Alexandria University

Faculty of Engineering Electrical Engineering Department

Prof. M. El-Banna

Sheet (1): Analog ICs ELE221 Feedback

- 1- A negative feed back amplifier has a closed loop gain $A_f = 100$ and open loop gain $A_f = 10^5$.
 - a) find β ?
 - b) If a manufacturing error results in A to 10^3 , what closed loop gain results? What is the percentage change in A_f corresponding to this factor of 100 reduction in A?
- 2- The non-inverting buffer op-amp configuration shown in figure (1) provides a direct implementation of the feedback loop. Assuming that the op-amp has infinite input resistance and zero output resistance,
 - a) find β
 - b) If A = 100, what is the closed loop gain?
 - c) what is the amount of feedback in dB?
 - d) For $V_s = 1 V$, find V_o and V_i .
 - e) If A decreases by 10%, what is the corresponding decrease in A_f .

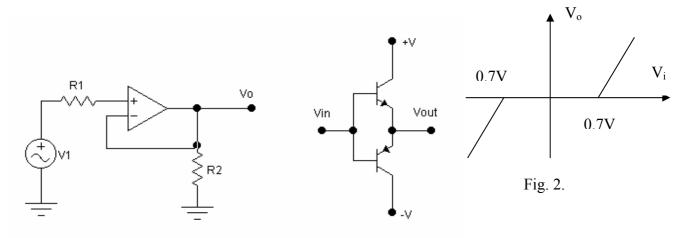
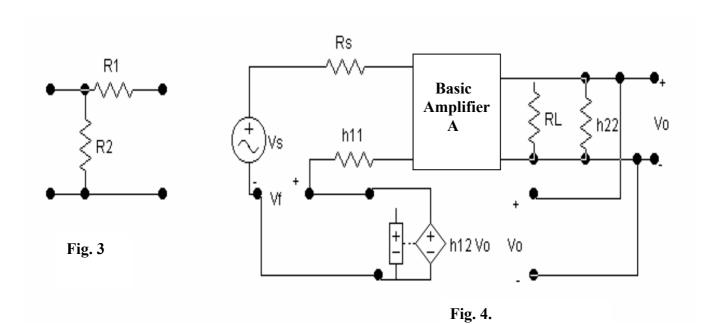



Fig. 1.

3- The complementary BJT follower shown in figure (2) has the approximate transfer characteristics shown. Observe that for $-0.7 \text{ V} < v_i < +0.7 \text{ V}$, the output is zero. This "dead band" leads to crossover distortion. Consider this follower driven by the output of a differential amplifier of gain 100 whose positive input terminal is connected to the input signal source v_s and whose negative input terminal is connected to the emitters of the follower. Sketch the transfer characteristic v_o versus v_s of the resulting feedback amplifier. What are the limits of the dead band and what are the gains outside the dead band?

- 4- A series shunt feed back amplifier utilizes the feed back circuit shown in figure (3)
 - a- Find expressions for h-parameters of the feedback circuit.
 - b- If $R_1=1~k\Omega$ and $\beta=0.01$. what are the values of all four h-parameters? Give the units of each parameter.
 - c- For the case of $R_1=1~k\Omega$ and $R_L=1~k\Omega$, sketch and label an equivalent circuit following the model in figure (4)

