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Abstract—This paper investigates the interference alignment
(IA) solution for a K-user static flat-fading multiple input
multiple output (MIMO) interference channel. Optimal users’
precoders and postcoders are designed through a rank constraint
rank minimization (RCRM) framework with IA conditions in-
serted within the constraints and the cost function of a complex
matrix optimization problem. With RCRM formulation, the
interference is forced to span the lowest dimensional subspace
possible, under the condition that the useful signal subspaces
span all available spatial dimensions. Using the recent advances
in matrix completion theory and low rank matrix recovery
theory, we propose an Iterative Reweighted Least Squares (IRLS)
approach to IA. Through this approach, we provide an adequate
relaxation for the rank function which in some cases attain the
same results obtained using the standard nuclear norm with lower
elapsed time per iteration and lower number of iterations and in
some cases perform better than any of the previous approaches.

Keywords—lIterative Reweighted Least Square (IRLS), Degrees
of freedom (DoF), Interference alignment, Interference channel,
MIMO, Alternative minimization.

I. INTRODUCTION

Traditionally, interference is considered as a major limiting
factor when designing any wireless communication system.
Interference alignment was introduced as a solution to the
interference problem by showing that with any K users in
the network, every user still have the ability to achieve half
the capacity of the interference free case [1]. IA can be viewed
as a cooperative interference management strategy through
which the transmitters cooperatively design their transmitted
signals in the multidimensional space such that the interference
observed at the receivers occupies only a portion of the full
signalling space [1][2]. As an efficient transmission technol-
ogy, IA has a wide application in modern advanced wireless
communication systems such as femto-cell networks, cognitive
radio networks, and ad-hoc networks [4]-[8].

Communication in the presence of interference can be
analysed using a model called the interference channel. This
interference channel consists of multiple transmitters who wish
to communicate with their respective receivers. Assuming the
transmitters share the same time and frequency resources, each
transmission creates interference at the unintended receivers
[3]. TA can achieve sum capacity for the K-user interference
channel that scales linearly and without bound with the number
of users, in high signal-to-noise ratio(SNR) regime. Intuitively,
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IA jointly optimizes precoding matrices for all transmitters, so
that all the interference at one receiver fall into a reduced
dimensional subspace. Then by multiplying postcoding matrix
orthogonal to this subspace, the intended receiver can extract
the desired signals without interference. In order to satisfy
perfect IA, it is required for some conditions to be realized.
These conditions include: all interference signals must be
eliminated, all the signal subspaces must be full rank, and
the precoders and postcoders must be orthogonal. However the
achievement of such conditions is not a simple problem unless
some special cases as explained in [1] and [9] where closed-
form solutions are introduced. As an alternative to closed-
form solutions, there are some iterative algorithms that was
introduced in the literature, such as [10]-[13].

Recently, the authors in [14] has proposed a rank constraint
rank minimization (RCRM) framework in order to obtain
near optimal IA solutions and achieve the desirable Degree
of freedom (DoF) per user. This framework poses full-rank
constraints on the useful signal subspaces and minimize the
rank of the interference subspaces. The full-rank constraints
guarantee that useful signal subspaces span all available spatial
dimensions. The rank minimization forces the interference
subspaces to squeeze to the minimum dimensions possible.
In [14], the authors introduce a convex relaxation of the
RCRM problem inspired by recent results in low-rank matrix
completion theory. These relaxations rely on approximating
rank with the standard nuclear norm. Depending on these
relaxations, they show that the convex envelope of the sum
of the ranks of the interference matrices is the normalized
sum of their corresponding nuclear norms and replace the rank
constraints with asymptotically equivalent and tractable ones.
By careful inspection of this approximation, it was shown that
nuclear norm approximation is not tight and accurate enough
for approximating the rank function, because it is sensitive to
the influence of its magnitude. In [15], the authors proposed
a family of Iterative Reweighed Least Squares (/IRLS-g) (with
0 < g < 1), as a computationally efficient way to improve
over the performance of nuclear norm minimization.

In this paper, we propose applying IRLS approach to
IA for static flat-fading K-user MIMO interference channels.
Motivated by maximizing the average DoF per user, we use the
RCRM problem developed in [14]. Unlike [14], an alternative
solution to the non-convexity of the RCRM problem, namely
IRLS-q based approach, is developed to approximate the cost



function as the weighted Frobenius norm of the interference
matrix. The proposed IA algorithm exhibits fast convergence
(low number of iterations) and low complexity where the
iterations are based on weighted Frobenius norm instead of
nuclear norm that requires singular value decomposition (SVD)
to calculate. Then, the optimum precoding and postcoding
matrices are obtained using alternative minimization. The
efficiency of the proposed algorithm is evaluated in terms of
both the average sum rate and the average DoF per user which
is useful when targeting higher DoF per user.

