

Introduction

I Integrated circuits: many transistors on one chip.

- Very Large Scale Integration (VLSI): bucketloads!
- Complementary Metal Oxide Semiconductor
- Fast, cheap, low power transistors
- Today: How to build your own simple CMOS chip
- CMOS transistors
- Building logic gates from transistors
- Transistor layout and fabrication
. Rest of the course: How to build a good CMOS chip

Silicon Lattice

- Transistors are built on a silicon substrate
- Silicon is a Group IV material
[Forms crystal lattice with bonds to four neighbors

Dopants

\square Silicon is a semiconductor
Pure silicon has no free carriers and conducts poorly
\square Adding dopants increases the conductivity
\square Group V: extra electron (n-type)
\square Group III: missing electron, called hole (p-type)

p-n Junctions

\square A junction between p-type and n-type semiconductor forms a diode.
\square Current flows only in one direction

anode cathode

nMOS Transistor

Four terminals: gate, source, drain, body
\square Gate - oxide - body stack looks like a capacitor

- Gate and body are conductors
$-\mathrm{SiO}_{2}$ (oxide) is a very good insulator
- Called metal - oxide - semiconductor (MOS) capacitor
- Even though gate is no longer made of metal*

[^0]

nMOS Operation

Body is usually tied to ground (0 V)
\square When the gate is at a low voltage:

- P-type body is at low voltage
- Source-body and drain-body diodes are OFF
- No current flows, transistor is OFF

nMOS Operation Cont.

\square When the gate is at a high voltage:

- Positive charge on gate of MOS capacitor
- Negative charge attracted to body
- Inverts a channel under gate to n-type
- Now current can flow through n-type silicon from source through channel to drain, transistor is ON

pMOS Transistor

- Similar, but doping and voltages reversed
- Body tied to high voltage (V_{DD})
- Gate low: transistor ON
- Gate high: transistor OFF
- Bubble indicates inverted behavior

Power Supply Voltage

- GND $=0 \mathrm{~V}$
- In 1980's, $V_{D D}=5 \mathrm{~V}$
$\square V_{D D}$ has decreased in modern processes
- High $V_{D D}$ would damage modern tiny transistors
- Lower V_{DD} saves power
$\square V_{D D}=3.3,2.5,1.8,1.5,1.2,1.0, \ldots$

Transistors as Switches

- We can view MOS transistors as electrically controlled switches
- Voltage at gate controls path from source to drain

	$\mathrm{g}=0$	$\mathrm{g}=1$
$\text { nMOS } \quad \mathrm{g}-\underset{\mathrm{s}}{4}$	$\begin{aligned} & d \\ & \oint \\ & i \\ & i \end{aligned}$	
$\text { pMOS } \quad g-d \overbrace{\mathrm{~s}}$	$\begin{array}{ll} d \\ \\ d & \\ i & \mathrm{ON} \\ \mathrm{~s} \end{array}$	

CMOS Inverter

CMOS NAND Gate

A	B	Y
0	0	
0	1	
1	0	
1	1	

CMOS NOR Gate

3-input NAND Gate

- Y pulls low if ALL inputs are 1
- Y pulls high if ANY input is 0

CMOS Fabrication

- CMOS transistors are fabricated on silicon wafer
- Lithography process similar to printing press
- On each step, different materials are deposited or etched
E Easiest to understand by viewing both top and cross-section of wafer in a simplified manufacturing process

Inverter Cross-section

Typically use p-type substrate for nMOS transistors

- Requires n-well for body of pMOS transistors

Well and Substrate Taps

. Substrate must be tied to GND and n-well to $V_{D D}$
\square Metal to lightly-doped semiconductor forms poor connection called Shottky Diode

- Use heavily doped well and substrate contacts / taps

Inverter Mask Set

Transistors and wires are defined by masks

- Cross-section taken along dashed line

Detailed Mask Views

- Six masks
- n-well
- Polysilicon
- $\mathrm{n}+$ diffusion
- $\mathrm{p}+$ diffusion
- Contact
- Metal

Fabrication

- Chips are built in huge factories called fabs
- Contain clean rooms as large as football fields

Courtesy of International Business Machines Corporation. Unauthorized use not permitted.

Fabrication Steps

- Start with blank wafer

Build inverter from the bottom up

- First step will be to form the n-well
- Cover wafer with protective layer of SiO_{2} (oxide)
- Remove layer where n-well should be built
- Implant or diffuse n dopants into exposed wafer
- Strip off SiO_{2}

Oxidation

- Grow SiO_{2} on top of Si wafer
- $900-1200 \mathrm{C}$ with $\mathrm{H}_{2} \mathrm{O}$ or O_{2} in oxidation furnace

Photoresist

- Spin on photoresist
- Photoresist is a light-sensitive organic polymer
- Softens where exposed to light

Photoresist
SiO_{2}

0: Introduction
CMOS VLSI Design 4th Ed.

Lithography

- Expose photoresist through n-well mask
- Strip off exposed photoresist

Etch

\square Etch oxide with hydrofluoric acid (HF)

- Seeps through skin and eats bone; nasty stuff!!!
\square Only attacks oxide where resist has been exposed

Photoresist
SiO_{2}

Strip Photoresist

\square Strip off remaining photoresist

- Use mixture of acids called piranah etch
- Necessary so resist doesn't melt in next step

n-well

n-well is formed with diffusion or ion implantation

- Diffusion
- Place wafer in furnace with arsenic gas
- Heat until As atoms diffuse into exposed Si
- Ion Implantation
- Blast wafer with beam of As ions
- Ions blocked by SiO_{2}, only enter exposed Si

Strip Oxide

- Strip off the remaining oxide using HF
- Back to bare wafer with n-well
\square Subsequent steps involve similar series of steps

Polysilicon

- Deposit very thin layer of gate oxide - < $20 \AA$ (6-7 atomic layers)
] Chemical Vapor Deposition (CVD) of silicon layer - Place wafer in furnace with Silane gas $\left(\mathrm{SiH}_{4}\right)$
- Forms many small crystals called polysilicon
- Heavily doped to be good conductor

Polysilicon Patterning

- Use same lithography process to pattern polysilicon

Self-Aligned Process

- Use oxide and masking to expose where $\mathrm{n}+$ dopants should be diffused or implanted
- N-diffusion forms nMOS source, drain, and n-well contact

N-diffusion

- Pattern oxide and form $\mathrm{n}+$ regions
\square Self-aligned process where gate blocks diffusion
- Polysilicon is better than metal for self-aligned gates because it doesn't melt during later processing

N-diffusion cont.

- Historically dopants were diffused
[Usually ion implantation today
\square But regions are still called diffusion

N-diffusion cont.

