1-Find the location of the Q-point of the amplifier shown in figure, when an npn transistor is used.Assume that Vcc=10V, $V_{B B}=1 \mathrm{~V}, R_{B}=10 \mathrm{~K} \Omega, R_{C}=2 \mathrm{k} \Omega, R_{E}=100 \Omega, \beta=100, V_{B E}=0.7 \mathrm{~V}$. What is the new location if $R_{B}=1 \mathrm{k} \Omega$.

2-Find the maximum peak-to-peak swing of ic in the circuit shown in figure. Assume that $R_{1}=1 \mathrm{~K} \Omega, \mathrm{R}_{2}=7 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{R}_{\mathrm{C}}=2 \mathrm{~K} \Omega$, $R_{E}=400 \Omega$, and $\beta=100$. Draw the dc load line.

3-With the circuit shown in figure,find the values of R_{1}, R_{2} that yield the maximum possible peak-to-peak swing of ic. Draw the dc load line.

4-For the amplifier of the shown figure, calculate the following:
a-Power supplied by the battery.
b-Power dissipated by R_{1}, R_{2}, R_{E} and R_{C}.
c-Power dissipated by the collector junction.

