Alexandria University

Faculty of Engineering
Electrical Engineering Department

Prof. M. El-Banna

Sheet (3) : Analog ICs ELE322
Oscillators
قسم الهندسة الكهر بية
الفصل الار اسى الثانى

1- In a particular oscillator characterized by the structure of figiure (1), the frequency-selective network exhibits a loss of 20 dB and a phase shift of 180° at ω_{0}. What is the minimum gain and the phase shift that the amplifier must have for oscillations to begin?

Figure (1)
2- For the comparator circuit shown in figure (2) find suitable values for all resistors so that the comparator levels are $\pm 6 \mathrm{~V}$ and so that the slope of the limiting charactarestic is 0.1 .
Use $V_{C C}=10 \mathrm{~V}, V_{D}=0.7 \mathrm{~V}$.

3- For the circuits shown in figure (3) assuming $\mathrm{V}_{\mathrm{fwd}}=0.7 \mathrm{~V}$, and Zener voltages to be $\mathbf{V}_{\mathrm{Z} 1}$ and $\mathrm{V}_{\mathrm{Z} 2}$, sketch and clearly label the transfer function characteristics $\mathbf{V}_{\mathbf{0}}-\mathbf{V}_{\mathrm{i}}$ assuming ideal op -amps.

Fig. 3-a
Fig. 3-b

4- For the circuit shown in figure (4) find $L(s), L(j \omega)$, the frequency for zero loop phase, and $\mathbf{R}_{2} / \mathbf{R}_{1}$ for oscillation.

Figure (4)
5- For the circuit of figure (5), brake the loop at node X and find the loop gain (working backword for simplicity to find V_{x} in terms of V_{0}). For $R=10 \mathrm{k} \Omega$, find C and R_{f} to obtain sinusoidal oscillations at $10 \mathbf{k H z}$.

6- Consider the bistable circuit of figure (6)
a) Derive expressions for the threshold voltages V_{TL} and V_{TH} in terms of opamp saturation levels L_{+}and L_{-}, R_{1}, R_{2} and V_{R}.
b) If $L_{+}=-L_{-}, R_{1}=10 \mathrm{k} \Omega$, find R_{2} and V_{R} that results in the threshold voltages of 0 and $V / 10$.

Figure (6)

7- Figure (7) shows a monostable multivibrator circuit. In the stable state, $\mathbf{V}_{\mathbf{o}}=\mathbf{L}+$, $V_{A}=0$, and $V_{B}=-V_{\text {ref }}$. The circuit can be triggered by applying a positive input impulse of hight greater than Vref. For normal operation C1R1 \ll CR. Show the resulting waveforms of Vo and VA. Also, show that the pulse generated at the output will have a width T given by

$$
T=C R\left(\frac{L_{+}-L_{-}}{V_{\text {ref }}}\right)
$$

8- Consider the 555 circuit of figure (8) when the threshold and the trigger input terminals are joined together and connected to an input voltage V_{i}. Verify that the transfer characteristic $V_{0}-V_{i}$ is that of an inverting bistable circuit with thresholds $V_{T L}=1 / 3$ Vcc and $V_{T H}=2 / 3 V_{C C}$ and output levels of 0 and $V_{C C}$.

Figure (7)

Figure (8)