\square Strip off oxide to complete patterning step

P-Diffusion

- Similar set of steps form $p+$ diffusion regions for pMOS source and drain and substrate contact

Contacts

- Now we need to wire together the devices
- Cover chip with thick field oxide
- Etch oxide where contact cuts are needed

Metalization

- Sputter on aluminum over whole wafer

I Pattern to remove excess metal, leaving wires

Metal

Metal
Thick field oxide

Layout

Chips are specified with set of masks

- Minimum dimensions of masks determine transistor size (and hence speed, cost, and power)
- Feature size $f=$ distance between source and drain - Set by minimum width of polysilicon
- Feature size improves 30% every 3 years or so
- Normalize for feature size when describing design rules
- Express rules in terms of $\lambda=f / 2$
- E.g. $\lambda=0.3 \mu \mathrm{~m}$ in $0.6 \mu \mathrm{~m}$ process

Simplified Design Rules

- Conservative rules to get you started

Inverter Layout

- Transistor dimensions specified as Width / Length
- Minimum size is $4 \lambda / 2 \lambda$, sometimes called 1 unit
$-\ln f=0.6 \mu \mathrm{~m}$ process, this is $1.2 \mu \mathrm{~m}$ wide, $0.6 \mu \mathrm{~m}$ long

Summary

MOS transistors are stacks of gate, oxide, silicon

- Act as electrically controlled switches

B Build logic gates out of switches
D Draw masks to specify layout of transistors
[. Now you know everything necessary to start designing schematics and layout for a simple chip!

Outline

- A Brief History
- CMOS Gate Design
- Pass Transistors
- CMOS Latches \& Flip-Flops
- Standard Cell Layouts
- Stick Diagrams

A Brief History

- 1958: First integrated circuit
- Flip-flop using two transistors
- Built by Jack Kilby at Texas Instruments
- 2010

Courtesy Texas Instruments

- Intel Core i7 μ processor
- 2.3 billion transistors
- 64 Gb Flash memory
- > 16 billion transistors

Growth Rate

- 53\% compound annual growth rate over 50 years
- No other technology has grown so fast so long
- Driven by miniaturization of transistors
- Smaller is cheaper, faster, lower in power!
- Revolutionary effects on society

Annual Sales

- >1019 transistors manufactured in 2008
- 1 billion for every human on the planet

Invention of the Transistor

Vacuum tubes ruled in first half of $20^{\text {th }}$ century Large, expensive, power-hungry, unreliable

- 1947: first point contact transistor
- John Bardeen and Walter Brattain at Bell Labs
- See Crystal Fire by Riordan, Hoddeson

Transistor Types

- Bipolar transistors
- npn or pnp silicon structure
- Small current into very thin base layer controls large currents between emitter and collector
- Base currents limit integration density
] Metal Oxide Semiconductor Field Effect Transistors - nMOS and pMOS MOSFETS
- Voltage applied to insulated gate controls current between source and drain
- Low power allows very high integration

MOS Integrated Circuits

- 1970's processes usually had only nMOS transistors - Inexpensive, but consume power while idle

Intel 1101 256-bit SRAM

Intel Museum.

Reprinted
with
permission.

Intel 4004 4-bit μ Proc
[1980s-present: CMOS processes for low idle power

Moore's Law: Then

- 1965: Gordon Moore plotted transistor on each chip
- Fit straight line on semilog scale
- Transistor counts have doubled every 26 months

Integration Levels
SSI: 10 gates
MSI: 1000 gates
LSI: 10,000 gates
VLSI: > 10k gates

And Now...

1: Circuits \& Layout
CMOS VLSI Design 4th Ed.

Feature Size

- Minimum feature size shrinking 30\% every 2-3 years

Corollaries

- Many other factors grow exponentially
- Ex: clock frequency, processor performance

Complementary CMOS

- Complementary CMOS logic gates
- nMOS pull-down network
- pMOS pull-up network
- a.k.a. static CMOS

	Pull-up OFF	Pull-up ON
Pull-down OFF	Z (float)	1
Pull-down ON	0	X (crowbar)

pMOS
pull-up
network

Series and Parallel

- nMOS: $1=0 N$
p pMOS: $0=0 N$
- Series: both must be ON
- Parallel: either can be ON

		$\begin{array}{r} a \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ b \\ b \end{array}$	$\begin{array}{r} a \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ b \end{array}$	$\begin{array}{r} a \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ b \\ b \end{array}$
(a)	OFF	OFF	OFF	ON
	$\begin{array}{r} a \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ b \end{array}$	$\begin{array}{r} a \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ b \end{array}$		$\begin{gathered} a \\ 1 \\ 1 \\ 1 \\ 1 \\ b \\ b \end{gathered}$
(b)	ON	OFF	OFF	OFF
	$\overbrace{1}^{a}$	a		a
(c)	OFF	ON	ON	ON
	$\begin{gathered} a \\ 0 \\ 0 \\ 0 \\ 0 \\ b \end{gathered} 0$			c
(d)	ON	ON	ON	OFF

Conduction Complement

- Complementary CMOS gates always produce 0 or 1
- Ex: NAND gate
- Series nMOS: $\mathrm{Y}=0$ when both inputs are 1
- Thus $Y=1$ when either input is 0
- Requires parallel pMOS
\square Rule of Conduction Complements

- Pull-up network is a complement of pull-down
- Parallel -> series, series -> parallel

Compound Gates

- Compound gates can do any inverting function $Y=\overline{A . B+C . D}(A N D-A N D-O R-I N V E R T, A O I 22)$

(a)
(b)

(c)
(d)

(f)
(e)

Example: O3AI

$$
Y=\overline{(A+B+C) \cdot D}
$$

Signal Strength

- Strength of signal
- How close it approximates ideal voltage source
- $V_{D D}$ and GND rails are strongest 1 and 0
\square nMOS pass strong 0
- But degraded or weak 1
[pMOS pass strong 1
- But degraded or weak 0
- Thus, nMOS are best for pull-down network

Pass Transistors

- Transistors can be used as switches

$$
\begin{aligned}
& \text { Input } \begin{aligned}
\mathrm{g} & =1 \text { Output } \\
0 \rightarrow 0 & \rightarrow \text { strong } 0
\end{aligned} \\
& \begin{array}{l}
\mathrm{g}
\end{array}=1 \\
& 1 \rightarrow-\mathrm{degraded} 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Input } \underset{0 \rightarrow 0 \rightarrow 0-\text { degraded } 0}{\mathrm{~g}=0} \text { Output }
\end{aligned}
$$

$$
\xrightarrow[1 \rightarrow 0]{\mathrm{g}}=0 \text { strong } 1
$$

Transmission Gates

- Pass transistors produce degraded outputs
\square Transmission gates pass both 0 and 1 well

		Input Output
g	$\begin{aligned} & g=0, g b=1 \\ & a-b \end{aligned}$	$\begin{aligned} & \mathrm{g}=1, \mathrm{gb}=0 \\ & 0 \rightarrow \mathrm{O} \rightarrow \text { strong } 0 \end{aligned}$
	$\begin{aligned} & g=1, g b=0 \\ & a \rightarrow b-b \end{aligned}$	$\begin{aligned} & g=1, \mathrm{gb}=0 \\ & 1 \rightarrow-\infty-\text { strong } 1 \end{aligned}$

Tristates

- Tristate buffer produces Z when not enabled

EN	A	Y
0	0	
0	1	
1	0	
1	1	

EN

Nonrestoring Tristate

- Transmission gate acts as tristate buffer
- Only two transistors
- But nonrestoring
- Noise on A is passed on to Y

EN

Tristate Inverter

- Tristate inverter produces restored output
- Violates conduction complement rule
- Because we want a Z output

$\mathrm{EN}=0$
Y = 'Z'

$\mathrm{EN}=1$
$Y=\overline{\mathrm{A}}$

Multiplexers

- 2:1 multiplexer chooses between two inputs

S	D1	D0	Y
0	X	0	
0	X	1	
1	0	X	
1	1	X	

Gate-Level Mux Design

- $Y=S D_{1}+\bar{S} D_{0}$ (too many transistors)
\square How many transistors are needed?

