AAST Faculty of Engineering CE-Department Instructor:Dr.M. El-Banna

Sixth term EC233: Electronic Circuits I Year: 2004/2005 Sheet:2

1-For the amplifier shown in circuit:

a-Find the values of R_1 and R_2 for I_{CQ} =8mA.

b-Determine the symmetrical output voltage swing for the values of part a.

c-Draw the ac and dc load lines.

d-Determine the power dissipated by the transistor and that dissipated by R_L V_{cc}=20V.

Figure(1)

2-Determine Av, Ai,and Rin for the amplifier shown in figure when: $R_L=R_B=5K\Omega$, $h_{ib}=40\Omega$, $\beta=300$,and R_E is as follows: $a-R_E=1000\Omega$, $b-R_E=500\Omega$, $c-R_E=100\Omega$, $d-R_E=0$.

3-For the circuit shown in figure, select I_{CQ} and V_{CEQ} for maximum symmetrical output voltage swing.

a-Determine the values of R_1 and R_2 in order to achieve this operating point.(Vcc=12v)

b-Find the maximum symmetrical output swing.

c-Determine the power dissipated by the transistor and the power delivered to the load.

Figure(3)