Sheet (2) : Analog ICs ELE221

Power Amplifiers

1- For the class B output stage of figure (1) let $V_{c c}=6 \mathrm{~V}$ and $\mathrm{R}_{\mathrm{L}}=4 \Omega$, if the output is sinusoid with 4.5 V peak amplitude, find :
a- output power
b- the average power drawn from each supply
c- the power efficiency obtained at this output voltage
d- the peak currents supplied by V_{i}, assuming that $\beta_{\mathrm{N}}=\beta_{\mathrm{p}}=50$
e- the maximum power that each transistor must be capable of dissipating safely

Figure (1)

Figure (2)

2- A class A emitter follower, biased using the circuit shown in figure (2), all transistors are identical. Assume $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{Vv}, \mathrm{V}_{\mathrm{CEsat}}=0.3 \mathrm{v}$, and β very large.
a) For linear operation, what are the upper and lower limits of output voltage?
b) and the corresponding inputs?
c) How do these values change if the emitter base junction area of Q_{3} is made twice as big as that of QP? Half as big?

3- A source-follower circuit using enhancement NMOS transistors is constructed following the pattern shown in figure (2). All transistor are identical with $\mathrm{V}_{\mathrm{t}}=1 \mathrm{~V}$ and $\mu_{n} \boldsymbol{C}_{o x} W / \mathbf{L}=$ $20 \mathrm{~mA} / \mathrm{V}^{2}$.
For linear operation what are the upper and lower limits of the output voltage, and the corresponding inputs?

4- Consider the feedback configuration with class B output shown in figure (3). Let $A_{0}=$ $100 \mathrm{~V} / \mathrm{V}$. Derive an expression for V_{o} versus V_{i} assuming that $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$. Sketch the transfer characteristic V_{o} versus V_{i} and compare it without feedback.

5- A class AB output stage, resembling that in figure (4) but with supply of +10 V and biased at $\mathrm{V}_{\mathrm{i}}=1 \mathrm{~V}$, is capacitively coupled to a 100Ω load. $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{~V}$ at 1 mA and for bias voltage of $\mathrm{V}_{\mathrm{BB}}=1.4 \mathrm{~V}$. What quisent current results? For a step change in output from 0 to -1 V , what input step is required ? Assuming transistor saturation voltages of zero, find the largest possible positive and negative-going steps at the output.

Figure (3)

Figure (4)

