Alexandria Institute of Technology

Electronics Section

Course: Analog Integrated Circuit Instructor: Prof. M. El-Banna Term: Winter

Sheet 2:
Electronics Section
Time: SAT 12:00-2:00pm

1. Consider The circuit shown below with $R_{1}=R_{2}=R_{4}=1 M \Omega$, and assume the op amp to be ideal. Find values for R_{3} to obtain the following gains:
a- - $10 \mathrm{~V} / \mathrm{V}$
b- $-100 \mathrm{~V} / \mathrm{V}$

2. a-Use the superposition to show that the output of the circuit below is given by:

$$
V_{o}=-R_{f}\left[\frac{v_{N 1}}{R_{N 1}}+\frac{v_{N 2}}{R_{N 2}}+\ldots+\frac{v_{N n}}{R_{N n}}\right]+\left(1+\frac{R_{f}}{R_{N}}\right) R_{p}\left[\frac{v_{p 1}}{R_{p 1}}+\frac{v_{p 2}}{R_{p 2}}+\ldots .+\frac{v_{p n}}{R_{p n}}\right]
$$

where $R_{p}=R_{p 1} / / R_{p 2} / / R_{p 3} / / \ldots \ldots . R_{p n}$, and
$\mathrm{R}_{\mathrm{N}}=\mathrm{R}_{\mathrm{N} 1} / / \mathrm{R}_{\mathrm{N} 2} / / \mathrm{R}_{\mathrm{N} 3} / / \ldots \ldots . \mathrm{R}_{\mathrm{Nn}}$
b- Design a circuit to obtain:

$$
V_{o}=-2 v_{N 1}+v_{p 1}+2 v_{p 2}
$$

3. For the circuit shown below, use the superposition to find V_{0} in terms of the input voltages v_{1} and v_{2}. Assume an ideal op amp for:
$v_{1}=10 \sin (2 \pi \times 60 t)-0.1 \sin (2 \pi \times 1000 t)$, volts
$v_{2}=10 \sin (2 \pi \times 60 t)+0.1 \sin (2 \pi \times 1000 t)$, volts

4. It is required to connect a $10-\mathrm{V}$ source with a source resistance of $100 \mathrm{k} \Omega$ to a $1-\mathrm{k} \Omega$ load. Find the voltage that will appear across the load if:
a- the source is connected directly to the load.
b- An op-amp unity-gain buffer is inserted between the source and the load.
In each case, find the load current and the current supplied by the source. Where does the current come from in case (b)?
5. Consider the instrumentation amplifier discussed in the lecture with a common-mode input voltage of +5 V (dc) and a differential input signal of $10-\mathrm{mV}$ peak sine wave. Let $\mathrm{R}_{1}=1 \mathrm{k} \Omega$, $\mathrm{R}_{2}=0.5 \mathrm{M} \Omega, \mathrm{R}_{3}=\mathrm{R}_{4}=10 \mathrm{k} \Omega$. Find the voltage at every node of the circuit.