Transmission Gate Mux

- Nonrestoring mux uses two transmission gates
- Only 4 transistors

Inverting Mux

- Inverting multiplexer
- Use compound AOI22
- Or pair of tristate inverters
- Essentially the same thing
- Noninverting multiplexer adds an inverter

4:1 Multiplexer

- 4:1 mux chooses one of 4 inputs using two selects
- Two levels of 2:1 muxes
- Or four tristates

D Latch

When CLK = 1 , latch is transparent

- D flows through to Q like a buffer
- When CLK $=0$, the latch is opaque
- Q holds its old value independent of D
a a.k.a. transparent latch or level-sensitive latch

D Latch Design

- Multiplexer chooses D or old Q

D Latch Operation

D Flip-flop

- When CLK rises, D is copied to Q
\square At all other times, Q holds its value
a a.k.a. positive edge-triggered flip-flop, master-slave flip-flop

D Flip-flop Design

- Built from master and slave D latches

D Flip-flop Operation

Race Condition

- Back-to-back flops can malfunction from clock skew
- Second flip-flop fires late
- Sees first flip-flop change and captures its result
- Called hold-time failure or race condition

CLK1

CLK2

Q1

Q2

Nonoverlapping Clocks

- Nonoverlapping clocks can prevent races
- As long as nonoverlap exceeds clock skew
- We will use them in this class for safe design
- Industry manages skew more carefully instead

\rightarrow Gate Layout

[Layout can be very time consuming

- Design gates to fit together nicely
- Build a library of standard cells
\square Standard cell design methodology
- $V_{D D}$ and GND should abut (standard height)
- Adjacent gates should satisfy design rules
- nMOS at bottom and pMOS at top
- All gates include well and substrate contacts

Example: Inverter

Example: NAND3

[Horizontal N -diffusion and p-diffusion strips

- Vertical polysilicon gates
- Metal1 $V_{D D}$ rail at top
- Metal1 GND rail at bottom
- 32λ by 40λ

Stick Diagrams

- Stick diagrams help plan layout quickly
- Need not be to scale
- Draw with color pencils or dry-erase markers

Wiring Tracks

- A wiring track is the space required for a wire
-4λ width, 4λ spacing from neighbor $=8 \lambda$ pitch
\square Transistors also consume one wiring track

(a)

(b)

Well spacing

- Wells must surround transistors by 6λ
- Implies 12λ between opposite transistor flavors
- Leaves room for one wire track

(a)

(b)

Area Estimation

- Estimate area by counting wiring tracks
- Multiply by 8 to express in λ

Example: O3AI

- Sketch a stick diagram for O3AI and estimate area

$$
Y=\overline{(A+B+C) \sqcap D}
$$

Euler's Path

Standard Cell Layout Methodology 1990s

Euler's Path

Two Versions of $\overline{C \cdot(A+B)}$

(c) Digital Integrated Circuits ${ }^{2 n d}$

Euler's Path

Stick Diagrams

Combinational Circuits

Euler's Path

Consistent Euler Path

ABC

Has a PUN and PDN

B C A
Has a PUN but no PDN

OAI22 Logic Graph

OAI22 Logic Graph

ABCD PDN bot not PUN

 ABDC PDN and PUN

Example: $x=a b+c d$

Example: $x=a b+c d$

(a) Logic graphs for $\overline{(a b+c d)}$

(b) Euler Paths $\{a b c d\}$

(c) stick diagram for ordering $\{a b c d\}$

Outline

- Logical Effort

D Delay in a Logic Gate
[Multistage Logic Networks

- Choosing the Best Number of Stages
- Example
- Summary

Introduction

- Chip designers face a bewildering array of choices
- What is the best circuit topology for a function?
- How many stages of logic give least delay?
- How wide should the transistors be?

L Logical effort is a method to make these decisions

- Uses a simple model of delay

- Allows back-of-the-envelope calculations
- Helps make rapid comparisons between alternatives
- Emphasizes remarkable symmetries

Example

\square Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.

- Decoder specifications:
- 16 word register file
- Each word is 32 bits wide

- Each bit presents load of 3 unit-sized transistors
- True and complementary address inputs A[3:0]
- Each input may drive 10 unit-sized transistors
- Ben needs to decide:
- How many stages to use?
- How large should each gate be?
- How fast can decoder operate?

Alternative Logic Structures

$\mathrm{F}=\mathrm{ABCDEFGH}$

Delay in a Logic Gate

- Express delays in process-independent unit

$$
d=\frac{d_{a b s}}{\tau}
$$

- Delay has two components: $d=f+p$
$\tau=3 R C$
] f: effort delay $=g h$ (a.k.a. stage effort)
- Again, has two components
- g: logical effort
$\approx \quad 3 \mathrm{ps}$ in 65 nm process 60 ps in $0.6 \mu \mathrm{~m}$ process
- Measures relative ability of gate to deliver current
- $g \equiv 1$ for inverter
- h: electrical effort $=\mathrm{C}_{\text {out }} / \mathrm{C}_{\text {in }} \quad \mathrm{p}=$ fan-in
- Ratio of output to input capacitance $g=\frac{C_{\text {gatenorm }}}{C_{\text {invnorm }}}=\frac{C_{\text {gate }}}{3}$
- p: parasitic delay
- Represents delay of gate driving no load
- Set by internal parasitic capacitance

Delay Plots

$d=f+p$
$=g h+p$

Electrical Effort:

$$
\mathrm{h}=\mathrm{C}_{\text {out }} / \mathrm{C}_{\text {in }}
$$

Computing Logical Effort

- DEF: Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current.
. Measure from delay vs. fanout plots
- Or estimate by counting transistor widths

Catalog of Gates

- Logical effort of common gates

Gate type	Number of inputs					
	1	2	3	4	n	
Inverter	1					
NAND		$4 / 3$	$5 / 3$	$6 / 3$	$(n+2) / 3$	
NOR		$5 / 3$	$7 / 3$	$9 / 3$	$(2 n+1) / 3$	
Tristate / mux	2	2	2	2	2	
XOR, XNOR		4,4	$6,12,6$	$8,16,16,8$		

Catalog of Gates

- Parasitic delay of common gates
- In multiples of $p_{\text {inv }}(\approx 1)$

Gate type	Number of inputs				
	1	2	3	4	n
Inverter	1				
NAND		2	3	4	n
NOR		2	3	4	n
Tristate / mux	2	4	6	8	2 n
XOR, XNOR		4	6	8	

Example: Ring Oscillator

Estimate the frequency of an N -stage ring oscillator

Logical Effort: g =
Electrical Effort: h=
Parasitic Delay: $p=$
Stage Delay: d=
Frequency: $\quad f_{\text {osc }}=$

31 stage ring oscillator in
$0.6 \mu \mathrm{~m}$ process has
frequency of $\sim 200 \mathrm{MHz}$

$$
f_{o s c}=\frac{1}{4 N t_{i n v}} H z
$$

Example: FO4 Inverter

- Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort: g =
Electrical Effort: h =
Parasitic Delay: $p=$
Stage Delay: d=

Multistage Logic Networks

L Logical effort generalizes to multistage networks

- Path Logical Effort $G=\prod g_{i}$
- Path Electrical Effort $H=\frac{C_{\text {out-path }}}{C_{\text {in-path }}}$
- Path Effort Delay

$$
F=\prod f_{i}=\prod g_{i} h_{i}
$$

Multistage Logic Networks

- Logical effort generalizes to multistage networks
- Path Logical Effort $G=\prod g_{i}$
- Path Electrical Effort $H=\frac{C_{\text {out-path }}}{C_{\text {in-path }}}$
- Path Effort Delay $F=\prod f_{i}=\prod g_{i} h_{i}$
- Can we write $\mathrm{F}=\mathrm{GH}$?

