computes the FF con­
trol variables to assure that the next initiating action causes the cor­
rect changes to be made in the FF values. In addition the combina­
tional part also computes the correct outputs, Z" for the circuit. 
Thus the current inputs and the previous-state information stored in 
the circuit's memory (FFs) are used to generate the current outputs 
and to determine the next state in the sequential circuits. The clock 
input is used only in clocked sequential circuits (the predominant 
type of sequential circuit). 

The memory part of the circuit may be provided by using bist­
able devices such as FFs, relays, magnetic devices, switches, and so 
on. The most commonly used bistable device, however, is the FF. 
The control characteristics of various FFs are summarized in Figure 
6.39, which provides the FF excitation inputs necessary to cause 
change in the FF output, (2: For example, the output of aJK FF can 
be changed from 1 to 0 by setting K = 1 while the J input could be 
tied either to a 1 or to a O. The corresponding state transitions 
between Q = 0 and Q = 1 for each of the four FFs are shown in 
Figure 6.40 where the conditions for transitions are indicated next 

Q(t) Q(t + at) 

0 0 0 

0 1 1 0 
0 0 1 
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J K D T 
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1 
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0 
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1 
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FIGURE 6.41 Four-Bit Parallel 
Adder Circuit. 

to the transition lines. These characteristics will play an extremely 
important role in the design of complex sequential circuits. 

One of the advantages of sequential systems over purely combi­
national systems is that circuit savings may be possible through the 
repetitive use of the same logic circuit. Some examples are multi-bit 
adder/subtracter circuits, multi-bit comparator circuits, and multi­
bit code-converter circuits. It was shown in Chapter 5 that n differ­
ent combinational circuit units are needed to accomplish an n-bit 
parallel operation. However, the price we will pay for using the 
same logic circuit repetitively is in the circuit operation speed. 

Consider the four-bit ripple adder circuit shown in Figure 6.41. 
This addition operation is called parallel since two four-bit numbers 
are fed as inputs simultaneously to the adder circuit, and after the 
gate delays, the resultant bits become available simultaneously. 
However, addition can also be implemented serially. A sequential cir­
cuit that can perform such an operation is illustrated in Figure 6.42. 
The process can be started by introducing Ao and Bo to the FA. The 
resultant sum bit is stored in a multi-bit storage device, made up of 
several FFs and called a register, and the carry-out is stored in an FF 
and fed back into the FA. The process is repeated until all of the 
bits have been considered. The final sum would consist of the last 
carry-out and the sum bits stored in the register (see Problem 1 at 
the end of the chapter). The characteristics of the registers and how 
the input bits are fed sequentially to the adder will be considered in 
a later chapter. For the time being it will suffice to say that the reg­
ister is a storage area where the bits can be moved slowly to the 
right as the storage process continues. 

However, in spite of all their merits sequential systems are not 
devoid of deficiencies. Some of these disadvantages are very critical 
to the functioning of the system; therefore, they must be considered 
very carefully. Consider a very simple circuit such as the one shown 
in Figure 6.43. When the input I is a 0, the output 0 becomes aJ. 
This output is then fed back again to the NAND gate. As a conse­
quence, the values of the output disagree with that of the input, 
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Y 
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Ao 80A2 82 
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FIGURE 6.42 Primitive Block 
Diagram for the Parallel Adder. 

Addend Augend 

FA Ci .... 

Co Sum 
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Sum storageIDelay I --1 

FIGURE 6.43 Indeterminate 
Feedback Circuit. 

FIGURE6.44: .[a] Combinational 

Circuit -and·[b] Its Corresponding 

Timing Diagram When B 
=1. 

= C 

A 

B 

A 
C 

{s] 

resulting in an indetenninate feedback system. Such problems, 
however, may be avoided by eliminating the conditions of continu­
ing oscillations. 

Next consider the combinational circuit of Figure 6.44[a] where 
the gates numbered 1, 2, and 3, respectively, have gate delays of 
~tb ~t2' and flts. Assume that at time to the inputs are A = B = C 
= 1, and at time t > to the input A changes from 1 to O. Assume 
further that fltl < ~t2' The resulting timing diagram is illustrated 
in Figure 6.44[ b]. It is apparent that the combinational circuit out­
put results in a transient error pulse for a duration of M2 - ~tl' 
This error pulse is small but not negligible. If the output of this cir­
cuit is introduced as the clock, preset, or clear inputs to an FF, we 
can expect to see additional problems in the sequential circuit. 
However, errors will not occur until the pulse width exceeds the 
time required to trigger the FF. These and other problems are tack­
led by taking proper precautions either during the design or during 
the operation of a sequential system. 

to 
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6.9 Summary 

Problems 

FIGURE6.Pl 

Sequential Devices 

There are three different types of sequential circuits. They are 
classified according to the characteristics of the inputs and memory 
types. 

Synchronous sequential circuits: Synchronous sequential circuits 
involve FF action that occurs in synchronization with the clock 
input. The values of the external variables that control the FF 
states may change while the clock is not present. All transients 
due to the previous clock must have disappeared prior to the 
next clock for correct circuit action. 

Pulse-mode circuits: The input variables of pulse-mode circuits 
can have only mutually exclusive pulses. In addition, the FFs 
that are used are not clocked since no clock is present in this 
mode. 

Fundamental-mode circuits: Fundamental-mode circuits involve 
level inputs and asynchronous memory devices. The FFs change 
state whenever an input variable logic level changes. 

While the first type listed, also known as a clocked sequential cir­
cuit, is synchronous, the other two are asynchronous in character. 
However, synchronous sequential circuits account for the over­
whelming majority of sequential circuits. 

In this chapter the concept of a sequential circuit was introduced. 
The design and working principles of latches, various FFs, and the 
monostable multivibrator were discussed. Particular emphasis was 
placed on the various practical limitations that these devices have. 
Finally, the possibility of having different classes of sequential cir­
cuits was explored. The design and the characteristics of these 
sequential systems will be presented respectively. in the next three 
chapters. 

1. 	 The FA receives two external inputs X and Y; the third input 
Z comes from the output of a D FF as shown in Figure 6.P 1. 
The carry-out is transferred to the FF at every clock pulse. 

x s 
y FA 
z ­ -

Co 

Q D 

Q <' CK 

http:FIGURE6.Pl
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The S output represents the sum. Obtain the state equations 
for S and Co. 

2. 	 Draw the timing diagram for the given input signal and cir­
cuit of Figure 6.P2. Assume the starting value of Q2Ql = 00. 

FIGURE6:P2 

~. 
1 

CK 

I 
J 1 0 1 J2 O2 

--c> "'-V' 

K1 01 K2 Q2 i 

3. 	 What sequence should repeat for the sequential circuit of Fig­
ure 6.P3 for the following initial inputs: 
a. 	 QSQ2~ = 001 b. QSQ2Ql = 100 

FIGURE6.P3 

CK~---------------+--------------~ 

4. 	 Obtain a T FF from a D FF. 

5. 	 Explain the behavior of the circuit of Figure 6.P4. 

FIGURE6.P4 	 A--~ 

l--------I D 0 

C---r----------------------------G> 

B--I---\ 	

o 

6. A sequential circuit has two inputs, X and Y, and one output, 
Z, such that 

http:FIGURE6.P4
http:FIGURE6.P3
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11 = XQ2 + YQ2 


12 = XQl 

Kl = XfQ2 


K2 = Xf + Ql 

Z = XYQl + XYQ2 


Obtain the logic diagram and state equations. 

7. 	 Find the output and state sequences for the circuit of Figure 
6.P5 if the initial state is Q = 0 and the input sequence is 
a. 	 x= 101101100 b. x= 111011101 

FIGURE6.P5 

x 

r ­

~ ,~ 

V 
\ 

r-c-­ ) l 

f 

.­

- Q S 

< CK 
i 

'---­ Q R 

8. 	 Show the detailed working of the circuit of Figure 6.35. 

9. 	 Repeat Example 6.2 when the NAND gate has a delay of 4 
units and the NOT gate has a delay of3 units. 

10. 	 Repeat Example 6.2 when the gate delays are lumped 
together. 

11. 	 Repeat Example 6.2 when the NAND gate has a delay of 4 
units and the NOT gate has a delay of 3 units, but assume a 
lumped model for the circuit. 

12. 	 Comment on the behaviors of the two circuits of Figure 6.P6. 

13. 	 Analyze the circuit of Figure 6.P7. 

14. 	 Obtain a sequential system for performing a multi-bit, BCD­
to-binary conversion. Describe the general working principles 
of your circuit. _ 

http:FIGURE6.P5
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FIGURE6.P6 
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Suggested Readings 


15. 	 Obtain a sequential system for performing a multi-bit, binary­
to-BCD conversion. Describe the general working principles of 
your circuit. 

16. 	 Obtain a sequential system for performing a multi-bit, Gray­
to-binary conversion. Describe the general working principles 
of your circuit. 

17. 	 Obtain a sequential system for performing a multi-bit, binary­
to-Gray conversion. Describe the general working principles of 
your circuit. 

18. 	 Obtain a sequential syst~m for performing a multi-bit com­
parison between two numbers. Describe the general working 
principles of your circuit. 
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FIGURE 7.1 State Diagram. 

x/a 

x/a 

FIGURE 7.2 State Table 
Corresponding to the Diagram. of 
Figure 7.1. 

Present 
State (PS) 

Next State (NS) 
Output (Z) 

x=O x 1 

A 
B 

B,O 
C,1 

A,a 
A,O 

C A,O B,O 

Design of Synchronous Sequential Circuits 

already encountered some examples of two-state state diagrams in 
Figure 6.40. 

The state diagram in Figure 7.1 represents a synchronous 
circuit with three states, A, B, and C, and an input variable, x. 
In each state it is necessary for the circuit to be able to deter­
mine which state it is in and what the current value of x is, and 
then to set up the FF inputs such that the correct state is 
entered when the clock input occurs. The arrows connecting the 
states represent the occurrence of a clock input, and the vari­
ables aJ ngside the arrows show the input condition that causes 
that pai..h to be followed. 

If the circuit is currently in state A and x = 1, the circuit will 
remain in state A when the clock occurs (x/O). Ifx = 0 the circuit 
enters into state B when the clock occurs (x/O). In both of these 
cases the circuit yields an output of O. The output value and the 
input condition are both indicated next to the corresponding transi­
tion paths. If the circuit is in state B and x = 1 when the clock 
occurs, the circuit returns to state A (x/O). However, ifx = 0 when 
the clock occurs, the state C is entered, resulting in an output of 1 
(XI 1). And finally the circuit moves coincident with the clock from 
state C to states A and B, respectively, when x = 0 and x = 1. In 
either case the output remains O. The state diagram must show each 
of the states of the circuit and all conditions necessary for entering 
or exiting the states. In this case two transition lines leave each of 
the states. 

The implementation of a sequential circuit with n states will 
require mFFs where 2m > n. The outputs of these FFs are called the 
state variables and are used to identify which state the circuit is in. An 
additional design tool that contains the same information as the 
state diagram in tabular form is the state table. The state table of the 
system shown in the state diagram of Figure 7.1 is given in Figure 
7.2. It can be seen that the outputs are associated with the transition 
paths only and are not functions of any transition states. Circuits 
such as this are generally known as Mealy-type machines. The 
Mealy outputs, in most cases, are pulses coincident with the input 
pulse causing the state transition. An alternate output type, called 
the Moore output, is associated with the present state only. The gen­
eral forms of the Mealy and Moore circuits are shown in Figure 7.3. 
These circuits take their names, respectively, from G. H. Mealy and 
E. f. Moore, two of the most famous pioneers in sequential design. 
The outputs from Moore-type circuits are independent of the 
inputs. The Moore outputs change their values only when the states 
change because of a change of the inputs . 

. There are many systems that possess both Mealy and Moore out­
puts; in other words, some outputs are conditional on both the 
inputs and the state of the circuit, while others are dependent only 
on the state of the circuit. Note, however, that the Mealy output is 
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7.1 Introduction 
 In this chapter we will examine clocked sequential citcuits. These 
circuits will employ combinational circuits and flip-flops. All circuit 
action will take place under the control of a periodic sequence of 
pulses called a clock. Each clock pulse will permit the circuit to 
either remain in its present state (present set of FF values) or move 
to another state (a new set of FF values). The advantage of clocked 
sequential circuits is that glitches that occur due to the imperfect 
nature of the logic devices will have no effect. This is possible only if 
we choose the clock period such that all glitches due to multiple 
delay paths end before the FFs encounter future changes. 

The synthesis of sequential circuits consists of obtaining a table 
or diagram for the time sequence of inputs, outputs, and internal 
states. Boolean expressions are then derived by incorporating the 
behavior patterns of FF memory elements. In the following sections 
we will introduce these design sequences along with several syn­
chronous sequential circuit examples. After studying this chapter, 
you should be able to: 

o Obtain a state diagram for a synchronous sequential 

machine; 


o Eliminate redundant states; 

o Realize a sequential circuit from the state table; 

o Differentiate between Mealy and Moore circuits. 

7.2 	State Diagrams and The functional interrelationship that exists among the input, the 
output, the present state, and the next state is best illustrated by the State Tables 
state diagram or the state table. The state diagram is a graphical rep­
resentation of a sequential circuit in which the states are represented 
by circles and transitions between states shown by arrows. We have 
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FIGURE 7.3 General Model of 
Sequential Machines: [aJ Mealy 
and [b] Moore. 

.FIGURE 7.4 Moore Model for a 
Sequential Circuit. 
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easily convertible to equivalent Moore outputs and vice versa. 
(More about this conversion will be said in one of the worked-out 
examples.) Figure 7.4[ a] shows the format for a state diagram where 
the Moore-type outputs are circled along with the corresponding 
present states. Figure 7.4[bJ shows the state table corresponding to 

PS 

NS 

Zx=o x 1 

A C B 0 
B C A 1 
C 0 C 0 
0 A A 1 

raj [bJ 
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the state diagram of part [a]. It is important to point out that both 
Mealy- and Moore-type circuits are equally applicable to both syn­
chronous and asynchronous circuits; and the minimum number of 
external inputs to anyone of these circuits is one. For a synchronous 
circuit, that one input must be the system clock. 

EXAMPLE7.i 

Obtain the state diagram of a 
controller for a serial machine that 
performs the 2's complement 
operation (see Example 5.3 for the 
equivalent parallel scheme). 

FIGURE 7.5 

SOLUTION 

The realization of the state diagram for the controller is very straightfor­
ward, as shown in Figure 7.5. This follows from Rule 2(b) of Section 1.4. 
The 2's complement of a number is obtained by complementing all bits to 
the left of the least significant 1 in that number. State A takes care of the 
situation when none of the serial inputs are changed, whereas state B corre­
sponds to the changing (1 's complement) of inputs. The controller remains 
in state A as long as the low-order Os of the input are encountered. The first 
input of 1 moves the machine to state B so that all subsequent inputs are 
complemented. To begin a new conversion, the machine needs to be reset 
back to state A (indicated by the broken line). 

0/0 

EXAMPLE 7.2 

Obtain the state table for a 
-synchronous sequential machine 
that deteCts a 01 sequence. The 
detection of sequence sets the 
output, Z = 1, which is reset only 
by a 00 input sequence. 

FIGURE 7.6 

SOLUTION 

The state diagram for this machine is obtained as shown in Figure 7.6. The 
machine resides in state A as long as the sequence does not begin. This situ­
ation would include two distinct cases: either (a) the machine is yet to see a 
single bit, or (b) the machine has so far examined a 1 or a string of 1s. 
However, once the first bit, 0, of either sequence, 01 or 00, has been 
detected, the machine moves to state B. Finally, state C is reached if either 
(a) the complete sequence, 01, has been located, or (b) the resetting 

0/0 1/1 

1/0 

0/1 

0/0 

1/1 
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sequence, 00, is yet to begin. The state table of the machine readily follows 
from the state diagram. It is shown in Figure 7.7. 

FIGURE 7.7 


PS 
NS,Z 

x 0 x 1 

A B,O A,O 

B B,O C,l 

C B,1 C,1 

EXAMPLE 7.3 SOLUTION 

Obtain the Moore equivalent state FIGURE 7.8 
table for the Mealy machine of 
Figure 7.8. 

FIGURE 7.9 

PS 
NS, Z 

x==O x 1 

A C,O AO 
B B,O AO 
C 0,1 C,l 

0 0,0 B,O 
E C,1 A,O 

PS 
NS, Z 

x==O x==l 

A C',O A,O 

B, .. "}j,,, ,.. , 
~B,0 ,~"O 

C' , 0,1 C',l 
C' 0,1 C",l 

0 0,0 B,O 
E C',l AO 

The state table of Figure 7.8 is a Mealy type since the outputs are not ass0­

ciated only with the states. It is the desired goal of this problem to associate 
each of these outputs with a particular state. It may be seen that the two 
next states, C and D, are associated with two different outputs, 0 and 1. 
The next states, A and B, are associated always with an output of 0 only. 
Accordingly, four new states, C, C', D', and D", may be introduced to 
replace the states C and D. The states C and D' correspond, respectively, 
to states C and D when the output is a O. Similarly, the states C' and D" 
correspond, respectively, to states C and D when the output is a 1. The 
state table obtained after the introduction of only C and C' is shown in 
Figure 7.9. Next, D' and D" may be included to obtain the state table as 
shown in Figure 7.10. 

