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Abstract—The performance of optical code-division
multiple-access (CDMA) communication systems utilizing
number-state light field is evaluated. Lossy direct detec-
tion optical channels are assumed. Both on-off keying
(OOK) and pulse-position modulation (PPM) schemes are
investigated. For OOK, the exact bit error rate is evaluated
taking into account the effect of both multiple-user inter-
ference and transmission loss. Upper and lower bounds on
the bit error probability for PPM-CDMA systems are de-
rived under the above considerations. The effect of both
background and thermal noise is neglected in our analysis.
A comparison between the performance of the number- and
coherent-state OQOK/PPM-CDMA networks is also pre-
sented. Our results demonstrate that the number-state
system requires less than half the energy consumed by the
coherent-state one in order to attain the same performance.

I. INTRODUCTION

The quantum fluctuations of laser photons generated
in an optical coherent state lead to an uncertainty in es-
timating the number of photons contained in a coherent
laser pulse. This number can be modeled as a Poisson
random variable whose statistical expectation equals the
average photon count per pulse [6]. The coherent-state
random fluctuations, thus, form a major source of noise in
optical communication systems. On the other hand, the
photon count contained in a laser pulse generated in an
optical number state is a nonrandom unique value [1]. In
other words, in lossless channels, every transmitted pho-
ton will appear as is at the receiving end. If the optical
channel is, however, lossy, some of the transmitted photons
may disappear before reaching the photodetector. Assum-
ing that n € [0,1] denotes the transmittance coefficient of
the lossy channel, the probability of detecting exactly n
photons given that m photons have been transmitted can
be written as

Pr{njm} = (’:) PA-n™",  ae{0,1,...,m}.

The above equation demonstrates that, in lossy channels,
number state optical pulses also yield random photon
counting processes at the receiving end. Therefore per-
formance degradation is expected as 7 decreases even in
the absence of the background noise.

Recently, an increasing interest has been given to op-
tical code-division multiple-access (CDMA) techniques be-
cause of their ultrafast signal-processing speeds [2-5]. Sev-
eral models for optical CDMA communication systems
have been suggested in literature. In a typical system
model there are N simultaneous sources of information
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(users) which produce continuous and asynchronous data.
The data of each user modulates a laser source using either
on-off keying (OOK) or M-ary pulse-position modulation
(PPM) schemes. Each modulated signal is then multiplied
by a periodic signature (code) sequence of length L and
weight w. Assuming that the bit rate is denoted by Ry
bits/s, the chip time T, of the sequence can be shown to
be given by

T L_}?o. ; for OOK, (
e l]%&g% . for PPM, )

where M denotes the number of possible pulse positions
(slots) within the PPM frame. The multiplication process
can equivalently be performed using an optical splitter, op-
tical tapped delay lines, and an optical combiner. The out-
put of each signature forming device undergoes transmis-
sion loss in the channel before reaching the receiver. The
received waveform is composed of the sum of N delayed
and attenuated signals from each user in addition to the
background noise. This waveform is passed to an optical
correlator matched to the specific sequence {4]. The corre-
lation process is equivalent in operation to multiplying the
received waveform by the underlying code sequence. The
output of the correlator is finally directed to an OOK/PPM
demodulator which decides on the true data.

In this paper we aim at comparing between the bit
error rate performance of coherent and number state op-
tical CDMA systems utilizing either OOK or PPM mod-
ulation techniques. In our analysis we consider the effect
of the transmission loss due to the attenuation in the op-
tical channel. We neglect, however, the effect of both the
background and thermal noise. In order to have some in-
sight on the results obtained we assume chip synchronous
uniformly-distributed relative delays among the transmit-
ters and perfect photon counting processes at the receivers.

In the numerical analysis, we consider optical orthog-
onal codes (OOC’s) [5] as the signature code sequences.
To have minimal interference between the users we adopt
OOC’s with periodic cross-correlations and out-of-phase
periodic auto-correlations that are bounded by 1 [5].