Paths that Branch

\square No! Consider paths that branch:

G =

$h_{2}=$
$F=$

Branching Effort

- Introduce branching effort
- Accounts for branching between stages in path

$$
\begin{aligned}
& b=\frac{C_{\text {on path }}+C_{\text {off path }}}{C_{\text {on path }}} \\
& B=\prod b_{i}
\end{aligned}
$$

- Now we compute the path effort delay.
$-F=G B H$

Multistage Delays

- Path Effort Delay $\quad D_{F}=\sum f_{i}$
- Path Parasitic Delay

$$
P=\sum p_{i}
$$

- Path Delay

$$
D=\sum d_{i}=D_{F}+P
$$

Designing Fast Circuits

$$
D=\sum d_{i}=D_{F}+P
$$

- Delay is smallest when each stage bears same effort

$$
\hat{f}=g_{i} h_{i}=F^{\frac{1}{N}}
$$

- Thus minimum delay of N stage path is

- This is a key result of logical effort
- Find fastest possible delay
- Doesn't require calculating gate sizes

Gate Sizes

How wide should the gates be for least delay?

$$
\begin{aligned}
& \hat{f}=g h=g \frac{C_{\text {out }}}{C_{\text {in }}} \\
& \Rightarrow C_{i n_{i}}=\frac{g_{i} C_{\text {out }_{i}}}{\hat{f}}
\end{aligned}
$$

W Working backward, apply capacitance transformation to find input capacitance of each gate given the load it drives.
Check work by verifying input cap spec is met.

Example: 3-stage path

- Select gate sizes x and y for least delay from A to B

Example: 3-stage path

G =
Electrical Effort $\mathrm{H}=$
Branching Effort $\mathrm{B}=$
Path Effort
$\mathrm{F}=$
Best Stage Effort $\quad \hat{f}=$
Parasitic Delay $\quad \mathrm{P}=$
Delay $\quad \mathrm{D}=$

Example: 3-stage path

- Work backward for sizes

$2 y / x$ for branching
(3x/Cin). $4 / 3=5$ gives $\mathrm{Cin}=8$

Best Number of Stages

[How many stages should a path use?

- Minimizing number of stages is not always fastest
- Example: drive 64-bit datapath with unit inverter

$$
\begin{gathered}
g_{i}=1 \text { then } h_{i} \text { is always } \\
\text { Equal to } F^{\frac{1}{N}}=f
\end{gathered}
$$

D =
$\mathrm{N}:$
$\mathrm{D}:$
D

Derivation

- Consider adding inverters to end of path
- How many give least delay?

$\frac{\partial D}{\partial N}=-\frac{1}{N} F^{\frac{1}{N}} \ln \mathrm{~F}+F^{\frac{1}{N}}+p_{i n v}=0$
- Define best stage effort $\rho=F^{\frac{1}{N}}$

$$
p_{i n v}+\rho(1-\ln \rho)=0
$$

$$
\frac{d}{d x}\left(a^{\frac{1}{x}}\right)=-\frac{a^{\frac{1}{x}} \ln a}{x^{2}}
$$

Best Stage Effort

- $p_{i n v}+\rho(1-\ln \rho)=0$ has no closed-form solution
[Neglecting parasitic ($\mathrm{p}_{\text {inv }}=0$), we find $\rho=2.718$ (e)
\square For $\mathrm{p}_{\text {inv }}=1$, solve numerically for $\rho=3.59$

Sensitivity Analysis

- How sensitive is delay to using exactly the best number of stages?

- $2.4<\rho<6$ gives delay within 15% of optimal
- We can be sloppy!
- I like $\rho=4$

$$
\rho=4=F^{\frac{1}{N}} \Rightarrow N=\log _{4} F
$$

Example, Revisited

\square Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.

- Decoder specifications:
- 16 word register file
- Each word is 32 bits wide

- Each bit presents load of 3 unit-sized transistors
- True and complementary address inputs A[3:0]
- Each input may drive 10 unit-sized transistors
- Ben needs to decide:
- How many stages to use?
- How large should each gate be?
- How fast can decoder operate?

Number of Stages

\square Decoder effort is mainly electrical and branching
Electrical Effort:
$\mathrm{H}=$
Branching Effort:
$B=$

- If we neglect logical effort (assume G=1) Path Effort:

F =

Number of Stages: $\quad N=$

- Try a -stage design

Gate Sizes \& Delay

Logical Effort: G =
Path Effort: $\mathrm{F}=$
Stage Effort: $\quad \hat{f}=$
Path Delay: $\quad D=$
Gate sizes: $\quad \mathrm{z}=\quad \mathrm{y}=$

G ,H and B Calculations

$\square \mathrm{G}=1(\mathrm{INV} 10) * 6 / 3($ NAND4 $) * 1(\mathrm{INVz})=6 / 3=2$
$\square \mathrm{H}=3 * 32 / 10=9.6$
B , each input is connected to 8 words because the input variable $\mathrm{A}[0-3]$ and their complements are available.

- So, path branching is $(1+7) / 1$ one ON path and seven OFF paths.
- So, B is equal to 8

Then $\mathrm{F}=\mathrm{GHB}=6 / 3 * 9.6 * 8=153.6 \sim 154$

Which is the best!!

Comparison

- Compare many alternatives with a spreadsheet
- D $=\mathrm{N}(76.8 \mathrm{G})^{1 / \mathrm{N}}+\mathrm{P}$

Design	N	\mathbf{G}	P	\mathbf{D}
NOR4	1	3	4	234
NAND4-INV	2	2	5	29.8
NAND2-NOR2	2	$20 / 9$	4	30.1
INV-NAND4-INV	3	2	6	22.1
NAND4-INV-INV-INV	4	2	7	21.1
NAND2-NOR2-INV-INV	4	$20 / 9$	6	20.5
NAND2-INV-NAND2-INV	4	$16 / 9$	6	19.7
INV-NAND2-INV-NAND2-INV	5	$16 / 9$	7	20.4
NAND2-INV-NAND2-INV-INV-INV	6	$16 / 9$	8	21.6

Review of Definitions

Term	Stage	Path
number of stages	1	N
logical effort	g	$G=\prod g_{i}$
electrical effort	$h=\frac{C_{\text {out }}}{C_{\text {in }}}$	$H=\frac{C_{\text {outpath }}}{C_{\text {inppath }}}$
branching effort	$b=\frac{C_{\text {onppah }}+C_{\text {offrpath }}}{C_{\text {Oonpath }}}$	$B=\prod b_{i}$
effort	$f=g h$	$F=G B H$
effort delay	f	$D_{F}=\sum f_{i}$
parasitic delay	p	$P=\sum p_{i}$
delay	$d=f+p$	$D=\sum d_{i}=D_{F}+P$

