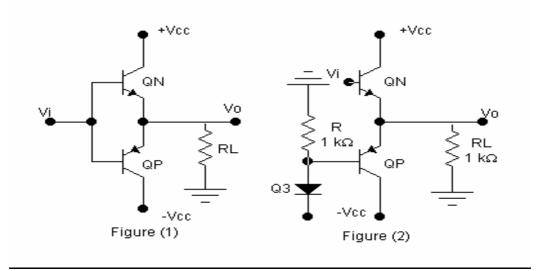
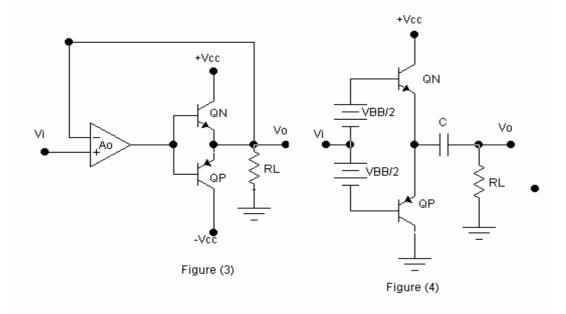
Alexandria University

Faculty of Engineering Electrical Engineering Department


Prof. M. El-Banna

جامعة الإسكندرية كلية الهندسة قسم الهندسة الكهربية الفصل الدراسي الثاني


Sheet (2): Analog ICs ELE221 Power Amplifiers

- 1- For the class B output stage of figure (1) let V_{cc} = 6V and R_L = 4 Ω , if the output is sinusoid with 4.5 V peak amplitude, find :
 - a- output power
 - b- the average power drawn from each supply
 - c- the power efficiency obtained at this output voltage
 - d- the peak currents supplied by V_i , assuming that $\beta_N = \beta_p = 50$
 - e- the maximum power that each transistor must be capable of dissipating safely

- 2- A class A emitter follower, biased using the circuit shown in figure (2), all transistors are identical. Assume $V_{BE} = 0.7 Vv$, $V_{CEsat} = 0.3 v$, and β very large.
 - a) For linear operation, what are the upper and lower limits of output voltage?
 - b) and the corresponding inputs?
 - c) How do these values change if the emitter base junction area of Q_3 is made twice as big as that of QP? Half as big?
- 3- A source-follower circuit using enhancement NMOS transistors is constructed following the pattern shown in figure (2). All transistor are identical with $V_t=1V$ and $\mu_n C_{ox}W/L=20 \text{ mA/V}^2$.
 - For linear operation what are the upper and lower limits of the output voltage, and the corresponding inputs?
- 4- Consider the feedback configuration with class B output shown in figure (3). Let $A_o = 100 \text{ V/V}$. Derive an expression for V_o versus V_i assuming that $V_{BE} = 0.7 \text{V}$. Sketch the transfer characteristic V_o versus V_i and compare it without feedback.

5- A class AB output stage, resembling that in figure (4) but with supply of +10 V and biased at $V_i = 1V$, is capacitively coupled to a 100 Ω load. $V_{BE} = 0.7V$ at 1 mA and for bias voltage of $V_{BB} = 1.4V$. What quisent current results? For a step change in output from 0 to -1 V, what input step is required? Assuming transistor saturation voltages of zero, find the largest possible positive and negative-going steps at the output.