The remaining of our paper is organized as follows.
Section I1 is devoted for the derivation of the bit error rate
for optical OOK-CDMA through both coherent and num-
ber state lossy channels. Upper and lower bounds on the
bit error probability for PPM-CDMA systems are derived
in Section III. Performance comparisons between the co-
herent and number state channels are illustrated at the end
of the above two sections. Finally extensions and conclud-
ing remarks are given in Section IV.



II. BiT ERROR RATE FOR OOK-CDMA

In OOK a signature sequence is transmitted (of w
laser pulses) to represent data bit “1”. Data bit “0” is
represented, however, by zero pulses. We denote by « the
number of pulses, from the other users, that cause interfer-
ence to the desired user. In OOC’s with cross-correlations
bounded by one (since we assume chip synchronous) each
undesired user may contribute only one pulse to this num-
ber or contribute no pulses at all. Hence % is a binomial

random variable with parameters % and N —1 [3]:

rte=0= (") ) (-5
1€{0,1,...,N =1} .(2)

The Decision Rule

As usual, a threshold 8 is set. If the received photon
count is less than this threshold, “0” is declared, otherwise
“1” is declared to be sent. The probability of bit error is
thus given by

Py(0) = 5 (PLEN] + PIEIN)

N-1
= % 3" (PEI0, & = 1]+ PIEIL, & = 0)) Pr{x = I}3)
=0

where P[E|i,x = I} is the probability of error given that
i € {0,1} was sent and there are [ interfering pulses with
the desired user. To evaluate this probability of error we
consider the following two cases (A and B).
A. Number State

We assume that exactly m photons are contained in
each transmitted pulse (i.e., a total of mw photons are
transmitted in the bit time of data bit “1”). A decoding
error can thus occur, given that “0” was sent and [ pulses
have interfered with the desired user, if the number of re-
ceived photons is at least equal to 8:

PIE0,k=1]= {Z'n"ie (L =mm=n ;0 < ml,
0; otherwise.
(4-a)
Similarly,
21'1-:}) (m(t:H)) " (1 - n)m(w-{-l)—n ;
P[EII,IC=1]= ifﬂ<m(w+l)+1,

1;
otherwise.

(4-b)

B. Coherent State
Assuming that the average transmitted photons per
pulse is equal to m, then the average received photons per
pulse (due to channel loss) becomes ym. Hence for a PIN
photodetector which output is a Poisson random variable

(61,

PLEN, e =)= 3 explonm T

n=@ "

-1 n
PIEIL k=1 = Y expl-m(w + N THLED (5)

n=0

Numerical Results

The optimal threshold which minimizes the bit error
rate in (3) has been evaluated numerically for w =5, L =
500, and different values of N and m. The minimum bit
error rate Py = ming P3(0) is plotted in Fig. 1 for both
number state and coherent state. The superiority of the
number state system is obvious from the figures. For ex-
ample if N = 5, 7 = 0.7, and P, < 1075 we need at least
m = 15 for the number state whereas m = 40 for the
coherent state. This indicates that more than 60% save
in energy is gained when using the number state OOK.
It is also noticed that for n = 0.7 the performance of the
number state systemn with 10 simultaneous users is almost
similar. to the coherent state system with only 5 simulta-
1eous users.

I1I. Bir ERROR RATE FOR PPM-CDMA

In M-ary PPM a time frame of duration T is divided
into M disjoint slots each having a width r = T/M. Sym-
bol i € {0,1,..., M — 1} is represented by transmitting
a signature sequence within slot number i. We denote by
&i, i €{0,1,..., M — 1} the number of pulses, from other
users, that cause interference to slot ¢ of the desired user.
As in the case of OOK, «; is a binomial random variable
with probability distribution given by (2). The joint dis-
tribution of any two random variables «; and «;j, i # j is
given by

PI‘{IC,' = l,',K,J' = IJ} =
1Al

(N~ 1)t
=G — N 1= § = +7)

r=0VI 41— (N-1)
x PG, )Pl (6, PG 9) Pay T LG)
li,lj e {0,1,...,N -1}, (6)

where
o li=g w?
Pu(i,f) = lel ‘ML’
Y
.. i—jl\ w
Pro(i, ) = (1 - lngl)m s

Pol(ivj) = Plo(i:j) »
Poo(i,7) = 1 — Pu(4,§) — Pro(i,3) — Por(i,5) . (7)

The derivation of this distribution can be found in Ap-
pendix A.