The remainder of the paper is organized as follow. In
section II, description of the system model and its mathe-
matical manipulation is presented. Section III explains the
RCRM framework for interference alignment. The Iterative
Reweighted Least Squares algorithm relaxation is explained in
Section IV . The simulation results are presented and discussed
in Section V. Finally, the paper is concluded in Section VI.

Notations: matrices and vectors are denoted by boldface
upper case symbols and boldface lower case symbols respec-
tively. An identity matrix of size N x NN is simply denoted
by Iy. Positive semi-definiteness of the matrix A is depicted
using A > 0 . AT and A refer to the transpose and the
hermitian of matrix A respectively. C"*" is used to describe
the complex space of m x n matrices. ||A|| and tr{A} are
used to refer to the Frobenius norm and the trace of the
matrix A. ||A]|, refers to the nuclear norm of the matrix A
which is equivalent to the sum of its corresponding singular
values. 0;(A) and 0,,,;,,(A) represents the i, largest singular
value and the minimum singular value of A respectively. The
operation [a]" denotes maximum(a,0). Finally, SV D(A) and
QR(A) denotes the singular value decomposition and the QR
factorization of matrix A respectively.

II. SYSTEM MODEL AND PERFECT INTERFERENCE
ALIGNMENT CONDITIONS

A. System Model

Consider a static flat-fading K-user MIMO interference
channel (M; x M,,d)¥ as shown in Fig.1, where each trans-
mitter equipped with M, antennas, and each receiver equipped
with M, antennas with each user pair wishes to achieve d
DoF. Suppose that z;, € C?*! denotes the transmit signal
vector of the k" user, Vk € K, with power covariance as
E(xxx1) = (P/d)l,, where P is the total transmitted power
of each user. After receiving the signal y,, the k'" receiver
multiplies the corresponding postcoding matrix WkH to it on
the left, which is expressed as in equation (1):

K
Wiy, = WlHLFiex + WY > H Fixg + Wilve (D)
~ I1=1,I#k ——

useful signal Noise

Inter ference

where H; ; € CM~*M¢ denotes the channel matrix between
the j** transmitter and the i** receiver. F;, € CM:*4 and
W, € CMrxd represent the precoder and the postcoder of
the k' user, respectively. v;, € CMr*1 denotes the zero-
mean complex additive white Gaussian noise vector with
covariance matrix a,%IMr. In this paper, we assume without

loss of generality that all the noises have the same covari-
ance, that is 07 = o2, Vk € K. If we assume that all
signal subspaces span all available dimensions, we can say
that span(W} Hj, ,F)) is the subspace where receiver k,
k € K, can search for the symbols transmitted by transmit-
ter k. Additionally, span({WH Hy Fi}S, ;) refers to the
subspace where all interference signals are observed, where
{SiHE 1,12k denotes the horizontal concatenation of matrices

X1y ooy X1 X 15 005 XK

B. Perfect Interference Alignment Conditions

According to [1] and [14], the aim of IA is to design
precoder matrices Fj and postcoder matrices Wy, where
k € K, such that each receiver can decode its own signal
by forcing interfering users to share a reduced-dimensional
subspace. This can be translated to the conditions for perfect
IA as in equations (2) and (3):

WHH, F) = 0454, VieK\k (2
rank(W H;, ,F),) = d, 3)

Equation (2) can be rewritten as:

Wi H Fp = 0454, Vie K\k
& {WIHLFHS 2] = [0axa.-Odxd]
& W {HF S 2] = 0as (k1)

According to equation (2), all interference subspaces en-
forced to have zero dimensions. Equation (3) enforces the
useful signal to span all d dimensions.
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III. INTERFERENCE ALIGNMENT AS A RANK
CONSTRAINT RANK MINIMIZATION