FIGURE {.fO 
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B 
C' 
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J7I(;l1~ 7.11 

7.3 Equivalent States 


At this time each of the states has only one output associated with itself. 
Accordingly one could obtain the equivalent Moore machine as shown in 
Figure' 7.11. TIlls table has been constructed in a way so that it resembles 
the format of Figure 7.4[b]. 

PS 

NS 

Zx=O x = 1 

A C' A 0 

B B A 0 
C' 0" C" 0 
C" 0" C" 1 
0' 0' B 0 
0" 0' B 1 

E C" A -

Note in Example 7.3 that the Moore machine of Figure 7.11 is 
equivalent to the original Mealy machine of Figure 7.8 only in the 
sense that its output appears as pulses. The outputs that occur in (:' 
and D" are pulses that are high (1) for a full clock period. In the 
Mealy circuit the pulses are high (1) while the clock is high. More­
over, two additional states were necessary to make this conversion 
complete. In fact, the Moore equivalent machine generally consists 
of more states than the corresponding Mealy machine. 

When constructing a state diagram from the word statement of a 
design problem, a state that is identical to another state may inad­
vertently be included. The redundant state or states will increase 
the number of total states and may require the addition of another 
FF, making the circij.it more expensive. Redundant states also 
decrease -the number of don't-cares or unused states and thus 
increase the overall complexity of the circuit equations. In addition, 
fault diagnostic techniques used for failure analysis are based on the 
assumption that no redundant states exist. One of the design goals, 
therefore, is to eliminate all redundant states from the state diagram 
and/or table. 

Sometimes redundant states are obvious. In Figure 7.12 a state 
diagram and a state table are given that include several redundant 
states. Two states are defined as equivalent if they have identical out­
puts and make transitions to the same states for a given control vari­
able value. In Figure 7.12 no state can be equivalent to state D 
because it is the only state with an output of 1. We can make the 
statement that state E is equivalent to state F only if state A is 
equivalent to B and state F is equivalent to state G. Again, states F 
and Gare equivalent only if state G is equivalent to state E and also 

http:circij.it
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FIGURE 7.12 Sequential Circuit 
with Redundant States: [a] State 
Diagram and [b] State Table. 

x 

I PS 
NS 

Zx=O x=1 

A B C 0 

B A C 0 

C 0 C 0 

0 0 E 1 

E A F 0 

F B· G 0 

G A E 0 

[a] 	 [b] 

if state A is equivalent to B. This line of reasoning becomes 
extremely confusing for large systems. 

A systematic way of looking for redundant states usually is 
accomplished by means of a new tool called an implication table. The 
numbers of rows and columns in this table are both equal to n -1 
where n is the number of states in the to-be-reduced state table. An 

;'"" 	 implication table that is used to locate the possible redundant states 
of Figure 7 .12[ b] is illustrated in Figure 7 .13[ a]. This table provides 
a bookkeeping technique that allows a systematic way to find states 
that are equivalent. The algorithm employed for the equivalency 
search in the implication table is as follows: 

1. 	All states except the very first one are used as row labels of 
the table, and all states except the very last one are used as 
column labels. 

2. 	The entries at each of the cells are made by comparing the 
next-state columns of the two states that are uSed to iden­
tify the cell in question. No entries are made in a cell if it 
corresponds to states that have the same output and the 
same next states for all control variables. If the equivalency 
of the two states is dependent on whether or not the states P 
and Qare equivalent, then the pair (PO) is entered in the 
corresponding celL A cross "X" is placed over those cells for 
which outputs of the two states are different for anyone 
input condition. 
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FIGURE 7.13 State Reduction 
by Implication: [a-6] Implication 
Tables and [e] Equivalence 
Partition Table. 
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B 

C 

D 

E 

F 

G 

D F
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AB 

AB 
FG 

EF 
AB 

) EG 

A B C D E F 
[b] 

3. 	The next step involves elimination of as many cells as possi­
ble based on the respective cell entries. If the entries in any 
cell include at least one pair of states that. are none­
quivalent (i.e., the cell corresponding to that pair has 
already been crossed out), then that cell is eliminated by 
marking a X on it. 

4. 	Successive passes are then made through the entire table to 
determine if any more states should be crossed out to indi­
cate nonequivalency. The cell ha~ng an entry PQ should 
be crossed out only if the particular cells corresponding to 
the labels P and Qhave already been eliminated. This pro­
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,"-' 
''''''~?' ';- " 

cess of elimination is continued until no other cells can be 
eliminated. 

5. 	 Redundancy is then determined by txamining the surviv­
ing cells of the implication table. Each surviving cell corre­
sponds to an equivalency condition between the two states 
that are used to label that cell. 

The role of the preceding algorithm will become meaningful when 
we use it to investigate the state table of Figure 7.12[b]. 

The entries in the table of Figure 7.l3[a] are made by comparing 
each of the states with the others. For example, CG is entered in the 
cell corresponding to A and F since the equivalency of these two 
states is dependent on the equivalency of states C and G. Likewise, 
both CG and AB are entered in the cell corresponding to Band F 
since these two states would be equivalent only if both (a) C and G 
and (b) A and B are equivalent. Similar reasonings are made in 
completing the remaining cells. 

Referring to Figure 7.13[a] and the state table of Figure 7.12[b], 
D is the only state that has an output of 1, so it cannot be equivalent 
to any other state. Therefore, all cells that have either a row or a 
column designated by D are crossed out. Next all the cells that have 
an entry composed of D are crossed out. As a consequence· we find 
that all cells corresponding to 'the row and column designated by C 
also have been eliminated. This indicates that state C, like D, is dif­
ferent from all other states as welL We next cross out all cells that 
have at least one pair of entries involving C. Continuing this pro­
cess, we come up with the table of Figure 7.13[b]. Only four surviv­
ing cells are left in the implication table. 

An equivalence partition table, as shown in Figure 7.13[c], is next 
obtained by listing all horiwntallabels (in the reverse order) as its 
row labels. A check is now made of each column of the final impli­
cation table (Figure 7.13[b]), from right to left, making note of the 
cells that have not been eliminated. The row and column labels of 
the surviving cell form an equivalent pair that is noted in the equiv­
alent column identifier in the partition table. Equivalent pairs such 
as (PQ) and (QR) imply the presence of a larger group of equivalent 
states (PQR). For each column of the implication table an entry is 
made in the equivalence partition table, provided there is at least 
one surviving cell in that column. The entries from the previous 
rows of the partition table are entered as long as there is no repeti­
tion of the entry. In the example in question, the cell corresponding 
to Gand F is not crossed out, and therefore the equivalent pair (FG) 
is listed next to F in the equivalence partition table. There are two 
cells corresponding to rows F and G and column E that result in 
(FE) and (EG) or the equivalent group (EFG). Therefore, we write 
(EFG) next to E, and since (EFG) already contains (FG), nothing 
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., 

FIGURE 7.14 [0] State Diagram 
with No Redundancy and [b] State 
Table with No Redundancy. 

7.4 State Assignments 

FIGURE 7.15 Transition Table 
for the Circuit of Figure 7.1. 
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from the previous row is repeated here. Since columns B, C, and D 
have no surviving cells, the entry (EFG) is repeated three times. No 
new equivalencies result until we come to consider A, for which the 
entry (AB) is added to the list. The last line of the partition table 
reveals that there are two sets of equivalent states: (AB) and (EFG). 
This implies that state A is equivalent to state B and states E, F, and 
G are equivalent to each other. Consequently, the redundant states 
are now eliminated by considering only one state from each equiva­
lent group. Tbe resultant state diagram and the state table are 
shown in Figure 7.14 where B, F, and G have been removed. The 
state B has been replaced by A and states F and G have been 
replaced with E. 

PS 

NS 

Zx=o x=1 

A A C 0 
C 0 C 0 
0 0 E 1 

E A E 0 

[a] [b] 

I 
State assignment is the process of adopting a binary coding scheme for 
the symbolic states of the state table so that it is possible for the cir­
cuit to remember which state it is in. Each bit in the code represents 
the output of an FF and is called a state variable. For n number of 
states, a total of m FFs will be necessary such that m is the smallest 
integer satisfying the relationship 2m > n. Any unique assignment is 
valid; however, it is always better if an attempt is made to assign_ 
codes in such a way that the number of cases where more than one 
bit in a code changes when states change is kept to a minimum. 
When the symbolic states are replaced with the binary coding 
scheme, a binary state table, commonJy known as the transition table, 
results. 

The state diagram of Figure 7.1 has three unique states, and, 
therefore, at least two FFs are necessary for designing the corre­
sponding logic circuit. This implies that of the four different codes­
00,01; 10 and ll-onJy three can be used. For this example, if one 
chooses to assign A = 00, B = 01, and C = 11, the resulting transi­
tion table of Figure 7.15 is obtained. 

We may see that the present state QIQ2 = 01, upon receiving 
the input x = 0, moves to the next state 11 with the resultant out­
put of 1. During this transition the ~·value changes from 0 to 1, as 
shown highlighted in the table. In the same present state when x = 
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EXAMPLE 7.4 

Obtain a transition table for the 
sequential:machine of Figure 
7.l4[a]. 

FIGUKE 7.16 

7.5 Excitation Maps 

FIGUKE 7.17 [a] Output Table 
and [b] Excitation Maps. 

7.5 Excitation Maps 

1, Q2 changes from 1 to a O. In either case the binary state changes 
only one of its bits. However, the present state QI Q2 = 11 is differ­
ent from the others, because when x = 0 both of the FF bits need to 
change from 1 to O. There are situations where such a condition 
could cause problems, as we shall discover later. 

SOLUTION 

There are four states, and, therefore, only two FFs need to be considered. 
The transition table results when A = 00, C = 01, D = 11, and E = 10, 
as shown in Figure 7.16. For the state assignments made, the transition 
table shows that there are no transitions for which both state variables 
change. Consequently, this assignment of states is considered to be very 
good. 

PS NS 

Z0,02 X 0 x 1 

00 00 01 0 
01 11 01 0 
11 11 10 1 
10 00 10 0 

.. 

Up to this point when considering FFs we have been concerned 
with how they respond to various inputs. We will now encounter the 
design problem. of determining their inputs such that the proper 
values are present to cause the next state to result when the clock 
input occurs. This input control is accomplished by deriving the 
respective excitation equations. The output equations and the state 
variable excitation equations are derived separately, as shown in 
Figures 7.17[a-h]. The FF input maps are usually called excitation 
maps.,> ;!~J.i-) 

1 00 
x 00 01 11 10 X 00 01 11 10 X 00 01 11 10 

002 1 2 

0 1 0 

0 0­ 0 

000 0­ e -1 

0­ 0­ -1 - 111 

z 
[a] [b] 

The combinational circ~it corresponding to the transition table 
shown in Figure 7.15 has three variables-x, Qll and Q2-that gen­
erate the FF inputs. Ql and Q2 represent the current state of the cir­

1­ -0 -1 -

0­ -1 -0 -­

,_., ,, 
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FIGURE 7.18 Circuit 
Implementation of the Example. 

cuit, and x is the external control input that in combination with 
the present state determines which action is to occur. The excitation 
table entries are the values of FF inputs that would cause the transi­
tion to next-state variables when the clock input occurs. We have 
chosenJK FFs, as an example only, for generating the exdtations. 
One particular transition is emphasized for illustration both in the 
transition table and in the corresponding excitation map of Figure 
7.17. The transition of Qll as shown in Figure 7.15, from 0 to 1 
requires the FF input conditionJl = 1 and Kl = -. This informa­
tion is entered in the corresponding cell, x = 0 and ~Q2 = 01, of 
the excitation map. Continuing this procedure, the excitation and 
output equations may be obtained from the K-maps of Figure 7.17: 

Jl = XQ2 


Kl = 1 


J2 = x 


K2 = Q,x + QIX = Ql EB x 


Z = Q,Q2X' CK 


Note that the clock input, CK, is ANDed with Ql Q~ to produce the 
desired output of a synchronous machine. The resultant sequential 
circuit is obtained as shown in Figure 7.18. 

zx 
J, 0, 

CK------~--------.-------------------------~----------~ 

/' I

f-,! 0 f Consider a circuit similar to that of Figure 7.1 but having a 
Mealy output, Zll and a Moore output, Z2, as shown in Figure 
7.19[a]. There is to be an output coincident with the clock input 
when the circuit moves from state B to state A, and another output 
whenever the circuit is in state C. For the Zl output, assuming nega­
tive edge-triggered FFs, the circuit must be in &tate 01 and both x 
and clock must occur. The Mealy output is given by Zl = ~Q2X' 
CK. If the FFs being Used for the state variables were positive edge­
triggered, the Zl output would occur in the state following 01 since 
the positive edge of the clock would move the circuit into the next 
state. The next state's state variables, 00, and the inputs would be 
ANDed to form Zl in this case. However, the Moore output is a 1 
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FIGURE 7.19 Circuit with 
Mealy and Moore Outputs: [a] 
State Diagram, [b] Transition 
Table, [c] Output Tables, and [dJ 
Circuit. 
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Z1 
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[d] 

only when the circuit is in state C. Figures 7.l9[bJc] show the steps 
involved in obtaining the final circuit of Figure 7.19[d]. 

7.6 	Design Algorithm We have examined the steps of the design of a synchronous sequen­
tial machine in the last few sections. Figure 7.20 gives a comprehen­
sive flowchart of an algorithm for the design.of sequential machines. 
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FIGURE 7.20 Sequential Circuit 
Design Flowchart. 

No 

Has 
the machine been 
reduced enough? 

State diagram and table 
formulation 

Redundance elimination 

The algorithm can be summarized by the following steps: 

Step 1. Obtain the state diagram from the word statement of the 
problem. 

Step 2. Obtain the state table from the state diagram. 

Step 3. Eliminate the redundant states. 

Step 4. Make state assignments. 

Step 5. Determine the type of FFs to use and obtain the corre­
sponding excitation maps. 


Step 6. Determine the output and FF equations. 


Step 7. Construct the logic circuit. 
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These design steps often lead to a rather lengthy process that var­
ies from problem to problem. The following examples illustrate the 
implementation of the sequential design algorithm. 

EXAMPLE 7.5 

Design a two-bit clocked sequential 
counter circuit that counts clock 
pulses. 

FIGURE 7.21 

SOLUTION 

Steps /-2. We can visualize such a device as the one that receives clock 
pulses as input. Each time a clock pulse is received, the counter should 
count up. No control variable is needed; only the occurrence of the clock 
pulse is necessary for a state change. We shall assume further that the states 
change at the trailing edge of the clock input. The counter could be 
designed such that the outputs go through the sequence 00 ~ 01 ~ 10 ~ 
11 and repeat. Since the counter is only a two-bit device, it would have to 
reset at the fourth clock. The state diagram and the corresponding state 
table for the counter are obtained as shown in Figure 7.21. We might 
choose to have the outputs directly from the FF outputs, in which case such 
outputs would be classed as Moore type. 

PS NS Z1 Z2 

A B 00 

B C 01 

C D 10 

D ,A 11 

[a] [b] 

Step 3. The four states-A, B, C, and D-are all different since they stand 
for completely different events. Consequently, we may conclude without 
any doubt that none of these are redundant states. 

Step 4. Making state assignments is an important step for at least one 
reason. The assignments of the states are crucial in determining the sim­
plicity, or for that matter complexity, of the resultant circuit. The output 
circuits can be eliminated totally if the state assignments for the states A, B, 
C, and D are made the same as the corresponding M~re outputs of each 
state. Accordingly, the chosen assignments are A = 00, B = 01, C = 10, 
andD = 11. 

Step 5. The number of FFs are indeed two. This fact was also given in 
the initial word statement of the problem. We might choose JK FFs, for 
example. Consequently both the transition table and excitation map are 
obtained as shown in Figure 7.22. 
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FIGURE 7.22 PS 

NS Z,Z20,02 

00 01 00 
01 10 01 
10 11 10 
11 00 11 

0, 0, 
1O2 0 1 O2 0 

0­ -0 

1­ -.1 

:"<," V0 

1 

1~ 1­

-'--1 -1 
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Step 6. The excitation maps are minimized to give 

Jl = Q2 


KI = Q2 / 


J2 = 1 V 


K2 = 1 


The outputs are easily realizable directly from Figure 7.22[aJ. They are as 
follows: 

ZI = QIQ2 + QIQ2 = Q,(Q2 + Q2) = Ql 

Z2 = ~Q2 + QIQ2 = Q2(~ + Ql) = Q2 

Step 7. The resulting circuit obtained from these excitation and output 
equations is shown in Figure 7.23. 

