Alexandria University
Faculty of Engineering
Electrical Engineering Department


كلبة الهندسة
قسم الهندسة الكهربية

## Sheet 1

## Biasing Circuits

1-Find the location of the Q-point of the amplifier shown in figure, when an npn transistor is used.Assume that Vcc=10V, $V_{B B}=1 \mathrm{~V}, R_{B}=10 \mathrm{~K} \Omega, R_{C}=2 \mathrm{k} \Omega, R_{E}=100 \Omega, \beta=100, V_{B E}=0.7 \mathrm{~V}$. What is the new location if $R_{B}=1 \mathrm{k} \Omega$.


2-Find the maximum peak-to-peak swing of ic in the circuit shown in figure. Assume that $R_{1}=1 \mathrm{~K} \Omega, \mathrm{R}_{2}=7 \mathrm{~K} \Omega, \mathrm{~V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{R}_{\mathrm{C}}=2 \mathrm{~K} \Omega$, $\mathrm{R}_{\mathrm{E}}=400 \Omega$, and $\beta=100$. Draw the dc load line.


3-With the circuit shown in figure,find the values of $R_{1}, R_{2}$ that yield the maximum possible peak-to-peak swing of ic. Draw the dc load line.


4-For the amplifier of the shown figure, calculate the following:
a-Power supplied by the battery.
b-Power dissipated by $R_{1}, R_{2}, R_{E}$ and $R_{C}$.
c-Power dissipated by the collector junction.


5-For the amplifier shown in circuit:
a-Find the values of $R_{1}$ and $R_{2}$ for $I_{C Q}=8 m A$.
b-Determine the symmetrical output voltage swing for the values of part a.
c-Draw the ac and dc load lines.
d -Determine the power dissipated by the transistor and that dissipated by $R_{L} V_{c c}=20 \mathrm{~V}$.


5-Determine $\mathrm{Av}, \mathrm{Ai}$, and Rin for the amplifier shown in figure when:
$R_{L}=R_{B}=5 K \Omega, h_{i b}=40 \Omega, \beta=300$, and $R_{E}$ is as follows:
$a-R_{E}=1000 \Omega$,
$b-R_{E}=500 \Omega$,
$c-R_{E}=100 \Omega, d-R_{E}=0$.


7-For the circuit shown in figure, select $I_{C Q}$ and $V_{C E Q}$ for maximum symmetrical output voltage swing.
a-Determine the values of $R_{1}$ and $R_{2}$ in order to achieve this operating point.(Vcc=12v)
b-Find the maximum symmetrical output swing.
c-Determine the power dissipated by the transistor and the power delivered to the load.