The problem of finding precoding and postcoding matrices
satisfying the IA conditions under arbitrary channel matrices is
not an easy task. According to [16], the problem of checking
the achievability of a certain DoF tuple {dy,........ ,dg}, for
K-user MIMO interference channel, is NP-hard. There are
many approaches for achieving IA, even when perfect TA
conditions are not feasible. One of these approaches is the
leakage minimization approach, which aims to minimize the
total interference leakage at each receiver [10]. However,
minimizing the subspace spanned by the interference is related
to minimizing the rank of the interference matrix rather than
minimizing the energy of the interference signal. Another
approach presented in [10], is the maximization of the signal
to interference and noise ratio (SINR) at each receiver .
However, it was shown in [14] that this approach gives lower
performance than the leakage minimization in terms of both
sum rate and DoF per user. Recently, in [14], the author
established that the minimization of the sum of the interfer-
ence dimensions under full-rank signal space constraints is
equivalent to maximizing the sum multiplexing gain of a static
flat-fading MIMO interference channel. This is referred to as
RCRM problem.

Instead of minimizing the power of interference signal, the
RCRM problem focuses on keeping the interference signals
within a low dimensional subspace where the desired signal
subspaces span all available spatial dimensions. RCRM is in
general, an NP-hard problem and the rank as a cost function is
a non-convex function. However, through convex relaxations
it can be transformed to a problem that it is easy to solve.
For example, [14] proposed to approximate the NP-hard rank
function by using the standard nuclear norm. However, the
recent result in minimum rank matrix recovery and sparse
representation proposes a more efficient tractable relaxations
to improve over the performance of nuclear norm minimization
[15].

Let’s defining the signal(S;) and interference matrices (Jx)
for all k£ € K. They can be expressed as:

Sk 2 Wi H,, ,F), € C?*¢ (4)
Ji &£ W {H Fi ) ) € CUDd )

Equations (2) and (3) can be reformulated using rank functions
as in equations (6) and (7) for all k € K.

rank(Sg) =d 6)
0 @)

Accordingly, the spatial DoF for any user k can also be
reformulated in terms of rank functions as in equation (8).

dy & [rank(Sy) — rank(Jk)]+ ®)

This result is possible, as the eigenvalues of the SkSkH and
J kaH scale linearly with P for given precoding, postcoding,

and channel matrices. The group of precoders and postcoders
that will satisfy the IA conditions for perfect and imperfect
cases will be obtained through solving the optimization prob-
lem in equation (9).

K
minimize kz_l rank(Jy)
s.t. rank(Wi Hy xFy) = dy ©)

IV. ITERATIVE REWEIGHTED LEAST SQUARES
INTERFERENCE ALIGNMENT APPROACH

The problem of finding the minimum rank matrix arises in
many engineering applications such as sparse recovery, com-
pressive sensing, collaborative filtering, and matrix completion
theory [15][17]. One of the tractable relaxations proposed
for rank minimization problem is the nuclear norm heuristic,
which is guaranteed to find the minimum rank matrix under
suitable assumptions. In this paper, we propose using a more
computationally efficient alternative in the RCRM framework
than the standard nuclear norm heuristic. This alternative
is the Iterative Reweighted Least squares (IRLS) algorithm
which is used as a relaxation of the non-convex rank cost
function in RCRM framework of IA. The IRLS-q algorithm
can be viewed as the local minimization of certain smooth
approximations to the rank function. When ¢ = 1, the IRLS-
q algorithm gives theoretical guarantees similar to those for
the nuclear norm minimization. However, for ¢ < 1, IRLS-
q shows better empirical performance in terms of recovering
low-rank matrices than the nuclear norm heuristic.

Our approach is divided into two parts. These two parts
exploit the use of two different relaxations for the rank
constraints and the rank of the cost function. The rank con-
straints as well as the cost function are non-convex sets and a
relaxation to convex one is required. Two different relaxations
are employed. As illustrated in [14], the rank constraints are
relaxed by forcing the signal space matrices to be positive
definite accompanied by putting a specific limiting factor on
the minimum eigenvalue of each signal subspace Sy as shown
in equation (10).

rank(Sg) =dr <= S >0 and Apin(Sk) >0
<~ )\min(ngk,ka) >0
and WHHy 1 F), > 0454 (10)

for all k£ € K, equation (10) can also be approximated to the
closed sets in equation (11).

rank(Sk) =d <— )\mm(wkHHk)ka) > €
and WHEHg  Fr, > 04500 (11)

where € > 0.The rank cost function defined by equation (7)
will be relaxed through the IRLS. Define the smooth Schatten-
p function as in equation(12).



