Alexandria University Faculty of Engineering Electrical Engineering Department

Sheet 1 Biasing Circuits

1-Find the location of the Q-point of the amplifier shown in figure,when an npn transistor is used.Assume that Vcc=10V, V_{BB} =1V, R_B =10K Ω , R_C =2k Ω , R_E =100 Ω , β =100, V_{BE} =0.7V.What is the new location if R_B =1k Ω .

2-Find the maximum peak-to-peak swing of ic in the circuit shown in figure. Assume that R₁=1K Ω , R₂=7K Ω , V_{cc}=24V, R_c=2K Ω , R_E=400 Ω , and β =100.Draw the dc load line.

3-With the circuit shown in figure, find the values of R₁, R₂ that yield the maximum possible peak-to-peak swing of ic. Draw the dc load line.

4-For the amplifier of the shown figure, calculate the following:
a-Power supplied by the battery.
b-Power dissipated by R₁, R₂, R_E and R_c.
c-Power dissipated by the collector junction.

5-For the amplifier shown in circuit:

a-Find the values of R_1 and R_2 for $I_{CQ}=8mA$.

b-Determine the symmetrical output voltage swing for the values of part a.

c-Draw the ac and dc load lines.

d-Determine the power dissipated by the transistor and that dissipated by $R_L \; V_{cc} \mbox{=} 20 \mbox{V}.$

5-Determine Av, Ai,and Rin for the amplifier shown in figure when: $R_L=R_B=5K\Omega$, $h_{ib}=40\Omega$, $\beta=300$,and R_E is as follows: $a-R_E=1000\Omega$, $b-R_E=500\Omega$, $c-R_E=100\Omega$, $d-R_E=0$.

7-For the circuit shown in figure, select I_{CQ} and V_{CEQ} for maximum symmetrical output voltage swing.

a-Determine the values of R_1 and R_2 in order to achieve this operating point.(Vcc=12v)

b-Find the maximum symmetrical output swing.

c-Determine the power dissipated by the transistor and the power delivered to the load.