The Decision Rule

We denote the photon count collected in slot 1, { €
{0,1,...,M—1} by ¥;. Symbol “” is declared to be trans-
mitted if Y; > Y; for every j # i. We now provide a union
bound on the probability of word error Pg. The bit er-

ror rate P is related to Pg by the well known formula
P = %PE.

M-1
Pz= Y PE P},

i=0
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where Pr{i} = 1/M in the case of equally likely data and
P[EY] = Pr{Y; 2 Vi, some j # ili}

M-1
< S Pr{y; 2 i}

j=05#i

Dencting the union bound by PY and noticing that
Pr{Y; > Y;|i} depends only on the difference [i = j|, we
get

1 M-1 M-
Pl = i 2 r{Y; > Y;li)
1=0 ':0
9 M-1
= =7 0 (M- d)Pr{y; > Vili,li - j| = d}
d=1
9 M-1
=7 (M — d)Pr{Ys > 5|0} . ()
d=1

The probability under the summation can be evaluated as
follows

N-1N-1
Pr{Yy> Yolo} = 3 3 Pr{¥u > Yol0,k0 = lo, ka = la}x

lo=014=0

Pr{xo = lo,ka = la} . 9)

This union bound is still too complex. We thus provide
tight upper and lower bounds on this union bound.
Lower bound on Pg

We can write

N-1
Pl'{yd Z Yolo} Z Z Pr{Yd EYOIO,KQ = U,Kd = Id}X
1g4=0
Pr{ko = 0,k4 = la} .

Using (6) we have

N-1
Pr{xo = 0,64 = l4} = ( L )pg;(o,d)ng~l-'«(o,d) ,

where
Poy(0,d) = (1 - Ej—?)ﬁf )
w?
Pyo(0,d) =1 - i~ Py (0,d) .
Hence
g M=
Py > 7 Z Pr{Ys > Yol0,k0 = 0,%4 = la} X

-1
(M — d)( )ng(o d)PL~1=1(0,d) (10)

d=1

Upper bound on P¥
This bound is provided by noticing that

I)T{Yd Z Y(J!O,P{o = 10, Kd = [d) S
Pr{Yy > Yo{0, 60 = 0,ka = la} -

Hence by substitution in (9)
N-1

Pr{Ys > Yol0} € 3 Pr{¥a > Yol0,x0 = 0,4 = la}x

1g=0

Pr{xg = la} .

From {8) and (2), we obtain

9 N-1
PY < < Pr{Yz > Y00, ko = 0,54 = lg} %
Mo
M-1 P
N-1 w? e w? \N-i-la
M-d w -
4:1( )( Iy )(ML) (1 ML)
N-1
N =1\ 7 w? \l w2 \N-1-l
-0 > (") GR) e
gy

Pr{Yd Z Y0|0, Ko = O, Kg = ld} . (11)

What remains to complete the evaluation of the error

bounds is to get expressions on Pr{Y; > Y;|0,k0 = 0,64 =
{4} under both number state (A) and coherent state (B).

A. Number State

Assuming that exactly m photons are transmitted per
pulse, we can write

Pr{Y; > Yol0, 50 = 0,04 = lg} =

T i PETY fmw

Z ( d) nnd(l _ ﬂ)ml‘-nd Z ( )nng(l _ n)mw—nu‘
ne=0 \ 4 Sl AN

a4 ']

(12)

B. Coherent State

Assuming that the average transmitted photons per
pulse is equal to m, we have

Pr{Yy 2> Yo|0,k0 = 0, k4 = la} =

00 na

Z exp[r)mld](lrgdﬁ Z exp[nmw](lr%!)ﬂi

ng=0 ne=0

.(13)