Method of Logical Effort

1) Compute path effort
2) Estimate best number of stages $\quad N=\log _{4} F$
3) Sketch path with N stages
4) Estimate least delay
5) Determine best stage effort
6) Find gate sizes

$$
\begin{aligned}
& D=N F^{\frac{1}{N}}+P \\
& \hat{f}=F^{\frac{1}{N}}
\end{aligned}
$$

$$
\begin{aligned}
& F=G B H \\
& N=\log _{4} F
\end{aligned}
$$

$$
C_{i i_{i}}=\frac{g_{i} C_{\text {out }_{i}}}{\hat{f}}
$$

Limits of Logical Effort

- Chicken and egg problem
- Need path to compute G
- But don't know number of stages without G
- Simplistic delay model
- Neglects input rise time effects
- Interconnect
- Iteration required in designs with wire
- Maximum speed only
- Not minimum area/power for constrained delay

Summary

- Logical effort is useful for thinking of delay in circuits
- Numeric logical effort characterizes gates
- NANDs are faster than NORs in CMOS
- Paths are fastest when effort delays are ~ 4
- Path delay is weakly sensitive to stages, sizes
- But using fewer stages doesn't mean faster paths
- Delay of path is about $\log _{4} \mathrm{~F}$ FO4 inverter delays
- Inverters and NAND2 best for driving large caps
\square Provides language for discussing fast circuits
- But requires practice to master

Outline

- Power and Energy

- Dynamic Power
- Static Power

Power and Energy

- Power is drawn from a voltage source attached to the $V_{D D}$ pin(s) of a chip.
[Instantaneous Power: $P(t)=$
[Energy:
$E=$
] Average Power:

$$
P_{\mathrm{avg}}=
$$

Power in Circuit Elements

$$
\begin{aligned}
& P_{V D D}(t)=I_{D D}(t) V_{D D} \\
& P_{R}(t)=\frac{V_{R}^{2}(t)}{R}=I_{R}^{2}(t) R \\
& E_{C}=\int_{0}^{\infty} I(t) V(t) d t=\int_{0}^{\infty} C \frac{d V}{d t} V(t) d t \\
& \quad=C \int_{0}^{V_{C}} V(t) d V=\frac{1}{2} C V_{C}^{2}
\end{aligned}
$$

$$
{\stackrel{+}{V_{D D}}}_{+}^{+} \uparrow^{+} I_{D D}
$$

$$
\left.\stackrel{+}{R}_{V_{R}}\right\} \mid I_{R}
$$

$$
\stackrel{-}{\mathrm{V}}_{+}^{+} \stackrel{\perp}{\perp} \downarrow \downarrow_{\mathrm{c}}=\mathrm{CdV} / \mathrm{dt}
$$

Charging a Capacitor

- When the gate output rises
- Energy stored in capacitor is

$$
E_{C}=\frac{1}{2} C_{L} V_{D D}^{2}
$$

- But energy drawn from the supply is

$$
\begin{aligned}
E_{\text {DDD }} & =\int_{0}^{\infty} I I t(t) V_{D D} d t=\int_{0}^{\infty} C_{L} \frac{d V}{d t} V_{D D} d t \\
& =C_{L} V_{D D} \int_{0}^{V_{D D}} d V=C_{L} V_{D D}^{2}
\end{aligned}
$$

- Half the energy from $V_{D D}$ is dissipated in the pMOS transistor as heat, other half stored in capacitor
- When the gate output falls
- Energy in capacitor is dumped to GND
- Dissipated as heat in the nMOS transistor

Switching Waveforms

- Example: $\mathrm{V}_{\mathrm{DD}}=1.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=150 \mathrm{fF}, \mathrm{f}=1 \mathrm{GHz}$

Switching Power

$$
\begin{aligned}
P_{\text {switching }} & =\frac{1}{T} \int_{0}^{T} i_{D D}(t) V_{D D} d t \\
& =\frac{V_{D D}}{T} \int_{0}^{T} i_{D D}(t) d t \\
& =\frac{V_{D D}}{T}\left[T f_{\mathrm{sw}} C V_{D D}\right] \\
& =C V_{D D}{ }^{2} f_{\mathrm{sw}}
\end{aligned}
$$

Activity Factor

- Suppose the system clock frequency $=\mathrm{f}$
\square Let $f_{s w}=\alpha$, where $\alpha=$ activity factor
- If the signal is a clock, $\alpha=1$
- If the signal switches once per cycle, $\alpha=1 / 2$
․ Dynamic power:

$$
P_{\text {switching }}=\alpha C V_{D D}^{2} f
$$

Short Circuit Current

- When transistors switch, both nMOS and pMOS networks may be momentarily ON at once
- Leads to a blip of "short circuit" current.
- < 10\% of dynamic power if rise/fall times are comparable for input and output
\square We will generally ignore this component

Power Dissipation Sources

- $P_{\text {total }}=P_{\text {dynamic }}+P_{\text {static }}$
\square Dynamic power: $P_{\text {dynamic }}=P_{\text {switching }}+P_{\text {shortcircuit }}$
- Switching load capacitances
- Short-circuit current
\square Static power: $P_{\text {static }}=\left(I_{\text {sub }}+I_{\text {gate }}+I_{\text {junct }}+I_{\text {contention }}\right) V_{D D}$
- Subthreshold leakage
- Gate leakage
- Junction leakage
- Contention current

Dynamic Power Example

- 1 billion transistor chip
- 50M logic transistors
- Average width: 12λ
- Activity factor = 0.1
- 950M memory transistors
- Average width: 4λ
- Activity factor $=0.02$
-1.0 V 65 nm process, $L_{e f f}=50 \mathrm{~nm}$
- C = $1 \mathrm{fF} / \mu \mathrm{m}$ (gate) $+0.8 \mathrm{fF} / \mu \mathrm{m}$ (diffusion)
- Estimate dynamic power consumption @ 1 GHz . Neglect wire capacitance and short-circuit current.

Solution

$$
\begin{gathered}
C_{\text {logic }}=\left(50 \times 10^{6}\right)(12 \times 0.025 \mu \mathrm{~m})(1.0+0.8)\left(\frac{p F}{\mu m}\right)=27 \mathrm{nF} \\
C_{\text {mem }}=\left(950 \times 10^{6}\right)(4 \times 0.025 \mu \mathrm{~m})(1.0+0.8)\left(\frac{p F}{\mu m}\right)=171 \mathrm{nF} \\
P_{\text {dynamic }}=\left[0.1 C_{\text {logic }}+0.02 C_{\text {mem }}\right](1.0)^{2}(1.0 \mathrm{Ghz})=6.1 \mathrm{~W} \\
f=50 \mathrm{~nm} \text { and } \lambda=25 \mathrm{~nm}=0.025 \mu \mathrm{~m}
\end{gathered}
$$

Dynamic Power Reduction

- $P_{\text {switching }}=\alpha C V_{D D}{ }^{2} f$
] Try to minimize:
- Activity factor
- Capacitance
- Supply voltage
- Frequency