FIGURE 7.23 

CK 

1 
02 JJ, 0, f­ J2 

r-c :> 

K1 0, f­ K2 O2 r-­

EXAMPLE 7.6 SOLUTION 

Repeat the design of Example 7.5 Since the FF state assignments are different from the corresponding Moore 
by assigning A = 00, B = 01, C outputs, ZI and Z2, the circuit will require additional gates. The corre­
= 11, and D = 10. Construct the sponding transition table, theJK excitation maps, and the output map are 
corresponding timing diagram as shown in Figure 7.24. The corresponding Boolean equations are obtained 
well. as follows: 
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1l = Q2 

K, = Q2 

12 = Q, 
K2 = Q, 
Z, = Ql 

FIGURE 7.24 Zz = Q,Q'l + Q,Q2 = QI EB Q2 
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-0 -0 -11 1 

00 11 

01 10 

[a1 [b) 

The resulting logic circuit diagram is obtained as shown in Figure 7.25. It 
is obvious that the circuit in Example 7.5 is simpler. The timing diagram of 
Figure 7.26 illustrates the operation of the circuit of Figure 7.25. 

FIGURE 7.25 
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/ EXAMPLE 7.7 
oJ 

Complete the design of a clocked 
sequential circuit that recognizes 
the input sequence 1010, including 
overlapping such that for input x 
= 00101001010101110 the 
corresponding output Z is 
00000100001010000. 

FIGURE 7.27 
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FIGURE 7.28 
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Z010203 X=O X= 1 

000 000 001 0 

001 011 001 0 

011 000 111 0 
111 101 001 0 
101 000 111 1 

SOLUTION 

The state diagram consists of five states, A-E. States B, C, D, and E repre­
sent, respectively, the occurrence of the first, second, third, and fourth bits 
of the sequence 1010. State E has a Moore output Z = 1 indicating the 
completion of a sequence. A subsequent input of 0 would move the circuit 
to state~, which indicates the input is out of sequence. An input of 1 while 
in E moves the circuit from state E to state D since sequence overlapping is 
allowed. The corresponding state diagram showing the transitions for each 
value of x is provided in Figure 7.27. 

f\ 

:j x ()
?L " 

Upon power-up, the circuit begins from state A. As long as the string of 
input is devoid of 1 (i.e., the first bit of a 1010 sequence), the circuit 
remains at this be~nning state. Once a 1 h~ been located the circuit 
moves to state B, indicating that the first bit has already been detected. 
Subsequent detection of 0, 1, and 0, in that order, would amount to mov­
ing the circuit to states C, D, apd E, respectively. Once the state E is 
reached, the circuit gives an output indicating the completion of a 1010 
sequence. However, while at state B if the circuit detects a 1, the circuit re­
enters state B. This is due to the possibility that the most recently observed 
1 might be the beginning of a 1010 sequence. For similar reasons, the 
detection of a 1 at state D causes the circuit to move to state B also. Again 
at state C, a detection of 0 eliminates the possibility of having the desired 
sequence, 1010. So, the circuit resets back to state A. Likewise, the circuit 
resets from state E to state A if it locates a O. However, an interesting case 
happens when the circuit is at state E and it has just detected a 1. This 
time the circuit moves back to state D. This is due to the fact that detection 
of a 1 at state E is equivalent to detecting the third bit of a newer 1010 
sequence. 

The problem involves five states requiring three FFs. Three of the eight 
possible states will remain unused. The state table and transition table cor­
responding to the arbitrary assignments of A = 000, B = 001, C = 011, D 
= 111, and E = 101 are shown in Figure 7.28. The'output and excitation 
maps corresponding to the use ofiK FFs may now be obtained as shown in 
Figure 7.29. Proper grouping of the K-map cells results in the following 
equations: 

Z = QIQ2' CK J 

il = Q~ 




F 

7.6 Design Algorithm 243 

FIGURE 7.29 \ 
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K2 = X + Ql 

13 = x 

K3 = QIQ~ + QIQ2X = (Ql EI1 Q2)X 

The sequential circuit of the 1010 sequence detector is obtained using the 
above equations and is shown in Figure 7.30[a]. The timing diagram of 
Figure 7 .30[ b] shows the relationship between the output, the clock, and 
the input. ' 

FIGURE 7.3Oa 
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In the examples considered thus far we have used JK FFs and 
gates. D FFs and other logic devices may also be used. The excita­
tion table for all of the FFs.is given in Figure 6.39. In Examples 7.8 
and 7.9, D FFs are used. 

EXAMPLE 7.8 SOLUTION 
\j 

Obtain a scale-of-seven up-counter, FIGURE 7.31 
as shown in the state diagram of 
Figure 7.31, using D FFs and PLA. 
Assume that the counter is tied to a 
seven-segment display device. 

The state table of the counter may be obtained as shown in Figure 7.32. 

FIGURE 7.32 PS 
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The excitation K-maps corresponding to D FFs are next obtained as shovm 
in Figure 7.33. The Boolean equations, therefore, are as follows: 

D3 = Q2Q3 + QIQ2'­

D2 = Q\Q2 + QIQ2Q3 

DI = QIQ2 + QIQ3FIGURE 7.33 
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0 0 - 0 

000 

111 

0, 

The PLA circuit configuration follows as'shovm in Figure 7.34. The dots in 
the intersection matrix correspond to either an OR or an AND operation. 
The segment allocation for the LED display has already been defined in 
Example 4.8. 

6543210 

FIGURE 7.34 
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EXAMPLE 7.9 

Using D FFs and assorted gates, 
design a sequential comparator that 
is to determine which of the two 
multi-bit numbers, X and Y, of 
equal length is larger. 

FIGURE 7.35 

SOLUTION 

The MSB of both numbers may be fed as inputs to the comparator. Two 
outputs, Z, and Z2, may be assumed to accompany the circuit. If X > Y, 
then Zl = 1; if X < Y, then Z2 = 1; and if X = Y, then Z, = Z2 = o. 

The state diagram of the comparator is obtained as shown in Figure 
7.35, where Xi and Yj are the ith bits of X and Y, respectively. The transi­
tiontable may then be obtained as shown in Figure 7.36. For simplicity, 

XiV, = 

FIGURE 7.36 

XI(QO\ 01 
--'1--,..~ 

-~5----:------~\~__ _ 
LI __ \ .. !o 

\. 1 

'\() 0 	 1\'0 V'i \0 , , 

i M, I (. \ I, v I 0 \ v l 0 \ to \ 

0 I \6 ! \ 
\ 
! 
01 Of 0) 

\ i 
I 

.,-- I 
I ' ­I f \ 	 I' 
I 

I 
,--,.,-,,-- ."~-. --.. -­

Q 
o 

PS 

NS 

Zl Z2XiYi 00 01 11 10 

A 
B 
C 

00 A ofCfA '13 
!O 8 ;'B ·;8 ';8 

~. r C.rC " !C JC 
i"I: '~. " .J 

00 

10 
01 

() (. 

\0 
! n I ,v . 

I 
i 0 	 we may assign A = 00, B = 10, and C = 01. These assignments would 

allow us to derive circuit outputs directly from the FFs.'That this is possible 
(~ would become obvious by comparing Examples 7.5 and 7.6. Accordingly,
v 

the excitation equations are given by 

Dl = XJ',Q2 + Q; 


D2 = XiY,Q! + Q2 


1 
p~ f sLIG / 
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The resultant circuit for the sequential comparator may now be readily 
obtained. The circuit is illustrated in Figure 7.37. 

FIGURE 7.37 
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7.7 Incompletely 
Specified Diagrams 

All problems considered thus far in this chapter have been completely 
specifud; that is, all next-state and output values were completely 
defined in their state diagrams and state tables. In this section we 
shall consider state diagrams and/or state tables that are termed 
incompletely specified. Such sequential circuits include don't-care out­
puts in their respective state tables and state diagrams. These cir­
cuits have an added advantage over the completely specified cir­
cuits since the presence of don't-cares may contribute to simpler 
Boolean expressions. 

The minimization process of state tables that contain don't-cares 
is tedious and requires special consideration. Implication tables are 
used for removing state redundancies, but the steps involved are dif­
ferent from those for the completely speCified state tables (see Sec­
tion 7.3 for details). The steps for incompletely specified state tables . 
involve the following variations: 

1. 	 The entries in the implication table are made exactly as 
before, but a don't-care in the output is considered to be a 
1 or a 0 depending on whether this particular choice aids 
the formation of an equivalent group. 

/ 
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2. 	 Once the successive passes and crossing out of the cells have 
been completed, the designer should make entries in the 
equivalence partition table as before. However, it must be 
understood that two equivalent pairs like (AB) and (AC) 
do not automatically imply the existence of a larger equiv­
alent group (ABC) unless there exists an equivalent group 
(BC) or (BCX). This extra condition is necessary because 
the don't-cares may have been treated as both 0 and 1 
under different conditions. 

3. 	The maximum number of states in the reduced circuit is 
equal either to the number of sets of maximal compatibles 
or to the number of states in the original circuit, whichever 
is less. 

4. A closure table is obtained by considering.the maximal com­
patibles as states and grouping their next states under 
respective input columns. The reduced state table is con­
structed by renaming the sets of maximal compatibles. 
Note, however, that the resulting reduced state table might 
still be incompletely specified. 

The application of these rules is illustrated in Example 7.10. 

EXAMPLE 7.10 

Obtain the reduced state table for 
the sequential machine shown in 
Figure 7.38. 

SOLUTION 


FIGURE 7.38 
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The implication table is as obtained as shown in Figure 7.39. The intersec­
tion of A and B is crossed out, which indicates that tf and B are unequal. 
This is because when x = 1, the next states result in different outputs. 
More boxes are crossed out as repeated passes are made through the table. 
To start, the cells with the entry AB are crossed out. At the end of such 
search the equivalence partition table is obtained as shown in Figure 7.40. 
For better understanding of the operations, consider row B. In row B there 
are seven groups-(BG), (BE), (BD), (BG), (GG), (EG), and (DFG)-that 
redu,ce to four possible groups of three states: (BEG), (DFG), (BGG), and 
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FIGURE 7.39 


_. 
',-', 

1~')
! ­

" . 

f-) 

FIGURE 7.4() 

FIGURE 7.41 
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B 

C 

0 

E 

F 

G BG OG BG CG 

A B C o E F 

F (FG) 


E (EG)(FG) 


o (OG)(OF)(EG)(FG) 

o (EG)(OFG) Using step 2 
C (CG)(EG)(OFG) 

B (BG)(BE)(BO)(BC)(CG)(EG)(OFG) 

B (BEG)(OFG)(BCG)(BOG) Using step 2 

A (AO)(AF)(AG)(BEG)(OFG)(BCG)(BOG) 

A (AOFG)(BEG)(BCG)(BOG) Using step 2 

(BDG). (BG), (BE), and (EG) yield (BEG); (BG), (BG), and (GG) yield 
(BGG); and (BG), (BD), and (DFG) yield (BDG). Note that (BG) has been 
used in all three determinations, and such manipulations are valid. In the 
final form we haveJi.ve-possible sets renamed as follows: 

-r.~( 
P = (ADFG) 

Q= (BEG) 

R = (BGG) 

S = (BDG) 

The closure table can now be constructed as shown in Figure 7.41. In the 
first row of the closure table, AFG are the next states for'states ADFG when 
x = O. For x = 1, BGG are the next states for states ADFG. Now we may 
construct the reduced state table by using the variables P, Q, R, and S. The 
table can be organized as shown in Figure 7.42. Corresponding to x = 0, 
state R could move to anyone of the three states, Q, R, and S. This is 
because (BO) is present in all of those three sets of compatibles. Note that 
the reduced table is still incompletely specified. 
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7.8 Ideal State 
Assignments 

7.9 Summary 


In the previous sections state assignments were made arbitrarily 
with no consideration of the consequences. It will be seen that the 
combinational circuit complexity is different for different sets of 
state assignments. The number of possible state assignments for any 
given problem is impressive. For n present states and p flip-flops, 
there are 2P!/[n!(2P - n)!] ways of selecting n out of the 212 possible 
combinations. For each of these ways there are n! permutations of 
assigning the n combinations to the n states. Again, for each of these 
assignments there are 2P ways of interchanging logic 0 and logic 1 
and there are pl ways of interchanging the FFs. Consequently, there 
may be a total of[(2P - 1)!]/[(2P - n)!p!] unique assignments. For 
example, the number of unique assignments for a nine-state system 
can be calculated to be 10,810,800. 

The optimum state assignment is one that reduces the amount of 
combinational logic of a sequential system when compared to other 
assignments. Many different approaches to this state assignment 
problem have been developed. The complexity and cost of the cir­
cuit will differ for different combinations of state assignments. The 
identification of the best state assignments has been the subject of a 
considerable amount of research. We can attempt to locate the best 
set by generating those output and excitation tables that allow the 
formation of large clusterings of ones. Use of the following guide­
lines will probably result in simpler circuits: 

1. 	 Adjacent assignments should be given to those states that 
have the same next state for any given input. 

2. 	Two or more states that are the next states of the same 
state, under adjacent inputs, should be given adjacent 
assignments. 

3 .. States that have the same output for a given input should 
be given adjacent assignments. 

The term adjacent assignments means that the states appear next to 
each other on the mapped representation of the state table. The 
assignment guidelines work best with D and JK FFs. These rules 
usually lead to a good, but not necessarily to the optimum, solution. 
It may not always be possible to satisfY all of the guidelines at the 
same time. In case of conflicts, rule 1 is preferable. An attempt 
should be made to satisfY the maximum number of suggested adja­
cencies. However, remember that an ideal state assignment may not 
always reduce the cost, and it is true also that the cost of the devices 
is often an insignificant part of the overall cost of a digital system. 

In this chapter all aspects of the design of a synchronous sequential 
circuit were considered. It is possible to design numerous types of 
digital systems using synchronous sequential design. However, there 
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are many digital systems that are of the asynchronous type as well. 
We will investigate the nature of both pulse-mode and fundamen­
tal-mode circuits prior to elaborating an additional application of 
sequential circuits. Chapter 10 presents a variety of such applica­
tions that include sequential circuits of all three types and some 
involving combinations of all three. Next, in Chapter 8, we shall 
consider pulse-mode sequential circuits. 

1. 	 Design a three-bit counter that counts up when a control vari­Problems 
able E = 0, and counts down when E = 1. 

2. 	 Design a four-bit binary up-counter usingJK FFs. 

3. 	 Design a synchronous sequential circuit using SR FFs that 
results in an output of 1 whenever each the foHowing 
sequences occurs: 
a. 0001 e. 10010 
b. 0101 f. 11011 
c. 1101 g. 10011 
d. 1011 h. 110110 

4. 	 Repeat Problem 3 using JK FFs. 

5. 	 Repeat Problem 3 using T FFs. 

6. 	 Asswne a two-bit binary counter that counts up when A = 1 
and B = 0; counts down when A = aand B = 1; halts when 
A = aand B = 0; and is forbidden to operate when A = B 
= 1. Obtain the state diagram and the JK equations. 

7. 	 Obtain the equivalent Mealy state table from the machine of 
Figure 7 .14[ b]. 

8. 	 Obtain the equivalent Mealy circuit for the circuit of Figure 
7.14[b]. 

9. 	 Given the state tables of Figure 7 .Pl, find the logic equations 
and logic diagrams for each table usingJK FFs. 

FIGURE7.PI 
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10. 	 Repeat Problem 9 using SR FFs. 

11. 	 Repeat Problem 9 using D FFs. 

12. 	 Design a synchronous sequence detector that produces an out­
put of 1 whenever anyone of the sequences 1100, 1010, and 
1001 occurs. The circuit resets to its initial state after a 1 has 
been generated. 

13. 	 Find the Moore equivalent circuits of the two machines given 
in Problem 9. UseJKFFs. 

14. 	 Analyze the sequential circuit shown in Figure 7.P2. Obtain 
the state equations and the state diagram. 

FIGURE7.P2 
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15. 	 Construct the state diagram for the following synchronous 
equations: 

Dl = XQ2 + Q.l~ + XQIQ.2 
D2 = XQ2 + XQ.IQ2 
z = Q2' CK 

16. 	 Design a BCD counter with (a)JK FFs and (b) D FFs. 

17. Design a four-bit Gray code up-counter using ( a) JK FFs and 
(b) D FFs. 

18. 	 Design counters that follow each of the following binary 
sequences. For example, "0, 1, 3, 2, 5, 7, 4, and repeat" 
implies that the counter repeats the sequence 0,1,3,2,5, 7, 4, 
0,1,3,2,5,7,4,0,1,3,2,5,7,4,0,1 and so on. 
a. 0, 1,3,2,5, 7, 4, and repeat. Use SR FFs. 
b. 0, 1,3, 2,6,4,5, and repeat. Use TFFs. 
c. 0,2,4,6, 1, and repeat. UseJKFFs. 

http:FIGURE7.P2
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19. 	 A synchronous sequential circuit is shown with its state dia­
gram in Figure 7.P3. Determine the state diagram for the cir­
cuit if the primary and secondary variables are interchanged 
as shown in Figure 7.P4. 
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20. 	 Obtain the reduced state machine from the state tables shown 
in Figure 7.PS. Obtain the corresponding sequential circuits 

FIGURE ,7.P5 using D FFs. 
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Introduction to CHAPTER 
TElV 

Counters, R~gisters, and 

Register Transfer Language 

10.1 Introduction 
 With the study of flip-flops and sequential circuits behind us,the 
study of counters and registers will be a natural and straigntfurward 
extension. Counters and registers are essential to the design of 
advanced circuits found in digital computers. Counters are employed 
to keep track of a sequence of events, and registers are used to store 
and manipulate data that contribute to all or many of these events. 
In other words, most of the robust digital systems would have two 
major functional units: a unit where the manipulations are con­
ducted and a unit that is used for regulating the events (if the first 
unit. Registers and associated logic subunits help to make the first 
unit, and counters could be used for running the second unit. 
Therefore, without an understanding of flip-flops, counters, and 
registers, design of digital systems would be impossible. 