= Tr(JLJs +191)%
=3 (07 (k) + )2 (12)

This function is differentiable for ¢ > 0 and convex for
q > 1. With v =0, fi(Jx) = [Jxll, withy =0and ¢ — 0 the
function f,(Jx) — rank(Jx). So, it is of interest to consider
the optimization problem in equation (13).

fq(Jkr)

K
mtn.mt e T Mk T
}«“;:W;:Z ; r(MGJ; Jk)
s.t. Wi H,, 1. Fi > 04xa,

Anin(WHH 1 FL) > ¢, Vke K (13)

Where ij is the weighting matrix at iteration k& with /RLS
parameter ¢, which is equivalent to (J7J + 7*I)'~2, with
choosing 0 < ~*Ft1 < 4% 4 is called the regularization
factor. We note that /RLS algorithm converges faster when the
regularization parameter in the weighting matrix, v*, is chosen
appropriately. Given M , the optimization problem (13) can be
solved using alternatlve mmimization [11], alternating between
which variables are held fixed and which are optimized. Listed
below the IRLS which alternatively used to obtain the precoder
and postcoder matrices.

Algorithm 1 {Fl}fil  IRLS-g({Wi}/X))

Set k = 1. Initialize M{ = I,y > 0
While not converged, do
F, = mim’mize{Tr(MZflJTJ)}
s.t O’mm(WkHHk,ka) <e
Wi H,, ,Fi <0
M!, = (T, + D)%
Choose 0 < v* < AF+1
k=k+1;
End

By exchanging F; and Wj, in the IRLS-q algorithm we
can obtain the optimization precoder and postcoding matri-
ces. Each iteration of Algorithm 1 minimizes a weighted
Frobenius norm of the matrix J, since TT(M,}:AJTJ) =

|| M )12 H2 While minimizing the Frobenius norm sub-
ject to some constraints doesn’t lead to low-rank solutions in
general, through a careful reweighting of this norm we show
that Algorithm 1, indeed, produces low-rank solutions under
suitable assumptions. Finally, the step-by-step IRLS based IA
for the k*" user can be presented as follow:

1) Initialize {Wr_,}, and M Vk=1:K;

2)  Solve the Iterative Reweighted Least Squares mini-
mization problem in equation (13), for the n'" itera-
tion:

) {Fi}S, < IRLS-g({W;}K,)) ;
b) {Wl}zl; A IRLS‘CI({Fl}lIil) ;

3) Terminate when n attains a specified maximum num-
ber of iterations V.

Convergence in the proposed IRLS algorithm can be simply
recognized by first expressing the iterations of IRLS as in
equations (14,15).

= argmin fq(J,Mk,'yk) (14)
= argmin f9(J"" M, 7¥) (15)

Where argmin(.z yields the new J**! using the computed
values of M* and v*. Accordingly:

fq(Jk+1,Mk+1,’)/k+1) qu(Jk+17Mk7,yk+1) (16)
qu(Jk+17Mk7'yk)

< fIIF M AR

Equation (16) guarantees the convergence of the IRLS
algorithm.

V. SIMULATION RESULTS

In this section, we analyze the proposed IRLS-q algorithm
using MATLAB simulations. We compare the proposed al-
gorithm with its preceding algorithms, namely, nuclear norm
heuristic [14], interference leakage minimization approach
[10], and the SINR maximization (with and without QR
decomposition) [18]. The notation (M; x M,.,d)" specifies
a K-user interference channel, with each user equipped with
M, transmitting antennas and M, receiving antennas with
each user aiming to d DoF. In this paper, we consider the
(8 x 4,d = 1,3)> MIMO interference channel, for which
the number of users is 3 users each equipped with 8 transmit
antennas and 4 receive antennas. This MIMO interference
channel will be tested under two values of the issued DoF
per user (1,3). The (8 x 4,d = 1,3)3 system is a proper
system, where it verify the rule d < % In spite of
being proper, this system is not guaranteed to achieve perfect
IA. We assume that the transmit power is equally distributed
between the columns of the precoding matrices, with each

column get 10fo . We choose the same range of P as in [14],

from 0dBm to 80dBm. Additionally, we set the variance
of the white Gaussian noise a,% = 1dBm. The channel is
drawn from i.i.d real Gaussian distribution with zero mean
and unit variance. The presented result is the average over 100
runs. The performance of different IA approaches is compared
using two parameters. The first one is the average sum rate in
bits/sec/Hz which is computed using equation (17).

log(1+ SINRy,)