Activity Factor Estimation

- Let $\mathrm{P}_{\mathrm{i}}=\operatorname{Prob}($ node $\mathrm{i}=1)$
- $\bar{P}_{i}=1-P, \operatorname{Prob}($ node $\mathrm{i}=0)$
- $\alpha_{i}=\bar{P}_{i} \times P_{i}$
- Completely random data has $\mathrm{P}=0.5$ and $\alpha=0.25$
- Data is often not completely random
- Structured data, e.g. upper bits of 64-bit unsigned integer representing bank account balances are usually 0
- Data propagating through ANDs and ORs has lower activity factor
- Depends on design, but typically $\alpha \approx 0.1$

Switching Probability

Gate	P_{Y}
AND2	$P_{A} P_{B}$
AND3	$P_{A} P_{B} P_{C}$
OR2	$1-\bar{P}_{A} \bar{P}_{B}$
NAND2	$1-P_{A} P_{B}$
NOR2	$\bar{P}_{A} \bar{P}_{B}$
XOR2	$P_{A} \bar{P}_{B}+\bar{P}_{A} P_{B}$

Example

- A 4-input AND is built out of two levels of gates
- Estimate the activity factor at each node if the inputs have $P=0.5$

Clock Gating

\square The best way to reduce the activity is to turn off the clock to registers in unused blocks

- Saves clock activity ($\alpha=1$)
- Eliminates all switching activity in the block
- Requires determining if block will be used
 not change before the clock falls

Capacitance

- Gate capacitance
- Fewer stages of logic
- Small gate sizes
- Wire capacitance
- Good floorplanning to keep communicating blocks close to each other
- Drive long wires with inverters or buffers rather than complex gates

Voltage / Frequency

\square Run each block at the lowest possible voltage and frequency that meets performance requirements

- Voltage Domains
- Provide separate supplies to different blocks
- Level converters required when crossing from low to high $V_{D D}$ domains
- Dynamic Voltage Scaling
- Adjust V_{DD} and f according to workload

Static Power

- Static power is consumed even when chip is quiescent.
- Leakage draws power from nominally OFF devices
- Ratioed circuits burn power in fight between ON transistors

Static Power Example

Revisit power estimation for 1 billion transistor chip
\square Estimate static power consumption

- Subthreshold leakage
- Normal V_{t} : $100 \mathrm{nA} / \mu \mathrm{m}$
- High V_{t} : $10 \mathrm{nA} / \mu \mathrm{m}$
- High Vt used in all memories and in 95% of logic gates
- Gate leakage
- Junction leakage negligible

Solution

$$
\begin{aligned}
& W_{\text {normal-V-V }}=\left(50 \times 10^{6}\right)(12 \lambda)(0.025 \mu \mathrm{~m} / \lambda)(0.05)=0.75 \times 10^{6} \mu \mathrm{~m} \\
& W_{\text {high-V-V }}=\left[\left(50 \times 10^{6}\right)(12 \lambda)(0.95)+\left(950 \times 10^{6}\right)(4 \lambda)\right](0.025 \mu \mathrm{~m} / \lambda)=109.25 \times 10^{6} \mu \mathrm{~m} \\
& I_{\text {sub }}=\left[W_{\text {normal- } V_{\mathrm{t}}} \times 100 \mathrm{nA} / \mu \mathrm{m}+W_{\text {high-V }-V_{\mathrm{t}}} \times 10 \mathrm{nA} / \mu \mathrm{m}\right] / 2=584 \mathrm{~mA} \\
& I_{\text {gate }}=\left[\left(W_{\text {nommal } V_{\mathrm{t}}}+W_{\text {high-V-V }}\right) \times 5 \mathrm{nA} / \mu \mathrm{m}\right] / 2=275 \mathrm{~mA} \\
& \mathrm{~S}_{\text {static }}=(584 \mathrm{~mA}+275 \mathrm{~mA})(1.0 \mathrm{~V})=859 \mathrm{~mW}
\end{aligned}
$$

Subthreshold Leakage

- For $V_{d s}>50 \mathrm{mV}$

$$
I_{\text {sub }} \approx I_{\text {off }} 10^{\frac{V_{g s}+\eta\left(V_{d s}-V_{D D}\right)-k_{y} V_{s b}}{S}}
$$

- $\mathrm{I}_{\text {off }}=$ leakage at $\mathrm{V}_{\mathrm{gs}}=0, \mathrm{~V}_{\mathrm{ds}}=\mathrm{V}_{\mathrm{DD}}$

Typical values in 65 nm
$\mathrm{I}_{\text {off }}=100 \mathrm{nA} / \mu \mathrm{m} @ \mathrm{~V}_{\mathrm{t}}=0.3 \mathrm{~V}$
$\mathrm{I}_{\text {off }}=10 \mathrm{nA} / \mu \mathrm{m} @ \mathrm{~V}_{\mathrm{t}}=0.4 \mathrm{~V}$
$\mathrm{I}_{\text {off }}=1 \mathrm{nA} / \mu \mathrm{m}$ @ $\mathrm{V}_{\mathrm{t}}=0.5 \mathrm{~V}$
$\eta=0.1$
$\mathrm{k}_{\mathrm{r}}=0.1$
S $=100 \mathrm{mV} /$ decade

Stack Effect

- Series OFF transistors have less leakage $-V_{x}>0$, so $N 2$ has negative $V_{g s}$

$$
I_{s u b}=\underbrace{I_{o f f} 10^{\frac{\eta\left(V_{x}-V_{D D}\right)}{S}}}_{N 1}=\underbrace{I_{o f f} 10^{\frac{-V_{x}+\eta\left(\left(V_{D D}-V_{x}\right)-V_{D D}\right)-k_{\gamma} V_{x}}{S}}}_{N 2}
$$

$V_{x}=\frac{\eta V_{D D}}{1+2 \eta+k_{y}}$

- Leakage through 2-stack reduces $\sim 10 x$
- Leakage through 3-stack reduces further

Leakage Control

- Leakage and delay trade off
- Aim for low leakage in sleep and low delay in active mode
[To reduce leakage:
- Increase V_{t} : multiple V_{t}
- Use low V_{t} only in critical circuits
- Increase V_{s} : stack effect
- Input vector control in sleep
- Decrease V_{b}
- Reverse body bias in sleep
- Or forward body bias in active mode

Gate Leakage

- Extremely strong function of t_{ox} and V_{gs}
- Negligible for older processes
- Approaches subthreshold leakage at 65 nm and below in some processes
- An order of magnitude less for pMOS than nMOS
- Control leakage in the process using $\mathrm{t}_{\mathrm{ox}}>10.5 \AA$
- High-k gate dielectrics help
- Some processes provide multiple t_{ox}
- e.g. thicker oxide for 3.3 V I/O transistors
\square Control leakage in circuits by limiting $V_{D D}$

NAND3 Leakage Example

- 100 nm process

$$
\begin{array}{ll}
\mathrm{I}_{\mathrm{gn}}=6.3 \mathrm{nA} & \mathrm{I}_{\mathrm{gp}}=0 \\
\mathrm{I}_{\text {off }}=5.63 \mathrm{nA} & \mathrm{I}_{\text {offp }}=9.3 \mathrm{nA}
\end{array}
$$