Counters are particularly common in the control and arithmetic 
units of processors, where they are used to keep track of the 
sequence of instructions in a program, to distribute the sequence of 
timing signals, for frequency division for causing time delays, for 
counting, and a host of other similar operations. Counters may 
count in binary or in nonbinary fashion. They are commercially 
available in a large variety of mediuin-scale integrated devices. The 
basic operational characteristic of a counter is sequential; for every. 
present state there is a well-defined next state. The design of a 
counter involves designing combinational logic that decodes the 
present state and enables entry into the next state of~e counting 
sequence. Counters are generally classified into two groups: syn­
chronous and asynchronous. A synchronous counter qas all FFs 'change 
state synchronously with the clock input whether a periodic clock or 
an aperiodic pulse occurs. An asynchronous (or ripple) counter is made 
up of FFs that do not change simultaneously with the clock input. 

Another application for FFs is for storing bits of information. 
When FFs are configured to store multi-bit information, they are 
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10.2 Synchronous 

Binary Cpunters 


10.2 Synchronous Binary Counters 

referred to as registers. Registers are classified according to the way 
information bits are stored and retrieved. If data are stored and 
removed at either end of a multi-bit register, one bit at a time, the 
register is referred to as a serial or shift register. However, if all bits of 
the word are stored or retrieved simultaneously, the register is 
referred to as a parallel register. 

Another area that needs to be investigated is how a digital sys­
tem, however small it may be, is built, integrated, and run. The 
control unit of a system can be designed using the methods that 
were developed in the last three chapters. However, these sequential 
design techniques are inadequate for the representation of subsys­

'-~----- terns that are used strictly in the manipulation of data. The tool 
that has been found useful in accomplishing this representation is 
known as the register transfer language (RTL). RTL helps to translate 
a specification mechanically into its hardware realization. 

The beginning of this chapter is devoted to the development and 
study of various counters and registers. This discussion is then grad­
ually expanded to include the basics of RTL. Finally, RTL is used 
in the design of complete digital systems. After studying this chap­
ter, you should be able to: 

o Design and analyze both synchronous and asynchro­
nous counters; 

o Design and analyze serial, parallel, and hybrid 
registers; 

o Design and analyze systems that have counters and 
registers; 

o Translate complex operations into equivalent RTL 
sequences; 

o Use RTL in the design of data and control units. 
--~ 

Synchronous counters are distinguished from asynchronous (or rip­
pie) counters in that the clock pulses in synchronous count~rs initi­
ate changes in the FFs used in the counter. The simplest possible 
counter is a single-bit counter that alternates between two states, 0 
and 1. A toggle FF using a singleJK FF, with both inputs tied to 1 
(J = K = 1), will function as a single-bivcounter alternating 
between the two states with the occurrence of each clock. The out­
put of the FF has a frequency that is one-half the clock frequency. 

A two-bit binary up-counter with four states was already 
designed in Example 7.5. Such a counter consists of two JK FFs 
whose states Q2QI could be assumed to move in sequence through 
00,01, 10, 11,00,01, and so on. The correspondingJ and K inputs 
of the two FFs are given by 

JI = KI = 1 


J2 = K2 = Ql 
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Note that these equations are slightly different from those given in 
Example 7.5. The positions of the FFs have been reversed and out­
put equations are abandoned altogether. We can take the outputs 
directly from the FFs. 

We shall now attempt to synthesize a three-bit binary up-counter 
of the nonterminal type. With every clock input the counter moves 
to the next higher state. Consider the FF outputs to correspond to 
the present state. The first step in the design sequence of a sequen­
tial circuit is to begin with a state diagram and a state table fol­
lowed by the assignment of states. The state diagram, the state 
table, and excitation maps of a three-bit counter are shown in Fig­
ure 10.1. 

The excitation maps of Figure lO.1[c] may be used to obtain the 
i K equations as follows: 

il = Kl = 1 

i2 = K2 =Ql 


i3 = K3 = QIQ2 


The resulting circuit diagram is shown in Figure 10.2. 
We learned in Chapter 5 that many of the complex combina­

tional designs are realized using heuristic techniques. This simplifi­
cation is more true when modularity is evident in the system. Quite 
similarly, many sequential design problems can be accomplished 
without going beyond state tables. A close examination of the state 
table of Figure lO.1[b] reveals the presence of a certain degree of 
regularity. Note that QI changes with every clock pulse and, in gen­
eral, Qi changes state if all less significant bits are 1. Similar conclu­
sions about the regularity of counter design can be made by inspect­
ing the respective i K equations of the three counters that we have 
considered thus far. An inspection of the i and K equations leads us 
to the conclusion that, based on a regular pattern, these equations 
can be extended to i and K equations for the nth bit of a multi-bit 
up-counter as follows: 

in = Qn-lQn-2' .. Q3Q2Ql = Qn-"Jn-l 


~ = Qn-lQn-2'" Q3Q2Ql = Qn-1Kn- 1 
 \ 

There are two different ways of connecting the inputs to succes­
sive FFs based on the two forms of the equation for the nth term. 
Both are illustrated in Figure 10.3. Part [a] of the figure shows a 
configuration where the FF outputs are combined in parallel. The 
propagation delay at the input of each FF is the same for illl stages. 
However, the fan-in to the AND gate and the fan-out of each FF 
increase as the number of counter stages is increased. Figure lO.3[b] 
shows an equivalent configuration using the second form of the in 
and ~ equations. The fan-in of the AND gates is always two; how­
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FIGURE 10.1 Three-Bit Binary 
Up-Counter: [a] State Diagram, 
[b] State Table, and [c] Excitation 
Maps. 
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FIGURE 10.2 Logic Circuit of a 
Three-Bit Up-Counter. 
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FIGURE 10.3 Configurations for 
the] and K Inputs of an n-Bit 
Counter: [aJ Parallel and [bJ 
Serial. 

On-l 
[a] 

ever, the propagation delay to the nth FF increases as the number of 
counter stages is increased. Note that the first method allows faster 
clocking and 'counting but results in fan-in and fan-out problems for 
large counters. 

Figure 10.4 shows a synchronous n-bit binary up-counter using 
JK FFs and two-input AND gates. Two control signals are added in 
this circuit, CLEAR and COUNT. A high on the CLEAR input 
resets the counter; the counter remains reset until the CLEAR sig­
nal is withdrawn. The COUNT signal is used to disable the clock 
pulses. The designer can use this to block the clock input and hold 

FIGURE 10.4 n-nit Synchronous any nonzero count state. If the preset (PR) inputs are effectively 
Up-Counter. 

On-2 ·On-3 

On-l 

KnCLROnCLEAR 
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used, one may even be able to set the counter to its maximum count 
state. 

There are many occasions in a digital system when a down­
counter is required. A binary number is set into the counter that 
then counts toward zero as the clock pluses occur. These counters 
can be designed in the same way as up-counters. The equations for 
the down-counters are also seen to have regularities. The i and K 
equations for an n-bit binary down-counter are obtained as follows: 

il = Kl = 1 


i2 = K2 = Ql 

i3 = K3 = QlQ2 = i2Q2 = K2Q2 


By comparing these equations with those of the up-counters, we 
note that the resulting circuit is similar in nature. The in and Kr. 
inputs are taken from the two-input AND gate, whose inputs are 
Qn-l and Kn- l. Note in the case of the up-counters the correspond­
ing AND inputs were Qn-l andin-l' 

For some of the applications a counter may be required to count 
up or down. One such application could be a counter device that 
keeps track of total cars inside a parking garage. As each car enters 
the garage, the counter counts up; as each car leaves, the counter 
counts down. This is a more complex design than that of all coun­
ters considered so far since it requires at least one control signal, E, 
to determine the direction of the count. We may assume that when 
E = 1 the circuit counts up, and when E = 0 the circuit counts 
down. One way to synthesize such a circuit would be to follow the 
standard steps for the design of sequential circuits (see Chapter 7, 
Problem 6, for example). However, we can combine the equations 
for up- and down-counters to derive the respective i and K equa­
tions of an n-bit, up-down counter as follows: 

il = Kl = 1 

i2 = K2 = EQI + EQI 

i3 = K3 = EQIQ2 + EQl~ 

The excitation function of the up-counter is ANDed with E, and 
that of the down-counter is ANDed with E, and, finally, the two 
corresponding composite functions are ORed to obtain the i and K 
equations. Consequendy, when E = 1 these equations reduce to 
those of an up-counter, and when E = 0 the equations reduce to 
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FIGURE 10.5 Four-Bit Binary those of a down-counter. The implementation of a four-bit, up­
Up-Down Counter. down counter is shown in Figure 10.5. 

E-...---, 

CLEAR 

CLOCK 
As pointed out earlier, a counter can be designed to count in a 

nonbinary manner as well. Two examples of nonbinary counters 
are a BCD decade counter and a Gray code counter. In the former, 
the counter counts 0000 through 1001 and then resets back to 0000. 
A four-bit Gray code counter, on the other hand, counts 0000, 0001, 
0011,0010,0110,0111,0101,0100, 1100, 1101, 1111, 1110, lOlD, 
1011, 1001, and 1000 in that order and then resets to 0000 before 
resuming count-up operation again. Example 10.1 illustrates the 
design of a BCD decade counter. 

EXAMPLE 10.1 SOLUTION 

Obtain theJ and K equations for a The design steps, followed in the usual sequence, consist of the state dia­
BCD up-counter. gram (Figure 10.6), the state and transition table (Figure 10.7), and excita-

FIGURE 10.6 
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FIGURE 10.7 
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tion maps (Figure 10.8). The resulting J and K equations are obtained 
from Figure 10.8 as follows: 

Jl = Kl = 1 

J2 = QlQ4 

K2 = Ql 

Js = Ks = Q,Q2 

J4 = Q,Q2Q3 

K4 = Q, 

FIGURE 10.8 
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Steps similar to those in Example 10.1 can be used to determine 
the circuit of a BCD down-counter. Such an exercise gives the1 and 
K equations for a BCD down-counter as follows: 

1. = K. = 1 


12 = Q.(Q3 + Q4) 


K2 = Q. 

13 = Q.Q4 


K3 = Q.Q2 


14 = K4 = Q.Q2Q3 


The design of the BCD counter considered in Example 10.1 is a 
classical one. It is not necessary for a designer to go through all of 
these cumbersome steps if an already working circuit can be modi­
fied to suit the requirement of the new design. For example, con­
sider a four-bit binary up-counter, also known as the modulo-16 (or 
divide-by-16) counter. A synchronous BCD counter works exactly 
as the already designed four-bit, modulo-16 counter until state 9 
(Q4Q3Q2Ql = 1001) is reached. The four-bit counter advances to 
1010, while the BCD counter starts all over at 0000. Assuming that 
a four-bit counter is to be modified to a BCD counter, it is necessary 
to reset FFs when they are about ready to go to 1010 otherwise. The 
modification process requires circuit changes to satisfy the following 
conditions when the four-bit up-counter reaches count 1001: 

Qll the LSB, should become a 0, 

Q4, the MSB, should become a 0, 

Q2 should be prevented from becoming a 1. 

An inspection of the circuit of Figure 10.4 reveals that the least 
significant FF is always in a toggle mode, which implies that Q; will 
change to a 0 by itself. Note also that the MSB, Q4, of the four-bit 
counter changes only when the count reaches either 0111 or 1111. 
This change happens because the inputs 14 and Kt are both held to 
a 0 during the other counts. Consequently, it is necessary to supply 
Kt with a 1 instead of a 0 when the count reaches 1001. This can be 
accomplished if Ql is fed directly to the K4 inpl1t and 14 is discon­
nected from the 14 input. The next consideration is to prevent Q2 
from switching back to 1once the count reaches 1001. This action is 
accomplished by supplying12 and K2 with the ANDed output of Ql 
and Q4' This modification does not cause any problem because Q4 is 
a 1 until the count reaches 1000. And once the count reaches 1000, 
Q2 need not be turned on in a BCD counter. In summary, 
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FIGURE 10.9 
Up-Counter. 

Synchronous BCD 

Ql should be fed to K4, 

K4and14 should not be connected, 

QIQ4 should be fed to12 and K2. 

Consequently, the BCD counter may be obtained by modifying the 
modulo-16 counter circuit, as shown in Figure 10.9. 
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Synchronous circuits requiring irregular count sequences, such as 
the Gray counter mentioned earlier, are usually designed using the 
familiar step-by-step technique. A count sequence is said to be irreg­
ular if it is not magnitude ordered. In general, it is harder to come 
up with an irregular counter by modifying a regular counter. 
Examples 10.2 and 10.3 relate to counters with irregular count 
sequences. 

EXAMPLE 10.2 SOLUTION 

Obtain the state table for the FIGURE 10.10 

counter ~hgwn in Figure 10.10, 

starting from the count 000. The 

MSB of the count is at Q3' 


CLOCK~----~------------~~--r-----~ 
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This circuit can be analyzed by assuming a present state and using our 
knowledge ofJK FF operation. Corresponding to each of the present states, 
the next state is found by determining the corresponding J and K values of 
each FF. WhenJK = 00, the corresponding Q remains unchanged; when 
JK = 01, Qis reset; whenJK = 10, Qisset; and whenJK = 11, Qtoggles. 
The resulting state table is obtained as shown in Figure 10.11. The circuit 
has an irregular state sequence 0, 1,3,4,6, and repeat. Consequently this 
circuit is an irregular counter. 

FIGURE 10.11 


EXAMPLE 10.3 

Obtain a synchronous counter that 
produces the count sequence 0, 2, 4, 
3, 6, 7, 0, .... 

FIGURE 10.12 
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110 11 11 01 000I 

SOLUTION 

The state table and the JK excitations are obtained as shown in Figure 
10.12. The easiest way to solve this problem would be to consider the pre­
sent and corresponding next states. The JK excitations necessary for the 
corresponding transitions are then determined for each of the cases. Note 
that states 1 and 5 don't occur in the count sequence. Consequently, we 
assume the corresponding next states and the JK excitations to be don't­
cares. This assumption should help in the minimization step. TheJ and K 
Boolean equations are obtained using K-maps. They are as follows: 
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1, 
K, 

12 
K2 

13 
K3 

= Q3 

= 1 

= 1 

= Ql EB Q3 

= Q2 

= QI + Q2 

The resulting counter is obtained as shown in Figure 10.13 

FIGURE 10.13 
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Binary Counters . 


CLOCK--~~--+-------------~---+----------~ 
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It is appropriate at this point to offer a word of caution. Since 
there is are various cascadable multi-mode binary and nonbinary 
counters available, a designer might be tempted to use them in his 
or her design as a starting chip. Before doing so, the designer must 
thoroughly examine the circuit specifications and diagrams. IfJK 
FFs are used, the familiar 1 's-catching problem (see Section 6.5 for 
details) may crop up here. More specifically, if the clock input is not 
at the proper level, erroneous operation might result if a particular 
mode is changed. There may be times, therefore, when a counter 
may have to be designed from scratch. 

All of the counters considered thus far employed synchronous cir­
cuits, that is, the FF actions were synchronized with the clock pulse. 
The advantage of a synchronous counter is that tall bits of a count 
change simultaneously except for slight differences in FF delays. Ifa 
specific count is being decoded, all bits are' available at the same 
time, eliminating momentary errors at the decode output. We shall 
now introduce asynchronous counters, also known as ripple coun­
ters. The FF clock inputs in a ripple counter are not tied together. 
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FIGURE 10.14 Four-Bit Ripple 
Counter: [a] Circuit and [b] 
Timing Diagrams. 

SET----I 


In fact, the clock inputs are cascaded from output to input (almost 
like the rippling of carries in a ripple adder). They are used to 
reduce the amount of control logic required to construct a binary 
counting sequence. Asynchronous counters have limitations but also 
provide less expensive counter options for those cases where their 
limitations will not affect the circuit. The AND gates between FFs 
in the synchronous binary counter design may be eliminated by 
observing the counter state table. The LSB needs to be changed in 
every present-state to next-state transition. In all bit locations, Qi 
changes each time 0-1 makes ~ transition from a 1 to a O. 