=

Il
ndls
DN | =

~
Il
—

logdet(Iy + (Iy + 3. JE) 718 SH)  (17)

I
'MN
DN | =

N
Il
N



In equation (17), the second term inside the logdet function
is the SINR for k' user, where Ska is the signal power
at transmitter &, J leIf is the interference power at receiver
k, and the noise power a,% for each user is assumed to be
1, so the noise matrix is assumed to be identity matrix I,.
The second parameter we used to judge the performance is
the average DoF per user which is defined as the average
number of interference free dimensions per user or the average
multiplexing gain per user. The average DoF per user is
calculated in simulation as the number of singular values of
Sj with value greater than 10~°, minus the number of singular
values of Jj that are greater than 10~%. The optimization
problems in this paper are all solved using the CVX toolbox
[19].

In our simulations, we select a specific number of iterations
for each approach according to its convergence rate. In Fig.2,
the sum rate versus P for the (8 x 4,d = 1)® system is
displayed. The leakage minimization and the SINR maximiza-
tion approaches requires 10* in order converge. However, the
nuclear norm and our IRLS approaches requires much less
number of iterations which are 5 and 3 iterations respectively.
It is apparent that the proposed algorithm converges faster than
any of the preceding approaches in terms of the number of
iterations and the execution time for these iterations. According
to Fig.2 where d = 1, our algorithm matches the one achieved
by the nuclear norm approach at any P. Moreover, the SINR
maximization approach (with and without Q) R) slightly outper-
forms both the nuclear norm approach and our IRLS proposed
approach at P < 40dBm and matches them for P > 40dBm.
In general, leakage minimization approach performance is the
worst at all P.
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As in Fig.3, the average DoF per user versus P is plotted.
It is apparent that the proposed IRLS algorithm, the nuclear
norm and the leakage minimization approaches achieves in
average one interference free dimension for each user at any
P. While the number of interference free dimensions achieved
by the maximum SINR approach varies according to the P as
shown in Fig.3 where it gradually increases after P = 40dBm.
So, in order to obtain an improved performance in terms of
both average DoF per user and the average sum rate for the
(8 x 4,d = 1) system, both the proposed IRLS algorithm
and the nuclear norm algorithm can be used.

Fig.4 and Fig.5 are the average sum rate and average DoF
per user for the (8x4,d = 3)? system respectively. As in Fig.4
with P < 40dBm, both the maximum SINR approach and
the leakage minimization approach slightly outperform both
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Fig. 3. Average DoF per user versus P, for a 3-user MIMO interference
channel, My =8 , M, =4,d=1

our IRLS proposed algorithm and the nuclear norm approach.
Beyond P = 40dBm, the proposed IRLS algorithm and the
nuclear norm approach have a matched performance which
outperforms all other algorithms.

«
c

T T T
= Iterative Reweighted Least Squares = 3
=@ Nuclear norm algorithm, iter = 5

|| =B~ Max-SINR, iter = 10*

~—#— Max-SINR with QR, iter = 10*

=~ Leakage minimization, iter = 10*

@
S
T

~
=)

S
T

S

@ 5 a o
S

Rate (bits / sec / Hz)

=3

(] 10 20 30 40 50 60 70 80
P (dBm)
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Fig.5, illustrate the variations in the average interference
free dimensions with P for (8 x 4,d = 3)3 system. It is
obvious that our proposed IRLS approach achieves the highest
DoF compared with all preceding algorithms at d = 3. It
achieves on average 1.875 DoF with 1.587 achieved by the nu-
clear norm approach which achieves the nearest performance.
The maximum SIN R approach and the leakage minimization
approach doesn’t achieve more than 1 DoF per user.
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VI. CONCLUSION

In this paper, we propose an Iterative Reweighted Least
Squares interference alignment algorithm for K-user MIMO



interference channel. This algorithm follows the rank constrain
rank minimization framework to alternatively minimizing both
the precoding and postcoding matrices. We have showed that in
some cases, the algorithm can meet the conditions for perfect
IA. However, when the perfect IA conditions is difficult to
achieved, we aim to minimize the rank of subspace spanned
by the interference while keeping the signal subspace full-
ranked. The proposed heuristic was developed based on the
IRLS relaxation of the rank cost function introduced in [15].
Furthermore, we have been able to modify the heuristic to cope
with the requirements of the IA process. Our results show the
effectiveness of the proposed IRLS algorithm in terms of the
average sum rate and the average DoF per user.
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