Input State (ABC)	$I_{\text {sub }}$	$I_{\text {gate }}$	$I_{\text {total }}$	V_{x}	V_{z}
000	0.4	0	0.4	stack effect	stack effect
001	0.7	0	0.7	stack effect	$V_{D D}-V_{t}$
010	0.7	1.3	2.0	intermediate	intermediate
011	3.8	0	3.8	$V_{D D}-V_{t}$	$V_{D D}-V_{t}$
100	0.7	6.3	7.0	0	stack effect
101	3.8	6.3	10.1	0	$V_{D D}-V_{t}$
110	5.6	12.6	18.2	0	0
111	28	18.9	46.9	0	0

Junction Leakage

[From reverse-biased p-n junctions

- Between diffusion and substrate or well
- Ordinary diode leakage is negligible
- Band-to-band tunneling (BTBT) can be significant
- Especially in high- V_{t} transistors where other leakage is small
- Worst at $\mathrm{V}_{\mathrm{db}}=\mathrm{V}_{\mathrm{DD}}$
\square Gate-induced drain leakage (GIDL) exacerbates
- Worst for $\mathrm{V}_{\mathrm{gd}}=-\mathrm{V}_{\mathrm{DD}}$ (or more negative)

Power Gating

Turn OFF power to blocks when they are idle to save leakage

- Use virtual $\mathrm{V}_{\mathrm{DD}}\left(\mathrm{V}_{\mathrm{DDV}}\right)$
- Gate outputs to prevent invalid logic levels to next block

. Voltage drop across sleep transistor degrades performance during normal operation
- Size the transistor wide enough to minimize impact
- Switching wide sleep transistor costs dynamic power
- Only justified when circuit sleeps long enough

Outline

- Bubble Pushing
- Compound Gates
- Logical Effort Example
- Input Ordering
- Asymmetric Gates
- Skewed Gates
- Best P/N ratio

Example 1

```
module mux(input s, d0, d1,
        output y);
assign y = s ? d1 : d0; //Ternary Operator. If s is
                        //true y = d1 else y = d0
```

Endmodule

1) Sketch a design using AND, OR, and NOT gates.

Example 2

2) Sketch a design using NAND, NOR, and NOT gates. Assume $\sim S$ is available.

Bubble Pushing

- Start with network of AND / OR gates
- Convert to NAND / NOR + inverters
\square Push bubbles around to simplify logic
- Remember DeMorgan's Law

(a)

(c)

10: Combinational Circuits
(b)

CMOS VLSI Design ${ }^{4 t h}$ Ed.

Example 3

3) Sketch a design using one compound gate and one NOT gate. Assume $\sim S$ is available.

Compound Gates

[Logical Effort of compound gates

unit inverter
$Y=\bar{A}$

$$
\begin{aligned}
& g_{A}=6 / 3 \\
& g_{B}=6 / 3 \\
& g_{C}=5 / 3 \\
& p=7 / 3
\end{aligned}
$$

$$
Y=\frac{\text { Complex AOI }}{A \llbracket(B+C)+D \rrbracket E}
$$

$$
\begin{array}{lc}
B-d \sqrt{6} & \\
C-d \sqrt{6} & A-d \sqrt{3} \\
D-d \sqrt{6} & E-d \sqrt{6} \\
E-\sqrt{2} & A-\sqrt{2} \\
D-\sqrt{2} & B-\sqrt{2} \\
C-\sqrt{2}
\end{array}
$$

$g_{A}=$
$g_{B}=$
$\mathrm{g}_{\mathrm{c}}=$
$g_{\mathrm{D}}=$
$g_{\mathrm{E}}=$
$p=$

Example 4

- The multiplexer has a maximum input capacitance of 16 units on each input. It must drive a load of 160 units. Estimate the delay of the two designs.
$\mathrm{H}=$
$B=N=$

Example 5

- Annotate your designs with transistor sizes that achieve this delay.

$$
\begin{array}{ll}
\mathrm{P}+\mathrm{N}=4+2 & \mathrm{P}+\mathrm{N}=2+1 \\
\text { Has to equal } 16 & \text { Has to equal } 36
\end{array}
$$

Input Order

- Our parasitic delay model was too simple
- Calculate parasitic delay for Y falling
- If A arrives latest?

$$
t_{p d}=6 \mathrm{C} *\left(\frac{\mathrm{R}}{2}+\frac{\mathrm{R}}{2}\right) / 3 \mathrm{RC}
$$

- If B arrives latest?

$$
t_{p d}=\left(2 \mathrm{C} * \mathrm{R} / 2+6 \mathrm{C} *\left(\frac{\mathrm{R}}{2}+\frac{\mathrm{R}}{2}\right)\right) / 3 \mathrm{RC}
$$

Inner \& Outer Inputs

- Inner input is closest to output (A)
- Outer input is closest to rail (B)
- If input arrival time is known

- Connect latest input to inner terminal

Asymmetric Gates

Buffer

Reset asserted $\mathrm{y}=0$

Required to reset less frequently
A is most critical, go for Asymmetric gate.

- Make it inner
- Less gate capacitance
- Reset to a wider nMOS, Less R
- Reset narrower pMOS, Less C
- Series nMOS R = unity
- $\mathrm{R} / 4+\mathrm{R} /(4 / 3)=\mathrm{R}$ and $g_{A}=(2+4 / 3) / 3=10 / 9$
- As the reset nMOS W gets larger, g_{A} becomes closer to unity

Asymmetric Gates

- Asymmetric gates favor one input over another
- Ex: suppose input A of a NAND gate is most critical
- Use smaller transistor on A (less capacitance)
- Boost size of noncritical input
- So total resistance is same
- $g_{A}=$

$$
R_{P D}=\frac{1}{4}+\frac{3}{4}=1
$$

- $g_{B}=$
- $g_{\text {total }}=g_{A}+g_{B}=$

] Asymmetric gate approaches $\mathrm{g}=1$ on critical input
But total logical effort goes up

Symmetric Gates

\square Inputs can be made perfectly symmetric

Skewed Gates

[Skewed gates favor one edge over another
\square Ex: suppose rising output of inverter is most critical

- Downsize noncritical nMOS transistor

unskewed inverter	unskewed inverter
(equal rise resistance)	(equal fall resistance)

- Calculate logical effort by comparing to unskewed inverter with same effective resistance on that edge.
$-g_{u}=$
$-g_{d}=$

HI- and LO-Skew

$$
\text { when } \frac{\beta_{p}}{\beta_{n}}>1 \text { HI skew }
$$

Favors rising transition
Done by downsizing nMOS $\quad V_{\text {out }}$
Skewing is done by downsizing MOSs by a factor of 2
when $\frac{\beta_{p}}{\beta_{n}}<1$ LO skew
Favors falling transition
Done by downsizing pMOS

HI- and LO-Skew

- Def: Logical effort of a skewed gate for a particular transition is the ratio of the input capacitance of that gate to the input capacitance of an unskewed inverter delivering the same output current for the same transition.
- Skewed gates reduce size of noncritical transistors
- HI-skew gates favor rising output (small nMOS)
- LO-skew gates favor falling output (small pMOS)

L Logical effort is smaller for favored direction

- But larger for the other direction

HI- and LO-Skew

In calculating g_{u} of a complex gate:
Draw the unskewed inverter ($2: 1$) whose pull-up resistance is equal to the equivalent resistance of the pull-up network of the skewed gate.
Then $g_{u}=\frac{\text { input capacitance of the skewed gate }}{\text { input capacitance of the unskewed invrter }}$