A negative edge-triggeredJK FF in a toggle mode changes state 
each time the signal connected to the clock input makes a 1 ~ 0 
transition. An asynchronous counter using T-configuredJK FFs has 
its least significant FF activated by the system clock. The 1 ~ 0 
transitions of that FF may be used as the trigger (clock input) signal 
for the next most significant FF. This process of triggering is contin­
ued for as many bits as desired. 

The logic circuit of a four-bit ripple counter is shown in Figure 
1O.14[a], where four T FFs are cascaded together. The output of 
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FIGURE 10.15 Timing 
Consequences of a Four-Bit 
Asynchronous Counter During 
tllt --1> 0000 Transition. 

each FF provides the clock signal for the next FF. The timing dia­
gram without delays for the four-bit ripple counter is shown in Fig­
ure 1O.14[b]. Examination of the timing diagrams shows that the 
frequency of the Q4 pulse is one-sixteenth of the frequency of the 
input pulse x. Each stage of the counter divides the frequency of the 
preceding stage by two. 

Counters like the one shown in Figure 1 0.14[ a] are simple in con­
cept, but have at least two disadvantages: a forced regular binary 
sequence and speed. The first disadvantage is not so much of a seri­
ous handicap, but the speed is. In reality, the rippling effect 
through the FFs causes delay between each count that is propor­
tional to the number of FFs in the counting chain. Consider the tim­
ing diagram of Figure 10.15 that shows the situation existing in the 
counter when the count is 1111. Ql does not change to 0 coincident 
with the trailing edge of the sixteenth x-pulse until time tp the prop­
agation delay of each FF. The same is generally true for the syn­
chronous counter, but for the asynchronous counter Q2, Q3, and Q4 
change at times 2tjJ 3~, and 4~, respectively, 'Deyond the negative 
edge of the sixteenth x-pulse. For an n-bit ripple counter to reach a 
valid count before the next clock pulse, T > n~, where T is the 
period of the input pulse. If the final count is all that is of interest, 
the condition T > ~ is all that must be met. In this situation, 
changes in the LSB are constantly rippling to higher-order bits. 
After the last pulse is input, it will be n~before the final count can 
be correctly read. Note that in Figure 10.15 the counter does not go 
through the transition 1111 --? 0000. Instead the counter passes 
through the state transition sequence 1111 --? 1110 --? 1100 --? 1000 
--? 0000. These transitions occur in rapid succession but they result 
in undesired transient conditions that might cause further problems 
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in a circuit that is being driven by such a counter. This must be 
borne in mind when such counters are used in generating a control­
ler of a complex system. 

If the circuit of Figure 1O.14[a] is modified so that Qll (2) and 
Q3, are used respectively as the clock inputs for the second, third, 
and fourth T FFs, then the circuit will operate as a four-bit ripple 
down-counter. The ripple counter of Figure 1O.14[a] may also be 
modified to generate a resettable counter. Say, for example, we are 
interested in generating only BCD counts. Such a counter is shown 
in Figure 10.16. The circuit operates as a modulo-16 ripple counter, 
but when the state 1010 is reached the counter resets immediately. 
This resetting is accomplished by means of a combinational decod­
ing scheme that is tied with the reset inputs of every FF. The 
counter stays at the count of 1010 for the decoding gate delay plus FIGURE 10.16 Asynchronous 


BCD Up-Counter: [a] Circuit and the reset input-to-output delay. 

[6] Timing Diagram. The ripple 	counter of Figure 10.16 exhibits other transient 
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FIGURE 10.17 Jam-Entry 
Scheme 'for Presetting the ith FF. 

to.3 Asynchronous Binary Counters 

behavior that needs to be closely examined. The transient behavior 
of the counter is listed as follows: 

0001-') 0010 (ideal), 0001-') 0000-') 0010 (actual), 

0011-') 0100 (ideal), 0011-') 0010-') 0000 -') 0100 (actual), 

0101-') 0110 (ideal), 0101-') 0100-') 0110 (actual), 

0111-') l000{ideal),OI11-')OllO-')Ol00 -') 0000 -') 1000 
(actual), 

1001-') 0000 (ideal), 1001-') 1000-') 1010-') 0000 (actual). 

The worst-case transient occurs during the transition 0111 -') 1000. 
Since an intermediate count is to be decoded, the clock period must 
be longer than the 0111 -') 1000 propagation delay. 

Another alternative to the BCD counter design involves feeding 
the clock input of a modulo-5 counter with the output of a single T 
FF. The combination of a modulo-2 and modulo-5 counter results 
in a modulo-l0 counter. Such cascading of one counter with 
another should be pursued whenever possible. Some of the counter 
designs that we have considered thus far have demonstrated how to 
reset a counter once a specific count has been reached. There are 
cases where a different approach may be necessary. It is always pos­
sible to preset a counter to a specific count by means of a Jam-entry 
scheme, as shown in Figure 10.17. The bit that is to replace the old 
value at the Qi location is fed directly to the corresponding entry 
point, Xi' The new bit is transferred to the FF output when the clock 
pulse occurs. The counter will begin counting from the preset count 

FF; 


CLOCK
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10.4 I C Counters 

FIGURE 10.18 Four-Bit Binary 
Counter Module. 

as further clock pulses arrive at the input. This is possible only in 
counters made up of independent FFs. 

Because of the problems of asynchronous counters, they should 
be used with a certain degree of caution. The designer must be 
aware of their limitations. The next section introduces the charac­
teristics of IC counters. In a subsequent section (Section 10.9), more 
counter configurations will be introduced that exhibit several 
advantages over the synchronous and asynchronous counters. 

In the first three sections of this chapter we have used both classical 
and heuristic design techiques to design counters. Similar multi-bit 
counters are available in IC form. A typical four-bit binary counter 
module with inputs and outputs is shown in Figure 10.18. We are 

. already familiar with most of its features. The different inputs are 
described as follows: 

A, B, C, D: These inputs are used for presetting the counter to an 
irutial value. It has been assumed that A is the LSB and D is the 
MSB. 

QA, QB, Qc, QD: These are the FF outputs of the counter. QA 
corresponds to the LSB and QD corresponds to the MSB. 

CARRY-OUT (CO): This output becomes a 1 when the count 
equals 1111 and the ENABLE control input is a 1. CARRY­
OUT is equivalent to QAQsQcQD • ENABLE. 

LOAD: This control input is used to load A, B, C, and D values 
into the counter. When -the LOAD input is a low (0), the values 
are either loaded immediately if loading is asynchronous or 
loaded at the next clock pulse in the synchronously operated 
counter. 

CLEAR (CLR): This control input when set to a 0 causes the 
counter to be cleared. The counter is cleared immediately if it 
has an asynchronous clear. In a counter with synchronous clear 
the output changes coincident with the next clock pulse. 

ENABLE (E): This input must be high for the counter to count. 

CLOCK (CK): The 1 ~ 0 transitions of this input are counted 
by the counter when the ENABLE input is a 1. 

CARRY­

OUT 
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FIGURE 10.19 Eight-Bit IC 
Counter.. 

lOA I C Counters 

The four-bit IC counters may be cascaded together, as shown in 
Figure 10.19, to form counters of any bit length. When counter # 1 
has a count of 1111 and its ENABLE is a I, the CARRY-OUT is a 
1, which activates the second counter. When the next clock occurs, 
counter # 1 resets to 0000 and counter #2 counts up to 0001 and 
the CARRY-OUT of counter # 1 is reset to a O. The eight-bit 
counter output then becomes 0001 0000. During the next 15 pulses, 
counter # 2 would remain qisabled and counter # 1 would keep on 
counting upward. Again when counter # 1 reaches count 1111, 
counter #2 counts up to 0010. And this process continues as more 
inputs appear at counter # 1. Each time the setup of Figure 10.19 
receives a total of 16 clock pulses, the # 2 counter counts up by 1. 

-..._+<1 LOAD 

--e-aCLR CARRY­
OUT 

CARRY­
OUT#1 

-----iE 

Input 

The LOAD and CLR controls can be manipulated in many dif­
ferent ways to obtain many count variations. Example lOA illus,,: 
trates such manipulations of a binary IC counter mode. 

EXAMPlJE·l0.4 

Design a counter using the module 
of Figure 10.18 that outputs a 1 
each time six counts have been 
received. 

SOLUTION 

One of the ways to accomplish this design is to make use of the CARRY­
OUT output, which is 1 when the count reaches 1111. We can load the 
counter With an ipi~al value that will cause an output to occur five pulses 
later. The CARRY-OUT is then used to reload the initial value. We begin 
from 1010, and when the counter reaches 1111 the:: CARRY-OUT would 
give a 1. Note that the first output upon turning the power on may not 
even be 1010. The CARRY-OUT either may become 1 before six pulses 
have occurred or may require up to 15 pUlses. The number of pulses is 
dependent on what value the counter assumes upon power-up. The state 
diagram of the required sequence js shown in Figure 10.20. 
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FIGURE 1020 

FIGURE 1021 


FIGURE 1022[a] 

( 


Successive outputs should occur after every six pulses. The circuit con­
figuration using an IC counter with a synchronous load is obtained as 
shown in Figure 10.21. When the counter reaches 1111 the CARRY-OUT 
becomes a 1, causing a low at the LOAD input. This low forces the counter 
to begin again from the 1010 state. 

CARRY­
OUT 

Input 
'----+IloZ 

An alternate solution to this problem may be obtained by making use of 
the CLR input. In this .case we begin from 0000, and once the count 
reaches 0101 an output is made to Occur, and at the same time the counter 
is reset. A count of 0101 is decoded using external logic, and the counter is 

. then made to reset using the synchronous CLR. The flfStpulse may require 
as many. as seven pulses or none, depending on what the counter state is 
after power-up. In the worSt case the beginning state could be 0110 and 
the counter would be reset once the count reaches 1101. The state diagram 
and the corresponding circuit configuration are obtained as shown in Fig­
ure 10.22. Note that the output z will be a 1 whenever the count is 0101 or 
1101. The count will be 1101 only if the counter shows a coUnt larger than 
0101 at power-up. 

[a] 
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FIGURE 1022[6] 
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----(1 LOAD 

CARRY­
OUT 

Input 

Z--.....-t 

[b] 

Given a modulo-m counter to count n pulses, where n < m, and then to 
restart the count, it is thus advisable to follow either of the following 
schemes: 

a. 	Use the CARRY-OUT and load m- n into the preset inputs. The 
CARRY-OUT will be 1 every n pulses. 

b. Decode a count ofn - 1 and use the output of the decode gate to 
clear the counter. The decode gate will be active every n clock 
pulses. 

10.5 Basic Serial Shift 
Registers 

The shift register is one of the most extensively used functional 
devices in digital systems. A shift register consists of a group of FFs 
connected so that each FF transfers its bit of infonnation to the 
adjacent FF coincident with with each clock pulse. In other words, 
shift registers store bits of infonnation, behaving like temporary 
memory, and upon external command shift those infonnation bits 
one position to either right or left, depending on the design of the 
device. 

The action of a right-shift register whose shift-right serial input is 
tied to a 1 is illustrated in Figure 10.23. The bits shifting out of the 
right-most FF are lost. With each clock input the bits move one 
position to the right while a 1 moves in at the MSB. After 11 clock 
pulses, the data in the register prior to shiftiIl:g are replaced by a 
string of Is. A quite useful application of shift-right registers 
requires a connection of the right-most FF output to the input of the 
left-most FF. In that case the LSB is not lost b.ut appears at the 
MSB. Consequently, after two clock pulses, for example, 
00101100101 would be replaced by 01001011001. Such a shift-right 
register is known as a circulate-right regiSter. In the event these same 
data were stored in a shift-left register and the MSB output was 
connected to the LSB input, the data would be 10110010100 after 
two clock pulses. This latter type of register is known as a circulate­
left register. 
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FIGURE 10.23 Shift-Right 
Register Action. 

After Clock Bit Pattern 

0 00101100101 

1 10010110010 

2 11001011001 

3 11100101100 

4 11110010110 

5 11111001011 

10 11111111110 

11 11111111111 

A typical stage, il, in a multi-bit serial shift-right register can be 
designed using the design procedures described in the earlier chap­
ters. Figure 10.24 shows the state diagram of the FF concerned. The 
FF state reflects the current content of that position of the shift regis­
ter. If the current state of the nth bit of the shift register is a 0 and 
that of the (n + l)th bit is a 0, the nth bit remains unchanged when 

) the clock occurs. Similarly, Qn does not change if the present states 
of both Qn and Qn+l are 1. For the other cases, Qn changes and 
takes the value of Qn+l' Figures 10.23 and 10.24 illustrate the 
action of serial shift-right registers and make it obvious that the 
function of each of the FFs is governed by the same next-state equa­
tiorts. This observation reduces the design of a multiple-bit shift reg­
ister to the design of a single stage. For n bits, nsuch stages are cas­
caded. 

The circuit action described by thestate diagram in Figure 10.24 
is that of a D FF. This can be verified by comparing the state dia­
gram of Figure 10.24 with that of Figure 6.40[c]. Multi-bit, shift­
right registers can be built using edge-triggered D FFs or JK FFs 
connected as D FFs. Such shift-right registers are shown in Figure 
10.25 where SRI is the entry poiIit for shift-right input and SRO is 
the exit point for shift-right output. While using D FFs~ the Qoutput 
of each stage is connected to the D input of the succeeding stage. If 
JK FFs are used, the Qand Qoutputs of each stage are connected to 

FIGURE 10.24 State Diagram 
for the Qn Bit of a Multi.Bit, Shift· 
Right Register. 

Qn +l 

Qn +l 
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FIGURE 10.25 Four-Bit, Shift­
Right Register: [a] Using D FFs 
and [b] UsingJK FFs. 

[a] 

SET 

SRI-----.......----iJ3 PR 031----IJ2 PR 021----IJ1 PR 0 11----1 

HOLD 

CLOCK----;
L-_-" 

CLEAR 

SET 

SRI --------103 PR 031----1 

HOLD 

CLOCK----; 

CLEAR---! 

CLROo SRO 

the J and Kinputs of the next stage. The first JK FF is modified to 
that of a D FF by supplying the data directly to theJ input and the 
complement of data to the corresponding K input. Note that the 
remaining FFs do not have an inverter between theirJ and K inputs 
.since each of the J inputs is already a complement of the corre­
sponding K input. A high at the CLR input would reset the register 
FFs, and similarly a high at the SET input would place a 1 at each 
of the FFs. A high at the HOLD input would disable the FFs and 
this could be used for storing the bits indefinitely. SET, CLR, and 
HOLD inputs must be fed with 0 for operating the register in serial 
mode. 

The shift registers of Figure 10.25 are classed as serial-in, serial­
out, shift-right registers. Similar design techinques may be used, to 
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FIGURE 10.26 Controlled Shift. 
~ft Register. 

obtain a shift-left register. In fact, both shift-right and shift-left 
capabilities may be combined to obtain a bidirectional serial-in, 
serial-out shift register. A controlled shift-left register is shown in 
Figure 10.26 that has an additional control input 8LE that deter­
mines what it does on the next clock pulse. The 8LI is the entry 
point for shift-left input and 8LO is the exit point for shift-left output. 
When the shift-left enable, 8LE, is low, the FF output is fed back to its 
data input. In this way, digital information bits may be restored 
indefinitely. It is interesting to see how the HOLD input has been 
eliminated in this case. The clock inputs are still allowed to excite 
the FFs. However, in the previous case, as shown in Figure 10.25, 
the clock input was·notallowed into the FFs;Again when the8LE 
control is high, the serial input sets up the right-most FF, Qo sets up 
the second FF, ~ sets up the third FF, and so on. With 8LE high, 
the circuit functions as a shift-left register. The serial output is 
obtained out of the left-most FF. 

,r-

SLO ~---------r--~----------+---'---------~--~~--~SLE 

su 

SET 

~--------~---'----------~--~--------~~--'--------CLOCK 

CLEAR 

The shift-left and shift-right registers can be combined to obtain 
the bidirectional shift register of Figure 10.27. This register is simi­
lar in design to that of an up-down counter where an up-counter is 
combined with a down-counter. The direction of shift is controlled 
by the inputs 81£ and SRE. SLE and SRE control inputs cannot 
be 1 simultaneously, except when HOLD = 1, so they are mutu­
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FIGURE 10.27 Bidirectional 
Shift Register. 

"'; -: 

10.6 Parallel.Load 
Shift Registers 

...-.--------+-~~------~~~~------~~ 
r+-+----------/----t-l--------+-. .-1-+-------1- From (n

stage 

CLocK'::....:"<...;:.·,-''-~ 
HOLl) (n + 1)th stage nth stage (n - 1)th stage 

SET 
SAE 
SLE 
- 2)th 

ally exclusive. When the SRE input is high, each of the FFs loads 
the respective Qoutput of the FF on its immediate left. When the 
SLE input is high, each of the FFs loads the Qoutput of the FF on 
its immediate right. When both SLE and SRE are 0, the FFs are all 
reset. Note this time how the CLR control has been eliminated. 
When HOLD = 0 the register functions in its serial mode, and 
when HOLD = 1 the old data bits are restored. We might decide 
to eliminate one of the two shift controls. In that event we may 
decide to keep SRE only by making sure that SLE has been 
replaced with the complement of SRE. The register would function 
as a shift-right type when SRE = 1 and as a shift-left type when 
SRE = O. But this arrangement causes a problem if we need to 
reset the FFs at any time. This problem could be solved, however, 
by feeding the complement of a CLR control to each of the FF 
resets. 

