AAST
Faculty of Engineering
CE-Department
Instructor:Dr.M. E1-Banna

Sixth term

EC233: Electronic Circuits I
Year: 2004/2005
Sheet:2

1-For the amplifier shown in circuit:
a-Find the values of R_{1} and R_{2} for $I_{C Q}=8 \mathrm{~mA}$.
b-Determine the symmetrical output voltage swing for the values of part a.
c-Draw the ac and dc load lines.
d-Determine the power dissipated by the transistor and that dissipated by $R_{L} V_{c c}=20 \mathrm{~V}$.

Figure(1)

2-Determine Av, Ai, and Rin for the amplifier shown in figure when:
$R_{L}=R_{B}=5 K \Omega, h_{i b}=40 \Omega, \beta=300$, and R_{E} is as follows:
$a-R_{E}=1000 \Omega$,
$b-R_{E}=500 \Omega$,
$c-R_{E}=100 \Omega, d-R_{E}=0$.

Figure (2)

3-For the circuit shown in figure, select $I_{C Q}$ and $V_{C E Q}$ for maximum
symmetrical output voltage swing.
a-Determine the values of R_{1} and R_{2} in order to achieve this operating point.(Vcc=12v)
b-Find the maximum symmetrical output swing.
c-Determine the power dissipated by the transistor and the power delivered to the load.

Figure(3)