Numerical Results

Upper and lower bounds on PY have been evaluated
numerically for the case of number state with w =5, L =
500, N = 20, and different values of M and m. These
bounds (scaled to the bit error probability) are shown in
Fig. 2. It is clear that the upper bound on PE is so
close (same order of magnitude) to the true union bound
especially for large M. Because of its simplicity we use
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the upper bound on PY in the following numerical anal-
ysis. A comparison between number- and coherent-state
bit error rate is shown in Fig. 3 under the above param-
eter values. The superiority of the number state system
over the coherent state one is clear from the figures. As
an example if N = 20, = 0.7, and P, < 10~7, at least
m = 9 photons/pulse are required for the number state
whereas m = 28 for the coherent state if M = 32. When
M = 16, m becomes 16 in the case of the number state
and becomes 48 for the coherent state. The above num-
bers indicate that more than 66% save in energy is gained
when using the number state PPM. Another remark on the
curves is that the performance improves as M increases.
From Fig. 3 with P, < 10~7 there is about 44% save in
energy per pulse when switching the number state system
from M = 16 to M = 32. This percentage is, however,
misleading; a fair comparison should be based on the trans-
mitted photons per bit not per pulse. Hence for M = 32,
m+w/flog, M = 9%5/5 = 9 photons/bit is consumed ver-
sus 16 * 5/4 = 20 photons/bit for M = 16 to attain the
above bit error rate. That is, the true save in energy is
about 55% (not 44%). A serious problem in realization
may arise as M increases above 32 because the chip time
must be decreased in order to hold the bit rate fixed. The
resulting laser pulsewidth might be difficult to generate
with the current optical technology. A quick look at the
curves suggests a crucial solution to the above problem by
using number state systems instead of coherent state. The
performance of the number state with M = 16 (8) is almost
competitive to the coherent state system with M = 32 (16)
for m exceeding 30.

1V. EXTENSIONS AND CONCLUDING REMARKS

Bit error rates for optical chip-synchronous CDMA
communication systems utilizing both number and coher-
ent state light fields have been derived for lossy direct-
detection photon channels. Exact expressions have been
obtained for the case of an OOK modulation scheme. Tight
upper #nd lower bounds on the union bound have been pro-
vided when PPM is used. The effect of the multiple-user
interference and transmission loss has been considered in
the numerical analysis. Our results suggest using the num-
ber state system instead of the coherent state one in optical
CDMA because of its superiority over the latter. Namely,
the number state system requires less than half the energy
consumed by the coherent state one to attain the same
performance.

In our analysis of PPM-CDMA we have used an upper
bound on the bit error rate. In order to figure out the
uncertainty on the exact Pj, we have the following lower
bound.

M-1
Pg= Z P[E|{] Pr{i}
s
2 Z Pr{i} Pr{Yiy1 > Yili}+

i=0

PI‘{M bt I}PI‘{YM_z _>_ YM—lIM - 1}

N-1N-1
= Pr{Y; > Yo|0,40 = lp, k3 = 1} x
lo=01,=0
Pl‘{ﬁo = Io, Ky = 11)
N-1
2 Y Pr{Y; > Yol0, k0 = 0,5y = It }x
1,=0

PI{IC() = O,IC1 = 11] .
The upper and lower bounds on P, have been evaluated
numerically for the case of number state with w =5, L =
500, N = 20, n = 0.7, and different values of M, m.
These bounds are shown in Fig. 4. It is clear that the
upper bound determines the exact bit error rate within
1.5 orders of magnitude.

APPENDIX A
The probability of exactly one interference-pulse hit
in slot 7 is given by Fi(1) = %% [2). The probability of
exactly one interference-pulse hit in slot j given that a hit
has occurred in slot 4, j # i, is given by Py(1f1) = Lzil.
Hence

PI‘{KJ' = 1j|l€,‘ = I"} =

LAl . .
> ({)mama- mm)x

r=0vl—(N=1-1)

("7 1) o - iy e,
$)

jli
where
Pys(110) = P"f,;((%)l) = %(1);{;5;(1.1)
—_ w’/ML h _ ]I
_l—w’/ML(_ Mz)' o
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