An important application of shift registers is their role in arith­
metic operations. A binary number can be multiplied by 2 by shift­
ing the number one bit to the left and divided by 2 by shifting the 
register content one bit to the right. As we will see later, the bits 
shifted in at one end and out at the other end are not unimportant; 
they are used in arithmetic operations in many instances. 

An n-bit, serial-load shift register requires n clock pulses to load an 
n-bit word. A parallel-load shift register, in comparison, loads all infor­
mation bits simultaneously. Both serial-in and parallel-load shift 
registers have specific applications in digital systems. A parallel-in, 
serial-out shift register using master-sh~ve SR flip-flops is shown in 
Figure 10.28. The parallel data are loaded using the jam-entry 
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FIGURE 10.28 Three-Bit, 
. Parallel-In, Serial-Out Shift 
Register. 

SET 
Do 

~----r-~----~+-----------r-~----~~----------+---~~E 

00 

scheme that was discussed in Section 10.3. When the enable signal 
E is high, the data are loaded into the register in parallel. Again, if 
E is low, the Qoutput of the FF of every stage is shifted to the right 
by means of the combinational gates. In either case the HOLD con­
trol must be held low. Parallel-in, serial-out shift registers allow 
accepting data n bits at a time on n lines and then sending them one 
bit after another on one line. This is a standard mode of communi­
cation between digital systems. 

At the receiving end of two digital systems communicating over a 
single data line, it is necessary to collect n bits and then transfer 
them in parallel to the receiving system that is designed to handle n 
bits simultaneously. Figure 10.29 shows the logic circuit of such a 

0 -t-­

'00 r- r-­

Do 

CLEAR------1 

FIGURE 10.29 Four-Bit, Serial­
In, Parallel-Out Shift Register. 
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FIGURE 10.30 Four-Bit, 
Paralle.-In, Parallel-Out Shift 
Register~.. 
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serial-in, parallel-out register. The serial data are entered to the S 
input of the left-most FF while the data are transferred in parallel 
from the Qoutputs. The register is organized in exactly the same 
way as that of Figure 10.25[b]; however, all of its Q outputs are 
available, which is not the case for all shift registers. Both parallel 
loading access features are included in the four-bit, parallel-in, par­
allel-out register shown in Figure 10.30. The CLR, SET, and 
HOLD inputs are set low for normal operation. When the LOAD is 
low, the shift register performs the shift-right operation. When the 
LOAD is high, the inputs 13, 12, Ib and 10 are loaded in parallel into 
the register coincident with the next clock pulse. The outputs 03, O2, 

Ob and 00 are available in parallel from the Qoutput of the FFs. 

SRO 
0, 00 

10.7 Universal· Shift 
Registers 

PR 

0, 

CLR 

PR 

..-------1 So 00 

CLEAR 

LOAD'~,~~-r-------------'-r------------~~------------~ 

• 
A universal-shift register is a versatile shift register that has capabilities 
for parallel loading, parallel outputs, bidirectional shifting, and 
bidirectional serial input and output. In other words, it is capable of 
operating in all of the register modes described previously. There 
could be two different ways to realize a universal-shift register: 
either by modifying a parallel-in, parallel-out shift register or by 
building one from scratch. 
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FIGURE 10.31 Block Diagram 
of Figure 10.30: [a] in Shift-Right 
Mode and [6] in Shift-Left Mode. 

The circuit of Figure 1O.31[a] shows the logic diagram of a four­
. bit, parallel-in, parallel-out shift-right register. Its internal circuitry 
and functions are exactly like those of the circuit of Figure 10.30. It 
has five entry points for the data inputs-SRI, 13, 12) III and lo-four 
outputs-03 through Oo-and five control inputs-SET, HOLD, 
CLR, CK, and LOAD. The register is capable of either serial or 
parallel entry and serial and parallel output. Note that in the cir­
cuit of Figure 10.30 the normal serial mode is only shift-right. Such 
devices are also available commercially. When· LOAD is low the 
register works as a shift-right register, and when LOAD is high it 
works as a parallel-in register. 

SET 
03 O2 0, 00 

HOLD 

CLR 

CK 

4-bit, 
parallel-in, 
parallel-out, 
shift-right 
register 

LOAD 
SRI 13 12 I, 10 

-

-

-

-

SLO 

I 

03 O2 0, 00 

SET 

HOLD 4-bit, 

CLR 
parallel-in, 

parallel-out, 

--0~CK 
shift-right 
register 

LOAD 
SRI 13 12 I, 10 

I) 
SLI 

[8] [b] 

The circuit of Figure 10.30 can be externally modified to perform 
a lett-shift operation, as shown in Figure 1O.31[b]. This modification 
is accomplished by selecting the parallel-mode, LOAD = 1, and by 
connecting each parallel input to the output of the FF on the imme­
diate right. This form of shifting is called a wired shift since the shift­
ing action is accomplished by external connections. 

An n-bit, universal-shift register can be designed by means of n D 
FFs and n 1-of-4 multiplexers. The ith bit of suCh a universal regis­
ter is shown in Figure 10.32. Now all that remains is to cascade n 
such units. When AB = 00 the register perfornis a parallel-in oper­
ation,. when AB = 01· the register restores the old value, when AB 
=10 the register performs a right-shift operation, and when AB = 
11 the register performs a left-shift operation .. 
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FIGURE 10.32 itb Bit of a 
Universal-Shift Register. 

10.8 Shift Registers as 
Counters 

FIGU~ 10.33 Feedback Shift­
Right Register Configuration. 

10.8 Shift Registers as Counters 
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-------1/0 

Shift register ICs are used at times to generate counts or controlled 
sequences. As a result registers are used extensively in multiple 
address coding, parity bit generators, and random bit generators. 
The output of each stage and its complement mtlSt be accessible for 
these applications. These register outputs are used to drive combi­
national (eedback logic, as shown in Figur~ 10.33. The feedback 
logic determines the next state of Qn. In the case of a bidirectional 
register, the feedback logic controls shift-left and shift-right signals 
and sets up a 1 or 0 to the appropriate SLI and SRI input. 

The state diagram of a four-bit shift register with the}3 input of 
th~ input FF available is shown in Figure 10.34. If the shift register 
is initially in the state-Q3Q2QlQo = 1001, then. there are two possi­

,. 
" 

.. f:' .., 
;,1" . 

In On

Yr-C > 
Kn On 

CLOCK 

Feedback logic 

In-1 On-l Jn~ 0 11-2 ... - JO 00• 

rC t> rC > r<: > 
Kn­ 1On­ 1 Kn-i5n­2 

... - r-- Ko 00 



324 CHAPTER TEN Introduction to Counters, Registers, and R TL 

FIGURE 10.34 Universal State 
. Diagram for a Four-Bit Feedback 

Register. 

( 

ble next states. These are 0100 if the 13 input is a 0, or 1100 if the 13 
input is a 1. These values correspond to a shift-right operation. All 
possible internal states of the register and all possible transitions 
between the states are considered'in this state diagram. 

In order to design a counter or sequence generator, the designer 
selects the desired sequence of states on the universal state diagram. 
Based on the desired sequence the feedback logic is designed so that 
the register will cycle through the selected sequence of states. Exam­
ple 10.5 illustrates the technique. 

EXAMPLE 10.5 

Design a decade sequence generator 
using a shift register that follows the 
sequence 

So ~ Sa ~ S12 ~ S'4 ~ SIS ~ S7 
~ SII ~ Ss ~ S2 ~ Si ~ So 

SOLUTION 

The state transitions and the corresponding feedback logic condition are 
obtained as shown in Figure 10.35. The resulting K-map for the feedback 
function13 is obtained as shown in Figure 10.36. The feedback function is 

13 = Q, ~ + Q2~ + Q3Q2Ql 

The feedback logic is realized using combinational logic. It is then fed to 
the 13 input of the shift-right register, as shown in Figure 10.37, to obtain 
the desired sequence generator. Note that the nonsequence states lead 
eventually to the sequence as follows: 
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FIGURE 10.35 FIGURE 10.36 
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Consider, for example, that}3 is a 0 whenever the present register state is at 
S3 (= 0011). Therefore, the system would shift from state S3 to SI (= 0001) 
as per the state diagram of Figure 10.34. If the sequence generator in this 
example enters an unused state due to a glitch or on power-up, it will 
return to the decade sequence after a maximum of two clock pulses. 
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10.9 Counter and 
Register Applications 

FIGURE 10.38 Serial Adder 
Configuration. 

There are hundreds of applications of counters and shift registers. 
They are used extensively in computers. In general, digital com­
puters process numbers by repeated arithmetic and logic opera­
tions. Execution of a specific instruction usually involves moving the 
instruction and data between registers. The data are operated on by 
the ALU as they are transferred between registers. These transfer 
sequences are in turn controlled by sequential circuits. In particu­
lar, registers provide the means for the storage of bits as they are 
being processed. On the other hand, counters keep track of the next 
memory location and count the intervals in the sequences that con­
trol these complex operations. In this section we shall consider only 
a few of their many important applications. 

The operations in digital computers are performed in parallel in 
most cases since this is a faster mode of operation. In comparison, 
serial operations are slower but require less complicated and less 
expensive circuits. Consider the add function. In Chapter 5 the 
design of parallel addition circuits was examined in detail. The 
techniques developed were reasonably fast but they involved very 
complex circuitry. Frequently, the designer must make a trade-off 
between time and the number of components. 

The add operation can also be performed by loading the addend 
and augend into two serial shift registers and shifting one bit from 
each register into a single-bit FA, as shown in the block diagram of 
Figure 10.38. The carry-out of the FA is stored in a D FF and fed 
back as the carry-in to the FA to be added to the next pair of signifi­
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FIGURE 10.39 Generation of 
Timing,Sequences: [a] Circuit and 
[6] Timing Diagram. 
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10.9 Counter and Register Applications 

cant bits from the shift registers. The sum bit is shifted into the shift 
register containing the augend as the augend bits are continually 
being shifted out to the right. 

Initially the shift registers A and B hold the augend and addend 
and the D FF is cleared. The summation is achieved by connecting 
each pair of bits, through shifting, together with the previous carry­
out into the FA circuit and by transferring the sum bits serially, into 
the register A. The ADD command starts and stops the operation. 
When ADD is high the registers perform a shift-right operation at 
each clock, and when ADD is low the registers maintain a hold 
mode. In the next chapter we shall consider every aspect of how to 
design such a serial adder circuit. In the meantime we will develop 
other relevant concepts. 

Operations in digital systems are controlled by a sequence of tim­
ing pulses. The control unit in a serial computer must generate a 
signal that remains high for a number of pulses equal to the number 
of bits in the shift registers. For example, the serial adder system of 
Figure 10.38 requires a control signal, ADD, for its operation. Fig­
ure 10.39[a] shows a control circuit that generates a signal that 
remains high for a period of 16 clock periods. The four-bit IC 
counter and the SR FF are initially CLEARed. The BEGIN signal 
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FIGURE 10.40 Four-Bit Ring 
Counter: [a] Circuit and [6] 
Timing Diagram. 

sets the SR FF, which in turn enables the counter. The FF output Q 
remains high. for 16 pulses, as shown in the accompanying timing 
diagram of Figure 1O.39[b]. When the counter reaches count 1111, 
HALT is activated, which in turn resets the FF. The BEGIN signal 
is synchronized with the clock and is made to stay on for one clock 
period. It could be made to stay on for a longer period; however, if 
it is made to last for more than 15 clock periods, the circuit will not 
function as expected. This HALT signal might be used in another 
similar circuit to generate a BEGIN pulse. 

In a parallel mode of operation, a single pulse is generally used 
to specifY the time at which an operation should be executed. Shift 

registers may be used to realize such a timing circuit when con­

nected as a ring counter. A shift-right register used as a ring counter is 


. shown in Figure 10.40. A feedback path is provided from the serial 

output to the serial input of the shift register. A shift register con-
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nected as such circulates the register contents. Initially the CLEAR 
input is set to a 1. This presets the right-most FF to a 1 and clears 
the others. The starting output word, therefore, is 0001, and as the 
clock pulses occur the output word becomes 1000,0100,0010,0001, 
and so on. Only four unique states are possible. This circuit would 
allow timing four sequential operations by tying each of the four 
operation's initiating lines to one bit of the ring counter. Each oper­
ation would then be active one-fourth of the time. 

A four-bit binary counter has 16 counting states, whereas the 
ring counter has only four states. Thus the ring counter makes an 
extremely uneconomical use of FFs, which is more true for systems 
requiring a large number of timing signals. An excellent alternative 
to using an uneconomical ring counter is to use an n-bit binary 
counter and an n-to-2T1 line decoder. This combination is often 
referred to as a Moebius or Johnson counter (no relation to the coau­
thor). It also involves a shift-right register like that of a ring counter, 
but it is connected in a switch-tail configuration. 

As stated earlier, an n-bit ring counter provides only n distin­
guishable states. The number of states can be doubled if the shift 
register is connected in a switch-tail configuration, as shown in the 
four-bit Johnson counter of Figure 10.41. Here Qo instead of ~ is 
fed back as the D3 input. The register shifts one bit to the right with 
every clock pulse, and at the same time the complement value of 
the fourth FF is transferred to the left-most FF. Consequently, this 
would result in eight different counting states: 0000, 1000, 1100, 
1110, 1111, 0111, 0011, and 0001. These eight states must be 
decoded to give eight distinct timing sequences. Unlike the previous 
circuit, the least significant FF need not be preset. For minimum 
chip count, a ring counter or a Johnson counter is the best choice 
for a timing circuit. 

We have emphasized that counters are often used for sequencing 
various arithmetic and!or logic operations. And in most instances 
these operations are exe~uted only if certain conditions are met. Fig­
ure 10.42 shows a four-state controller that can control four distinct 
operations. The sequencer circuit consists of a two-bit synchronous 
counter, a l-of-4 MUX, and a 2-4 line decoder. Each of these four 
operations is activated by a low on the respective sequencer output. 
The sequencer output, Dm will become low during its allocated time 
only if C (representing the corresponding condition) is a 1. Then 

counter is first CLEARed. Consequently, it S'I:ARTs at the 00 
address when the function Fo is performed provided the condition 
Co is met. The function corresponds to a specific operation, and the 
condition Co may be the result of one or several test results. When 
the counter reaches the 01 value the function Fl is executed, pro­
vided that the condition C1 is met. The synchronous count allows 
the operations to be executed only at regular intervals. Once the 
sequencer is STARTed, the test conditions determine whether or 
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FIGURE 10.41 Four-Bit Johnson 
Counter: [a]· Circuit and [6] 
Timing Diagram. 
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not the function is selected by the decoder. If the condition is not 
met, the decoder remains disabled, and as a result the correspond­
ing function is not executed. The significance of a sequencer circuit, 
such as that of Figure 10.42, becomes meaningful only when it is 
allowed to control a complex digital system. Prior to the sequencer 
implementation, concepts ofRTL (Register Transfer Language) 
will be introduced in Section 10.11. . 
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FIGURE 10.42 Two-Bit 
Operation Sequencer. 
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Digital systems have large numbers of registers, and as part of the 
computational process it is often required to transfer data from one 
register to another. Consider the case of m registers with n bits in 
each. To allow direct inter-register transfer it would be necessary to 
have a total of (m!)n data paths, which would require an awesome 
number of wires running between registers. Such a data transfer 
problem is solved by a group of wires called a bus. The bus concept 
is analogoUs to a mass transport system where each commuter waits 
in line until the transport becomes available (in this analogy the bus 
can carry only one passenger). For a parallel transfer of n bits the 
bus consists of only n lines, as shown in Figure 1043[a]. 

Each of the 1-of-8 MUXs is equipped with eight input lines, 
three select lines, and one output line. The least significant inputs of 
each MUX are connected to the respective FFs of register A. The 
FF A7 is connected to the first MUX, A6 is connected to the second 
MUX, As to the third MUX, and so on. The next significant input 
of each MUX is connected to the respective FFs of register B. This 
process is continued until all eight registers are connected. Figure 
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FIGURE 10.43 [a] Register-to­
Bus Transfer Circuit for Eight 
Registers, [b] Block Diagram of 
Figure 1O.43[a], and [c] Bus-to­
Register Transfer Circuit for Eight 
Registers. 
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FIGURE 10.44 I6-Bit Scratch­

Pad Memory: [a] Block Diagram 
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1O.43[a] shows the necessary connections. When the select lines, x,y, 
and z, are all low the least significant input to each of the MUXs is 
selected, and consequently the bus is loaded with the contents of 
register A. Each combination of the x, y, and z inputs selects the 
contents of a particular register and the contents are then attached 
to the bus. The simplified block diagram is shown in Figure 
1O.43[b]. It is possible to design a bus system without the MUXs if 
the registers have tri-state outputs or are connected to the bus using 
tri-state buffers. Finally, the contents of the bus are required to 
reach a certain destination register. This requirement is accom­
plished by the circuit arrangement of Figure 1O.43[c] where the 
select lines x',y', and z' determine the particular destination register 
by means of a 3-8 line decoder. Upon receiving the proper select 
inputs, the contents of the bus are loaded into the selected register. 

