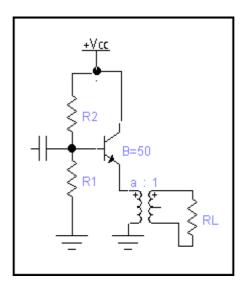
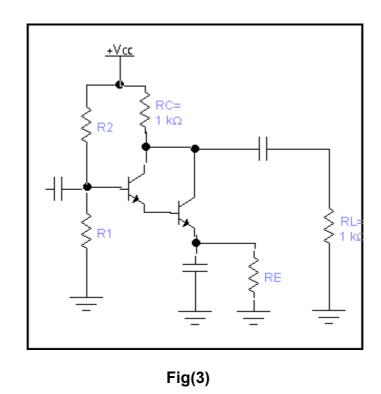

AAST Faculty of Engineering CE-Department Instructor:Dr.M. El-Banna


Sixth term EC233: Electronic Circuits I Year: 2004/2005 Sheet:3

1- Determine the overall current and voltage gains and the input resistance for the transformer coupled amplifier shown in figure. Use an npn transistor with a=4, R₁=2k Ω , R₂=4k Ω , V_{cc}=15V, β =100, R_L=500, neglect h_{ie}.



2- Design a transformer-coupled EF amplifier to drive a 10 Ω load with A_I=100 if V_{cc}=12V, V_{BE}=0.7V, the step down transformer turns ratio is 10 and β =50. Determine R₁,R₂, the power rating of the transistor, and the power dissipated in the load. Refer to the circuit shown in figure.

Fig(2)

- 3- A class A transformer-coupled EF power amplifier must deliver an output 0.5w to an 8 Ω speaker. What transformer's ratio is needed to provide this power if V_{cc}=18V ?.The transistor has β =100 and V_{BE}=0.7V.Assume zero resistance in the transformer. What transistor power rating is needed?.
- 4- Design a Darlington pair CE amplifier as shown in figure to provide an A_I of -4000 to a 1k Ω load. Design the amplifier for maximum output voltage swing and determine the value of the required maximum input voltage. Take β_1 =100, β_2 =200, V_{BE} for both transistors is 0.6V, V_{cc}=12V, R_c=1k Ω .

