Alexandria Institute of Technology Electronics Section

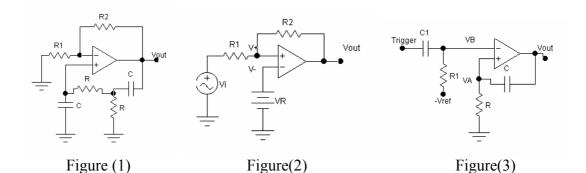
Course: Analog Integrated Circuit Instructor: Prof. M. El-Banna

Term: Winter

Sheet 7:

Electronics Section

Time: SAT 12:00-2:00pm


- 1- For the circuit shown in figure (1) find L(s), $L(j\omega)$, the frequency for zero loop phase, and R_2/R_1 for oscillation.
- 2- Consider the bistable circuit shown in Fig. (2):
 - a) Derive an expressions for the threshold voltages V_{TL} and V_{TH} in terms of op-amp saturation levels L_+ and L_- , R_1 , R_2 and V_R .
 - b) If $L_+=$ $L_-=V$ and $R_1=10~k\Omega$, find R_2 and V that results in the threshold voltages of 0 and V/10.
- 3- Figure (3) shows a monostable MV circuit. In the stable state $,v_O=L_+, V_A=0,$ and $V_B=-V_{ref}.$ The circuit can be triggered by applying a positive input pulse of height—greater than Vref. For normal operation $, C_1R_1 << CR.$ Show the resulting waveforma of v_O and V_A . Also show that the pulse generated at the output will have a width T given by:

$$T = CR \ln \left(\frac{L_{+} - L_{-}}{V_{ref}} \right)$$

Note that this circuit has the interesting property that the pulse width can be controlled by changing Vref.

4- Consider the 555 timer when the Threshold and the Trigger input terminals are joined together and connected to an input voltage v_I. Verify that the transfer characteristics v_O-v_I is that of an inverting bistable MV circuit with thresholds

$$V_{TL} = \frac{1}{3} V_{CC}$$
 and $V_{TH} = \frac{2}{3} V_{CC}$ and output levels of 0 and V_{CC} .