Another example of the use of a bus involves a simple memory 
device. Registers often are assembled together to form a larger stor­
age array. This arrangement of registers is referred to as a scratch­
pad memory~ Figure 10.44[a] shows an arrangement of registers that 
can store up to four four-bit words. The device consists of four regis­
ters that in tum have four FFs each. When the WRITE ENABLE 
(WE) is low, the four data inputs, 10, Ib 12, and 13, are routed to a 
particular location of each register as specified by the entries in the 
WRITE SELECT (WS) lines. A 00 on the WS lines will store the 
input bits in the respective Oth cell of the registers. Similarly, 01, 10, 
and 11 applied at the WS lines would respectively select the first, 
second, and third bit of each register. Stored data from the scratch­
pad memory may be retrieved through the four output lines by 
applying a low to the READ ENABLE (RE) and necessary address 
bits to the READ SELECT (RS) lines. Figure 10.44 [ b] shows the 
logic diagram of the memory formed using gated D latches. 

Scratch-pad memory, although very fast, is not extensively used. 
It is not particularly suitable for LSI because too many pin-outs 

WRITE LOGIC 1---+1 READ LOGIC 

10 00 

I, lData 

lOUtputs12 

13 

WE 

READ ENABLE ~ ~ 
WRITE SELECT READ SELECT 
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FIGURE 10.44 (Continued) 16· 
. Bit Scratch-Pad Memory: [b] 
Circuit Showing D Latch at the 
ith Row andjth Column and the 
ith Output. 
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EXAMPLE 10.6 

Design a four-bit register capable of 
perfonning the 2~s complement 
operation on its content. 

O;o---r--------- ­
RS, 

RSo 

O;,---r--""'" 

RS, 


RSo 


Oi2---r--""'" 

AS, 


RSo 


0;3--l ---"" 
RS, 0---' 

RSo 

AS lines: RS" ASo 
WS lines: WS" WSo 

make such a chip economically unattractive. Again, being 
fabricated from several gatesI FFs, scratch~pad uses significant 
power and chip area. We shall look at some of the alternative mem­
ory sources in Chapter 12. 

The applications of shift registers and counters are limited only 
by the. imagination of the designer. Their importance will become 
more obvious as the design of digital systems continues in this and 
subsequent chapters. 

SOLUTION 

One of the procedures for performing the 2's complement operation (see 
Section 1.4 for details) requires that all bits on the left of the least signifi­
cant nonzero bit be complemented. Using this scheme, a register can be 
built for loading the numbers in parallel and then performing the 2's com­
plement operation using additional logic. 
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FIGURE 10.45 


10.10 Bus Concept 

Define a control input, LOAD, to be used for selecting the parallel load 
operation, and its complement, LOAD, for selecting the 2's complement 
operation. The loading excitation corresponding to a register consisting of 
only T FFs is given by 

T; = LOAD' Ii + LOAD' (0-1 + 0-2 + ... + Qo) for i > 0 

where Ii is the parallel data input to the ith FF. The first term corresponds 
to loading the parallel input and the remaining terms correspond to per­
forming a complement operation if at least one of the less significant bits is 
a 1. The equation is valid as long as the FFs have been CLEARed initially. 

Note that in this complementing scheme Qo remains unchanged. 
Accordingly, the excitation equation for the least significant FF is given by 

To = LOAD' 10 + LOAD (Qo)0 

The overall excitation equation for the ith FF is now obtained as follows: 

T; = LOAD Ii + LOAD (0-1 + (0-2 + (0-30 0 

+ (0 0 • + (Qo + 0) ...)))) 

Consequently, if at least one of the bits on the right is a 1, the bit in ques­
tion is complemented. The equation may be used to obtain the register cir­
cuit shown in Figure 10.45. The register should be LOADed with the data 

CLEAR 

'.~'. f 

01 

PR 

T1 

00 

CLR 

HOLD 

~------------~~------------~~------------~~~-- LOAD 
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EXAMPLE 10.7 

Design a digital wristwatch that 
displays the month, day, and time 
accurate up to 1 second using 
BCD-to-seven-segment LED 
display devices. All display except 
for seconds should be adjustable by 
the corresponding external 
ADJUST switches. Assume that the 
ADJUST switches can be used only 
if the external DISABLE switch has 
been turned on. The external 
BEGIN switch may be used to 
resume the operation. Assume 
further that the MINUTE (MIN) 
ADJUST automatically resets the 
seconds and you have a 60 Hz 
quartz crystal to run your device. 

only after the FFs have been CLEARed. The corresponding 2's comple­
ment i~ then obtained by supplying a low LOAD input. Note that a high 
HOLD could be used at any time to keep the register content unchanged 
indefinitely. 
Pl. r 1! = 

SOLUTION 

A detailed examination of the problem reveals that this device can be 
made to function in the prescribed way in several steps: 

Step 1. Sixty of the 60 Hz clock pulses may be counted in sequence to indi­
cate 1 second. 

Step 2. Sixty seconds may be counted in sequence to indicate 1 minute. 

Step 3. Sixty minutes may be counted in sequence to indicate 1 hour. 

Step 4. Twelve hours may be counted in sequence to indicate one-half day. 

Step 5. Two sequences of 12 hours may be counted to indicate 1 day. 

Step 6. Days are counted, and once the count equals the maximum number 
of days in a given month, the month count should be made to go up by 1 and 
the day count should be set to 1. 

Step 7. At the completion of 12 months, the month count should be set to 1. 

From the steps listed it appears that this problem can be solved by inter­
connecting several counters and decoders. A list of the components needed 
for the wristwatch includes the following: 

scale-of-sixty counters, 

up-counter that counts 1 through 12, 

binary-ta-BCD converters, 

decoding circuit to determine the last day of a month, 

multiplexers, 

TFF, 

seven-segment display devices. 

Steps 1-3 can be realized using three modulo-60 counters. Two modulo-12 
counters could be used to implement Steps 4-7. Steps 5 and 6 can be 
implemented, respectively, using a TFF and last-day decoder circuit. BCD 
converters and seven-segment displays will be used for the purpose of dis­
play, and MUXs will be used for routing the data. • 

The IC counter module of Figure 10.18 will be used as the basic unit for 
producing the counter modules a and b as shown, respectively, in Figures 
10.16 and 10.17. 

Internally, module a consists of two four-bit IC counters casca.ded 
together. The carry-out of the first is made to enable the second counter 
(see Figure 10.19 for a similar circuit). When the count reaches 59. 

j 
j 
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FIGURE 10.46 
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(111011), zero count is LOADed. However, module b consists of a single 
four-bit IC counter that is made to LOAD 0001 every time the count 
reaches 1100. 

Module c was designed already in Example 5.7 (Figure 5.24). The only 
other module that remains to be designed is the decoding circuit for identi­
tying the last day of a month. In terms of their lengths, the months may be 
classifed into four groups, respectively having a total of 28, 2~, 30, and 31 
days. The month of February has 28 days normally but has 29 days in a 
leap year. The module dmay be designed accordingly, as shown in Figure 
10,48, using a l-of-4 MUX and two four-bit IC counters. The end-of­
month is decided upon by the four values of 4B. The MUX output 
becomes a 1 at the end of 28, 29, 30, and 31 input pulses when AB is 00, 
01, 10, and 11, respectively. The decoding circuit is set to 1 each time an 
end-of-month has been located. 

, The modUles may now be assembled to yield the wrist watch using the 
steps described earlier. In &tep 1 the 60 Hz oscillator output is introduced 
into module a, as shown in Figure 10.49. A high SEC output indicates that 
an integral multiple of 60 input pulses has been counted. This is followed 
by Step 2, as shown in Figure 10.50, where a BEGIN input would allow 
another module a to count SEC pulses. For every integral multiple of 60 
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FIGURE 10.47 
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SEC pulses, a high will be generated at the minute output, MIN. The out­
puts of this module a are then converted to equivalent BCD numbers by 
means of three binary-to-BCD converter modules as shown in the circuit. 
For an explanation of this multi-bit, binary-to-BCD conversion scheme, 
review Example 5.B. 

The BCD output is displayed by meatlS of BCD-to-seven-segment 
LED display devices. The display will become 00 whenever the MIN 
ADJUST input is activated. This allows for the fact that the second display 
is cleared automatically whenever the minute display needs to be adjusted. 
Note, however, that the DISABLE input must always be activated prior to 
MIN ADJUST operation. The resulting low at M </utput would be used 
for all of the remaining ADJUST operations. 

In Step 3, as shown by the circuit of Figure 10.51, the output of Figure 
10.50 is fed into another module a. This configuration is made possible by 
means ofa 1-of-2 MuX selectable by M. A high M would cause the circuit 
to count MIN pulses. In comparison, a low M would allow the adjustments 
of MIN counts. The HOUR output becomes a 1 corresponding to every 
integral multiple of 60 MIN pulses. 
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FIGURE 10.48 
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FIGURE 10.50 
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FIGURE 10.52 


FIGURE 10.53 


10.10 Bus Concept 

The circuitry in Step 4 is constructed using a module b, as shown in Fig­
ure 10.52. Its working principle is very similar to that of Figure 10.51. The 
112-DAY output becomes a 1 corresponding to every integral multiple of 
12 HOUR pulses. 

The circuit of Figure 10.53 corresponds to both Steps 5 and 6. The 
counting circuit goes up by a 1 corresponding to every other 112-DA Y 
pulse. Every time the end-of-month is located by means of AB inputs, the 
circuit ofmodule d is set to day 1. The MONTH output becomes high each 
time the end-of-month is identified. 
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In the last step, as shown in Figure 10.54, the MONTH output is fed 
into a module h. The FF outputs, Qo, Qc. Qs, and ~. and the external 
input, LEAP, are decoded to generate A and B. These outputs, A and B, 
are fed into modul~ d of Figure 10.53. Note that LEAP is the extra input 
required for indicating that the current year is a leap year. This input 
needs to be entered prior to February 29. The month decoder circuit of 
Figure 10.54 examines the four FF outputs of module h. For the months 
January, March, May, July, August, October, and December, both A and 
B are set high. For all other months, except February, A = 1 and B = O. 
In February A = B = 0 if LEAP = 0, and A = 0 and B = 1 if LEAP = 
1. Consequently, the decoder has the following Boolean equations: 

A = Qo + Qc + ~ 
B = Qo EB ~ + ~Qc' LEAPFIGURE 10.54 
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10.11 Register Transfer 
Language Operations 

The design is now complete. After counting the chips involved, let's call 
this a table dock. Note that BCD counters instead of binary counters could 
have been used in this design, which would have reduced the total chip 
count. However, the incentives behind this particular design were to 
demonstrate the use of binary counters, to demonstrate the use of binary­
to-BCD converter modules, and to demonstrate the thought processes 
involved in digital circuit designs. 

The diversity of register types and applications points to the need 
for concise language to describe the flow of infdimation (and pro­
cessing enroute) of bits between registers. The most commonly used 
way to attain this goal is by an informal scheme called register trans­
fer language, RTL, which was introduced first by 1. S. Reed. A thor­
ough investigation would reveal that a complete register transfer 
description is made up to two units: data and control. The data unit 
consists of registers, data paths, and logic necessary to implement a 
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set of register transfers. The control unit, on the other hand, generates 
necessary signals in a specific sequence to regulate the register 
transfers within the data unit. The R TL scheme has the ability to 
specify the hardware involved in both units. 

The simplest of all RTL operations is represented by P ~ Q, 
which indicates that the data in register P are replaced by the data 
in register Q. It is also understood that both of these registers have 
the same number of bits. Such an operation can be completed dur­
ing a single clock period, and thus it corresponds to a single-state 
transition of a sequential machine. One elock period, referred to as 
the cycle time, may be taken as the basic unit of time at the MSI 
complexity leveL For uniformity, the following standardization is 
essential: 

1. 	 The contents of the registers should be denoted by one or 
more letters with the first always in uppercase. A concate­
nated register is the result of joining two or more registers 
in a string (represented by the register symbols separated 
only by commas) so that the LSB of the first-mentioned 
register is one bit to the left of the MSB of the second one, 
and so on. 

2. 	 Transfer between the registers will be considered parallel. 
In other words, all of the bits 'will transfer at the same 
instant of time. 

3. 	The bits of each register shall be numbered from right to 
left. Ao and An- 1 respectively represent the LSB and the 
MSB of an n-bit register named A. Note also that A1,4 rep­
resents the bits 1 and 4 of register A, A1-4 represents bits 1 
through 4 of register A, and AM represents the subset of bits, 
M, of the register A. 

Table 10.1 lists some of the most important RTL examples that 
include arithmetic, bit-by-bit logic, shift, rotate, scale, and condi­
tional operations. In order to differentiate between the arithmetic 
and the logic operations, the following convention is maintained. 
The arithmetic addition is represented by a + symbol, the logical 
OR operation by a V symbol, and the logical AND operation by a 
1\ symboL The shift, rotate, and scale operations are generally rep­
resented by two lowercase letters. For shift and rot~te, the first letter 
indicates the type of operation (r for rotate and s for shift) and the 
second letter indicates the particular direction (r for right and. I for 
left). Furthermore, in the rotate operation the LSB and the MSB 
are considered to be adjacent. For all shift operations a 0 will be 
assumed to occupy the vacant bit. For the scale operations sel indi­
cates scale left and scr indicates scale right. 
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TABLE 10.1 Examples of RTL 
Type of Register Bits after 

Operation Meaning Operation 

General 
A3 -E- Az Bit 2 of A to bit 3 of A A = 11110 
A3 -E- B,4 Bit 4 of B to bit 3 of A A = 11110 
AI_3 -E- BI­ 3 Bits 1 through 3 ofB to bits 1 A = llOOO 

through 3 of A 
Bits 1 and 4 of B to bits 1 and A = 10100 
40fA 
Groups of bit Z of B to bits 1 A = llOOO 
through 3 of A 

Arithmetic 
B-E-O Clear B B = 00000 
A-E-B+C Sum of Band C to A A = 11001 
A-E-B-C Difference B - C to A A = 10111 
C-E-C+l Increment C by 1 C = 00010 

Logic 
A-E-BI\C Bit-by-bit AND result of B A = 00000 

and Cto A 
A -E-B V C4 OR operation result of B with A = llOOO 

bit 4 of Cto A 
C-E-V Complement C C = 11110 
B-E-B+ 1 2's complement of B B = 01000 
B-E-AE]jC X-OR operation result of A B = 10111 

and C to B 

Serial 
B -E-sr B Shift right B one bit B = 01100 
B -E- sl B Shift left B one bit B = 10000 
B -E-sr2 B Shift right B two bits B = 00110 
B-E-rrB Rotate right B one bit B = 01100 
B -E- rl2 B Rotate left two bits B = OOOll 
B -E-scr B Scale B one bit (shift right B=11100 

with sign bit unchanged) 
B -E- sel B Scale B one bit (shift left with B = 10000 

sign bit unchanged) 
Shift right concatenated B BJC = 0011000000 
and C two bits 

Conditional 
IF(B4 = 1) If bit 4 of B is ai, then C is C = 00000 
C-E-O cleared 
IF (B > C) If B is greater than or equal B = 00000 
B -E- 0, C1 -E- 1 to C, then B is cleared and C C = 00011 

is set to 1 

Initial values: A = 10110, B = 11000 and C = 00001.--z 

The operations as described in Table 10.1 may now be combined 
to write complex functions or a sequence of operations. The control 
conditions are included along with the operation state to distinguish 
one set of executions from another. Recall from the circuits of Fig­
ure 10.43 that the execution of an operation and the transfer of data 
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FIGURE 10.55 Realization ora 
Register Copying Operation. 

10.11 Register Transfer Language Operations 

are usually regulated by one or several control conditions. For 
example, the loading of the contents of A into the bus may be 
expressed as follows: 

x.ji . Z: bus ~ A ; 

The control condition xjiz is separated from the corresponding oper­
ation by the H:" sign, while the sign ";" indicates the end of the 
operation. This RTL statement indicates that when xjiz = 1, the 
content of register A should be tran,sferred to the bus. When more 
than one operation, A ~ Band B ~ sr B, are to be performed 
under the same control condition S = 1, the operation is expressed 
as follows: 

S: A ~ B ; B ~ sr B ; 

The operations that are performed simultaneously follow the same 
control condition. Accordingly, when S is true, B is transferred to A 
and if) also restored after being shifted right one bit. Similarly, the 
RTL operations describing the function of the circuit of Example 
10.6 may be summarized as follows: 

CLEAR: R ~O; 


LOAD: R~I; 


LOAD: R ~R + 1 ; 


where R is the register receiving the input bits from register 1. These 
three RT~ statements describe the action of a significant amount of 
hardware. In this and the next chapter we shali be discussing sev­
eral of the complex circuits and their correlation with the corre­
sponding R TL statements. Such one-to-one correspondence will 
make us appreciate the simplification that results from the use of 
RTL. 