In calculating g_{d} of a complex gate:
Draw the unskewed inverter ($2: 1$) whose pull-down resistance is equal to the equivalent resistance of the pull-down network of the skewed gate.
Then $g_{d}=\frac{\text { input capacitance of the skewed gate }}{\text { input capacitance of the unskewed invrter }}$

Calculations of $g_{u}^{\prime} s$ and $g_{d}^{\prime} s$

Inverters

unskewed

HI-skew

LO-skew

Equal rise time

Equal fall time

Calculations of $g_{u}^{\prime} s$ and $g_{d}^{\prime} s$

NAND gates

Calculations of $g_{u}^{\prime} s$ and $g_{d}^{\prime} s$

NOR gates

Unskewed

HI-skewed

Equal rise time

Equal fall time

Catalog of Skewed Gates

Asymmetric Skew

- Combine asymmetric and skewed gates
- Downsize noncritical transistor on unimportant input
- Reduces parasitic delay for critical input

Best P/N Ratio

\square We have selected P / N ratio for unit rise and fall resistance ($\mu=2-3$ for an inverter). $\mu=\frac{\mu_{n}}{\mu_{p}}=2$
\square Alternative: choose ratio for least average delay
\square Ex: inverter

- Delay driving identical inverter

- $t_{\mathrm{pdf}}=2 \mathrm{C}(\mathrm{P}+1) . \mathrm{R}$
- $\mathrm{t}_{\mathrm{pdr}}=2 \mathrm{C}(\mathrm{P}+1) . \mathrm{R}(\mu / \mathrm{P})$
- $\mathrm{t}_{\mathrm{pd}}=1 / 2\left(\mathrm{t}_{\mathrm{pdf}}+\mathrm{t}_{\mathrm{pdr}}\right)=1 / 2[2 \mathrm{CR}(\mathrm{P}+1)(1+\mu / \mathrm{P})]=(\mathrm{P}+1+\mu+\mu / \mathrm{P}) \mathrm{CR}$
- $\mathrm{dt}_{\mathrm{pd}} / \mathrm{dP}=\left(1-\mu / \mathrm{P}^{2}\right)=0$
- Least delay for $P=\sqrt{\mu}$

Best P/N Ratio

Inverters

NAND gate

NOR gate

Equal rise time

Equal fall time

P/N Ratios

[In general, best P/N ratio is sqrt of equal delay ratio.

- Only improves average delay slightly for inverters
- But significantly decreases area and power

Observations

- For speed:
- NAND vs. NOR
- Many simple stages vs. fewer high fan-in stages
- Latest-arriving input
- For area and power:
- Many simple stages vs. fewer high fan-in stages

Outline

- Pseudo-nMOS Logic
- Dynamic Logic
- Pass Transistor Logic

Introduction

What makes a circuit fast?
$-\mathrm{I}=\mathrm{CdV} / \mathrm{dt} \quad \rightarrow \mathrm{t}_{\mathrm{pd}} \propto(\mathrm{C} / \mathrm{I}) \Delta \mathrm{V}$

- low capacitance
- high current
- small swing

L Logical effort is proportional to C/l
] pMOS are the enemy!

- High capacitance for a given current
- Can we take the pMOS capacitance off the input?
- Various circuit families try to do this...

Ratioed circuits: nMOS Technology

\square nMOS only Technology.
\square Popular 1970 - to -1980 before CMOS.
\square Pulldown network off, static load (R or T) pulls output high.
\square Pulldown network on, PDN fights the always on static load.
\square Enhancement nMOS requires additional Supply V_{GG} for strong V_{OH}, use instead depletion mode MOS

(a)
(b)

(c)

Pseudo-nMOS

In CMOS, use a pMOS that is always ON

\square Ratio issue

Make pMOS about $1 / 4$ effective strength of pulldown network.
$\mathrm{P}=(2 \times 16) / 4=8$

Pseudo-nMOS

Need the discharging current of the capacitor to I as a unit-sized inverter I. Required transistor size m to do so, keeping the pMOS transistor of $1 / 4$ the stregnth of the nMOS.
$\mathrm{m} . \mathrm{I}-\mathrm{m} . \mathrm{I} / 4=\mathrm{I}$ which gives $\mathrm{m}=4 / 3$
Which gives $\mu(4 / 3) * \frac{1}{4}=\frac{2}{3}$

Pseudo-nMOS Gates

D Design for unit current on output to compare with unit inverter.
\square pMOS fights nMOS

Inverter

NAND2
NOR2

Pseudo-nMOS Gates

D Design for unit current on output to compare with unit inverter.
\square pMOS fights nMOS

Inverter

NAND2

NOR2

Pseudo-nMOS Gates

Calculate $g_{\text {ave }}$ and $P_{\text {ave }}$ for k-input pseudo-nMOS NOR gate

$$
\mathrm{g}_{\mathrm{u}}=(4 / 3) / 1=4 / 3
$$

$$
\mathrm{g}_{\mathrm{d}}=(4 / 3) / 3=4 / 9
$$

$g_{\text {ave }}=1 / 2(4 / 3+4 / 9)=8 / 9$ independent of k
$\mathrm{P}_{\mathrm{u}}=(2 / 3+\mathrm{kx} 4 / 3) / 1$
$\mathrm{P}_{\mathrm{d}}=(2 / 3+\mathrm{kx} 4 / 3) / 3$
$P_{\text {ave }}=1 / 2[2 / 3+4 / 3 x k+2 / 9+4 / 9 x k)=4 / 9+8 k / 9$

Pseudo-nMOS Design

- Ex: Design a k-input AND gate using pseudo-nMOS. Estimate the delay driving a fanout of H
- G =
- $F=$
- $P=1+(4+8 k) / 9=(8 k+13) / 9$
- $N=$
- D =

Which gives : $C_{\text {in }}=\frac{g C_{\text {out }}}{\hat{f}}=\frac{\frac{8}{9} H}{\frac{2 \sqrt{2 H}}{3}}=\frac{\sqrt{8 H}}{3}$

Pseudo-nMOS Design

Since the unit-sized inverter has an input capacitance of 3 units, the sizing of the nMOS NOR gate transistors should be $\sqrt{8 H}$ and the size of the pMOS NOR
 gate would be 2. $(\sqrt{8 H}) / 4$ which makes it one fourth the nMOS strength.

Pseudo-nMOS Power

- Pseudo-nMOS draws power whenever $Y=0$
- Called static power $\quad P=I_{D D} V_{D D}$
- A few mA / gate * 1M gates would be a problem
- Explains why nMOS went extinct
- Use pseudo-nMOS sparingly for wide NORs
- Turn off pMOS when not in use

Pseudo nMOS ROM

Ratio Example

- The chip contains a 32 word x 48 bit ROM
- Uses pseudo-nMOS decoder and bitline pullups
- On average, one wordline and 24 bitlines are high
- Find static power drawn by the ROM

$$
-\mathrm{I}_{\mathrm{on-p}}=36 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{DD}}=1.0 \mathrm{~V}
$$

[Solution:

$$
\begin{aligned}
P_{\text {pull-up }} & = \\
P_{\text {static }} & =
\end{aligned}
$$

[^0]: * Metal gates are returning today!