Consider the circuit shown in Figure 10.55. Here we have two 
registers, A and B, having four D FFs each. For simplicity the FFs 

! ! ! 
A 

V 03 
V O2 

V 0 1 Do 

'03 0 3 O2 O2 01 0 1 00 00 

-6 6 ~ 6 
V 03 

V O2 
V 0 1 

V Do 

B 

03 0 3 O2 O2 01 01 00 0 0 

x 
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FIGURE 10.56 Realization of: 
[a] a Complement Transfer 
Operation, [6] a Shift-Right 
Operation. 

Do 

0, 

03 03 O2 O2 0, 0, 00 00 

within the registers are not internally cascaded together. The FF 
outputs of register A are connected to the respective D inputs of reg­
ister B. Corresponding to the trailing edge of X input, the contents 
of register A are loaded into register B. This hardware operation 
will be represented by the following RTL statement: 

X: B ~A ; 

This could also be written as follows: 

X: B3 ~A3, B2 ~A2' Bl ~Ab Bo·~Ao; 

Both of these operations are equivalent; but we would prefer to use 
the first form since it is more concise. 

Note that a transfer operation is really a copying operation 
where the contents of the source register remain unaltered. This 
type of R TL operation is the most common, but there are other pos­
sibilities. Consider the four situations of Figure 10.56. In each of 
these cases each of the registers is of four-bit length. 

In Figure 10.56[a] the Qoutputs of register A are connected to 
the respective D inputs of register B. A clock input P would result in 
the following transfer: 

P: B ~A; 

Figure 10.56[0] shows register A where its MSB is connected to a O. 
Each of the ~ outputs of register A, except for the LSB, is fed to the 
Dn- 1 input of the same register. A pulse at R would cause the fol­
lowing transfer: 

R: A ~sr A; 

A 


SRI 

Do 

0, 0, 00 00 

R 

P 
A 

03 

8 SRO 

[a] [b] 
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FIGURE 10.56 (Continued) 
Realization of: [c] a Rotate-Right 
Operation, and [d] a Logical 
Operation and Transfer. 

I 
6 

V D2 V Dl V Do 

O2 O2 01 0 1 00 00 

s 
..~~ I A I 6 

V D3 
A 

>~h 03 

I I 
.,~, 

[c) ,. 
-c 

Do Do 
A B 

c 

[d) 

Similarly, Figures lO.56[c-d] respectively corresp~nd to the follow­
ing register transfers: 

s: A ~ rr A ; 


T:C~AAB; 


Note that in all of these valid RTL expressions, the source and des­
tination registers have the same number of bits. 
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... EXAMPLE 10.8 

Design a typical stage for perfonn­
ing the following operations: 

Tl:A~O; 

T2:A ~A VB; 

T3: A ~A 1\ B; 

T4: A ~A; 

where A and B are two multi-bit 
registers of equal bit size. 

FIGURE 10.57 

SOLUTION 

You might decide to use JK FFs for the design of register A. Register B 
doesn't need to be designed because it is no different than a regular register 
with parallel outputs. The JK excitations necessary to turn on the ith FF 
for perfonning the required operations are obtained as follows. 

A+-O is possible when Ki = Tl 

A +- A V B is possible whenJ; = T2 ' B; and K; = 0 

A ~ A 1\ B is possible when J; = 0 and K; = T3 ' B; 
is possible when Ji = Ki = T4 

The ,corresponding circuit is obtained as shown in Figure lO.57. 

Ai 

T,-----. 

T2 ---t---; 
)--------1 J; Oi 

CLOCK 

~-r----r-----------~ 

10.12 RTL 

Applications 


The importance ofRTL to describe the internal operations of a dig­
ital system is primarily due to the flexibility with which a design 
can be described and the direct way the data and control circuitry 
can be realized from RTL statements. Consider, for example, a sys­
tem with a four-bit input, I, a four-bit output, 0, and three four-bit 
registers, X, Y, and Z, in which the following algorithm is to be 
implemented: 

A: X ~I; 

B: Z ~s12 X; 


C:Y~X; 


D: Y ~ Y /\ Z; 

E: IF (Y3 = 1) 0 ~ 0 ELSE 0 ~ Y; 
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The algorithm begins at state A and continues through state E. 
The input, I, is shifted left two bits and stored in Z, and the comple­
mented input is stored in Y. This operation is followed by a bit-by­
bit AND operation between the contents of Y and Z, and the result 
is stored subsequently in Y. If Y3 = 1, only 0000 is placed on the 
output lines; otherwise, the contents of Y are placed on the output 
lines. In brief, this particular algorithm includes various logic, shift, 
and conditional transfers. 

We shall now attempt to develop the hardware necessary from 
this RTL algorithm. Each of these RTL statements has two signifi­
cant parts. In each statement, the right side of the ~ sign specifies 
the signals that must be generated for either storage in registers or 
transfer to output lines. Correspondingly, the left side of ~ specifies 
the destination registers or output lines. For this example X can be 
obtained by taking lines from the Qoutputs of register X No logic 
gates would be necessary for the shifting operation, as evident from 
Figure 1O.56[bJ. However, four AND gates would be necessary in 
state D. Figure 10.58 shows the connections necessary to develop the 
required signals, I, X, sl2 x:. 1', Y /\ Z, and O. 

The next step is to feed the generated signals to the respective 
destination register or output lines. Figure 10.59 shows the involved 
connections. The complete RTL algorithm requires five clock peri­
ods. Corresponding to the first RTL statement, the inputs, I, are 
loaded to the D inputs of register X at the trailing edge ofclock A, a 
transfer pulse fed to the clock input of register X during the allo­
cated time for the first RTL statement. Similarly, at the trailing 
edge of clock B, AlAoOO are loaded into register Z. This is equivalent 
to the transfer of A after it has been shifted left twice. The third 
RTL statement requires that X be transferred to Y. This could have 
been possible simply by loading X to register Y at the trailing edge 
of clock C. However, it can be seen that the fourth RTL statement 
also includes a load operation involving register Y. To allow for 
these load operations, two separate ports of AND gates are used to 
select the inputs to Y, and a port of OR gates is used to combine 
them. The Qoutputs of register X are transferred throllgh one of the 
AND ports by CL, a level signal that is high during the period 
available for the third R TL statement. Similarly, the corresponding 
outputs of both Y and Z are transferred through the other AND 
port by DL. This AND port functions as the bit-by-bit AND logic 
circuit and also as the select port for register Y. The,outputs of these 
two AND ports are loaded into register Y at the trailing edge of 
clocks C and D, respectively. The conditional transfer of the fifth 
RTL statement is realized when EL is high by ANDing each of the 
Y bits with Y3 and EL. It is appropriate to point out that when data 
are loaded into a register, they remain there until the power is 
turned off or other data are loaded. However, when data are placed 
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FIGURE 10.58 Preliminary Step 
for the Development of Signals: [a] 
1, [b] Xand sl2 X, [c] Yand Y A Z, 
and [d] O. 

o 0 

x 


~ 
s/2 X 

y Z 
0, 0 0 

03 O2 O2 0, 0, 00 00 

y 

[c] 

~ 
YAZ o 

[d] 

on the output lines, they remain there only during the steps for 
which they are valid. 

The next step in the design is to regulate this algorithm by gener­
ating A, B, CL, C, DL, D, and EL signals in the proper order as 
specified by the algorithm. To run the ~ystem, a synchronizing sys­
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FIGURE 10.60 Timing Diagram 
of the Control Unit. 

tern clock signal is necessary) as shown by the timing diagram of 
Figure 10.60. The time during which each step is valid is indicated 
by the level signals. When a level signal is ANDed with the system 
clock, the corresponding transfer clock pulse is generated. Even 
though AL and BL are not used for any of the operations in Figure 
10.59, they are considered necessary in the control unit since they 
are used to generate A and B clocks, respectively. However, there is 
no need to generate the E clock signal. 

We have already seen in Section 10.9 how various register orga­
nizations can be used to produce an operation sequencer. This par­
ticular algoritlun requires only a five-bit ring counter, as shown in 
Figure 10.61. Using CLR input, theLSB of this ring counter is set 
and the remaining FFs are reset asynchronously. Consequently the 
FF outputs start generating the respective level signals in the correct 
order. The corresponding transfer clock pulses are realized by 
ANDing the level signals with the system clock. 

It is now appropriate to consider several practical aspects about 
the functioning of this control unit. In order to correctly change Qs 
from a 0 to a 1, the CLR operation must be done in such a way as 
to assure a full clock period for the first R TL statement. The circuit 
might be expected to HALT this algorithm at the end of the algo-
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FIGURE 10.61 Controller for the 
Data Unit of Figure 10.59. 

A B C CL o OL EL 

, "r 

l 
L 

~ 
L 

A 

r-

A A A 
- 05PR 05 . D4 PR 04 03 PR 0 

3 
O2PR O2 0, PR 0, Do PR 0

0 f­

~> ClRQ5 

ClEAR-'" V~ 

-:.cIo '. 
" 

,-,t ' 

rc I> ClR04 rC :> ClR 03 rC > ClR02 -<: :> ClR 01 r<: > ClROo 
~ ( 

ISystem 
clock 

10.13 Summary 


rithm, which could be accomplished by ANDing the system clock 
with Ql prior to supplying it to various points of the circuit. This 
arrangement will disable the system clock when QI = 1. EL 
becomes high and stops the control circuit froni repeating the algo­
rithm. Consequently the outputs would be available indefinitely. In 
many of the arithmetic circuits of the next chapter we will consider 
the HALt operation in more detail. 

Throughout this section we have preferred to use negative edge­
triggered FFs, primarily because transfer clock pulses are easily 
derived by ANDing the corresponding level signal with the system 
clock. Generating the transfer clock pulses would not be as easy if 
positive edge-triggered devices were used. Thus in the event a 
designer is faced with Using a positive edge-triggered device, several 
modifications are necessary. These modifications involve inverting 
the system clock before feeding it to the clock input of positive edge­
triggered devices. Furthermore, NAND gates rather than AND 
gates should be used for generating the transfer cJock pulses. 

In covering the application of what is known as the traditional 
sequential machines, our studies moved through synchronous and 
asynchronous counters; serial, parallel, and mixed-mode registers; 
and operation sequencers. An understanding of these functional 
units was subsequently applied to the development ofRTL (register 
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transfer language). This unique tool was then implemented in the 
design of both data and controller units. An understanding of the 
concepts presented is necessary, for much of the remaining material 
in this book is dependent on understanding this chapter. 

Problems 
 1. 	 Determine the state diagram of the three-bit programmed 
counter whose excitation equations are given as follows: 

Dl = Q3Ql + Q2Ql 

D2 = Q2(~ + Q3) 

D3 = Q3 


2. 	 Design a three-bit, Gray-code counter using (a) D FFs and (b) 
JKFFs. 

3. 	 Obtain a four-bit presettable asynchronous counter. Discuss 
its operation and significant characteristics. 

4. 	 Design a modulo-12 counter using a modulo-3 and a modulo­
4 counter. Discuss its functions and characteristics. 

5. 	 The registers of Figure 10.38 store six bits each. A holds 
010101 and B holds 001010. List the binary values in A and Q 
after each shift. Assume that Qwas cleared initially. 

6. 	 You are given D FFs and several l-of-4 MUXs and nothing 
else. Obtain the logic diagram for a three-bit register that is 
able to do the following: hold the present data, shift right, shift 
left, and load new data in parallel. 

7. 	 Design a four-bit circulate-right shift register using (a) D FFs 
and (b) JK FFs. 

8. 	 VerifY the equations of the four-bit down-counter given in 
Section 10.2. 

9-. 	 Design a four-bit shift register using JK FFs and a minimum 
number ofassorted gates that performs the shift-left operation. 

10. 	 Explain how the unused sequences of Example 10.5 are 
obtained. 

11. 	 Design a divide-by-2048 counter using specific four-bit binary 
counters. The counter consists of a single FF, ~, followed by 
three cascaded FFs that form a divide-by-8 counter. It has two 
inputs, A and B, and four standard FF outputs, ~ through 
0J. The two reset inputs, Rl and R2, clear the FFs when both 
are high. The counter counts in sequence when at least one of 
the reset inputs is low. 

12. 	 Obtain a circuit of as few FFs as possible to sequence 16 differ­
ent operations. 

13. 	 Consider the truth table for a four-bit, Gray code-to-four-bit 
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binary equivalent conversion. It can be seen that if the MSB 
of the codes is disregarded, the numbers 8 through 15 will be 
found to be mirror images of the numbers 0 through 7. Design 
a parallel Gray code-to-parallel and serial binary converter 
using a four-bit shift register and only one FF. Explain the 
detailed functioning of the circuit. 

14. 	 Draw the logic diagram of a four-bit register with clockedJK 
FFs having control inputs for the increment, complement, and 
parallel transfer micro-operations. Show how the 2's comple­
ment can be implemented in this register. 

15. 	 Design a two-bit counter that counts up when control variable 
C is a 1 and counts down when C is a O. No counting occurs 
when the control variable D is a O. 

16. 	 Using a four-bit binary counter with synchronous clear and 
asynchronous load and clock action on the leading edge, com­
plete the necessary circuit to make a two-digit BCD counter. 
Make it as hardware-efficient as possible. 

17. 	 You have available a four-bit adder and a large assortment of 
gates, counters, multiplexers, and decoders. Design and draw 
the circuit for a device that will multiply a two-bit (plus sign) 
sign-magnitude quantity by 3. Note: You don't have to use an 
adder. 

18. 	 Using the four-bit adder and any additional circuits you want, 
design a circuit that will multiply a number X2X1XO (assume 
signed magnitude with the sign bit handled elsewhere) by 2.5. 
The result is to be rounded to the next highest integer if the 
product results in a fractional part. 

19. 	 Design the circuit whose block diagram is shown in Figure 
1O.P1, using decoders, counters, MUXs, FFs, and so on. The 
circuit has as inputs a clock and four select lines. The select 
lines determine the number by which the input clock fre­
quency is divided. The ou~put is a clock divided by the select 
line value. IfF is the frequency of the input clock and D is the 
binary value of the select lines, the output frequency,J, is FI 
(D + 1). 

CLOCK (0: 1 ) CLOCK (F) ---t>i 

r 	 o 

20. Design a two-bit counter that counts up one count at a time 
when C = 0 and counts up two counts per clock when C = 1. 
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21. 	 Using a four-bit universal-shift register, design a 12-bit, serial­
in, parallel-out, left-shift register. 

22. 	 Using a four-bit universal-shift register, design a 12-bit, paral­
lel-in, serial-out, right-shift register. 

23. 	 Using a four-bit universal-shift register, design a 16-bit, uni­
versal-shift register. 

24. 	 Use four-bit binary counters in parallel and assorted gates to 
realize a divide-by-39 counter. Show the circuit configuration. 

25. 	 Design a typical stage that implements the following logic 
microoperations: 
a. 	 Ql: A ~A V 13 b. PI: A ~A V B 


Q2: A ~A 1\ B P2: A ~A 1\ 13 

Q3: A ~A VB P3: A ~A V Ii 

Q4: A ~A 1\ B P4: A ~A 1\ B 


Ps: 	A ~A EB B 

26. 	 Describe the function and characteristics of the counter circuit 
of Figure 10.P2. 

FIGURE lO.P2 

J 1 0 1 

Kl 01 

27. 	 Obtain the universal state diagram for a four-bit, shift-left 
feedback register. 

28. 	 Obtain the universal state diagram for a four-bit bidirectional 
feedback register. 

29. 	 Design the additional circuitry that would be necessary in the 
table clock design of Example 10.7 so that the external LEAP 
input would not be needed. The table clock circuitry wou'ld 
have to take into consideration the consequence of a leap year 
on its own. 

30. 	 Design a wristwatch using BCD counters instead of biliary 

! 
counters. Comment on this design after comparing it with that 
of Example 10.7. 

31. 	 Design the complete data and control units for the algorithm 
of Problem 25a. 

32. Design the complete data and control units for the algorithm 
of Problem 25b. _ 



• • 

357 Suggested Readings 

FIGURE lO.P3 

Suggested Readings 

~ . 
1:'. 

33. 	 Using a seven-segment decoder and a display driver, design 
an electronic die as illustrated in Figure lO.P3. With equal 
probability the die should display the digits 1 to 6 on the 
seven-segment display when a switch is depressed and 
released. You may use a 1 MHz oscillator and a make/break 
push-button switch. 

+5 V 

1kH , 
7 

Die _I 
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