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Abstract—In a direct-detection optical channel, over-
lapping pulse position modulation (OPPM) offers signifi-
cant improvement in throughput over ordinary pulse posi-
tion modulation (PPM) under bandwidth constraint. This
improvement is acquired, however, at the expense of per-
formance degradation. In this paper it is shown that un-
der bandwidth and throughput constraints OPPM, with two
pulse positions per pulsewidth, outperforms PPM when the
overlap is chosen properly and the throughput is greater
than 0.2 nats/slot. This enables us to increase the through-
put and/or decrease the energy of the OPPM system, while
maintaining the same performance as PPM. The energy sav-
ing when using OPPM instead of PPM to transmit reliably a
given amount of information is determined for different val-
ues of overlapping indices. The maximum throughput that
can be achieved under average power and bandwidth con-
straints (with error probability not exceeding 107°) is also
determined.

I. INTRODUCTION

Recently interest has been given to overlapping pulse
position modulation (OPPM) as an alternative signaling for-
mat for the conventional (disjoint or orthogonal) pulse posi-
tion modulation (PPM) in direct-detection optical channels
[1-6]. This type of signaling can be considered as a gen-
eralization to PPM, where overlap is allowed between pulse
positions. The reason to prefer OPPM over PPM is that the
throughput (nats/s) can be improved without increasing the
bandwidth [1,2]. Moreover, OPPM retains the advantages
of PPM in terms of implementation simplicity. Indeed the
transmitter involves only time delaying of the optical pulse,
and the receiver does not require knowledge of the signal or
noise power. Error probabilities of uncoded OPPM, where
the overlap is at least half the pulsewidth, has been derived
in [2]. It has been noted that the gain in throughput is
accompanied by a serious degradation in error-probability
performance. This results from increasing the number of
signals in the signal space without increasing its dimension.
Georghiades [3], however, showed that by using trellis coded
modulation (TCM) one can improve the performance of un-
coded OPPM at the expense of losing some of its acquired
throughput; he was able to double the throughput and avoid
performance loss with the aid of rate 2/3 trellis code and al-
lowing seven positions per pulsewidth.
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Recently we have suggested to restrict the overlap to only
two pulse positions per pulsewidth and allow this overlap
to take any value between 0 and half the pulsewidth [6].
This restriction decreases the complexity of the system dic-
tated by the requirement to use complex error correcting
codes and a highly refined timing, while preserving some of
the advantages of OPPM. Lower and upper bounds on the
channel capacity of this signal format, with overlapping in-
dex (ratio between the overlap and the pulsewidth) less than
one half, have been derived in [6]. It has been shown that
under fixed pulsewidth, peak power, and throughput capac-
ity, there are values of the overlapping index (r) that allow
an increase of more than 100% in OPPM efficiency capac-
ity (in nats/photon) over PPM. Furthermore, under fixed
pulsewidth, peak power, and efficiency capacity, one can get
an improvement of about 51% in throughput capacity over
PPM. The results in [6], however, are expressed in terms
of the capacities of the system; which can be reached only
with impractical coding. This motivates us to study what
one can gain from OPPM if coding is not employed.

In this paper we investigate the performance of uncoded
OPPM with different values of overlapping index r in the
range [0,0.5] under communication constraints. Next, we
determine the minimum energy required to transmit reli-
ably a fixed amount of information rate, and evaluate the
corresponding overlapping index. Finally, we determine the
maximum throughput that can be achieved under average
power and pulsewidth constraints such that the probabil-
ity of error be less than 10~3. We are able to show that, for
fixed pulsewidth, uncoded OPPM (with suitable r € [0,0.5))
outperforms PPM under throughput and average power con-
straints. This enables us to increase the throughput and/or
decrease the energy of the OPPM system while maintaining
the same performance as PPM.

The paper is organized as follows: Section II is de-
voted for the system description and the derivation of bit er-
ror probabilities for both quantum-limited and background
noise cases. Numerical results are given in Section III. In
part A of this section we compare between the performance
of OPPM system with different values of r under commu-
nication constraints. In part B we investigate the variation
of OPPM energy/nat with r under throughput, pulsewidth,
and bit error rate constraints. In the last part of this sec-
tion we study the dual problem of the previous part, that
is the behavior of OPPM throughput with different values
of 7 under average power, pulsewidth, and bit error rate



constraints. Finally the conclusion is given in Section IV.

II. SYSTEM DESCRIPTION
AND THEORETICAL ANALYSIS

A. OPPM Channel Model

The system model for M-ary OPPM with overlapping
index r € [0,0.5] is as follows. The data symbol is repre-
sented by the position of a laser pulse of width 7 within
time frame of duration T. A pulse is said to be in position
j €{1,..., M} if it extends over the subinterval

5= ((-1-G-v)n (i-G-1r)7)

The time frame T is related to r, M, and 7 by

T = (M—(M—l)r)r

We denote by N(I) the photon count observed in the
subinterval I. Each of these counts is a Poisson random vari-
able with mean N(I) which equals the average photon count
in the interval I. Let K, and K; denote the average number
of received photons per pulse due to signal and background
noise, respectively. It is easy to check that if a laser pulse
is transmitted in position k, then N(I;), j € {1,...,M}, is
given by

if j =k,

_ K, + Ky ;

N{I})={ Ksr+ Ky ; ifje{k-1,k+1}n{1,..., M},
Ky ; ifje{l,....k—2,k+2,...,M}.

B. Bit Error Probability for Quantum-Limited Channel

In the self-noise- (quantum-) limited channel the back-
ground noise is negligible (K = 0) and the channel can be
modeled as an ambiguity and erasure one [1,6]. The average
bit error probability for equally likely messages is given by

1 M
Pb:ﬁj_zlpb(])r

where P;(j) denotes the bit error probability given that the
jth symbol was transmitted. Noticing that P,(M) = Py(1)
and Py(j) = Ps(2) for j € {3,... M — 1}, we can write

P = %[2&(1) +(M=2)P(2)] . (1)

It is easy to see that the probabilities of symbol erasure and
symbol ambiguity given j was sent are independent of j.
Denoting these probabilities by P, and P,, respectively, we
have

P, = Pr{N(I;) = 0|j} = exp[~ K]

and
Po = Pr{N(I,- —Iip1) =0, N(I;) # OIJ'}
= Pr{N(l; — L;11) = 0, N(; N I;31) # 0}

= PI{N(IJ' =Lin)= OIi}Pr{N(Ij Nlin) # OIJ'} )
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where N(I — I;j4+1) is the photon count in the interval Ij
and not in Ij 4. Since N(I; — Ij41) = K (1~r) and N(I; 0
Ij+1) = K,r, we obtain

P, = exp[—K,(1 — r)](1 — exp[-K,7]) .

To determine P;(1), assume that symbol 1 was sent. If the
pulse was erased, then a random choice of symbols produces
the wrong one with probability 5= M L 1t is well known that

there is HJ:T probability of dec1dmg the wrong bit given
symbol error. Thus the bit error probability given an era-
sure has occurred is equal to 1/2. On the other hand, if
an ambiguity has occurred, then there is a chance of 1/2 to
choose the wrong symbol between the two candidates 1 and
2. When Grey coding is used, adjacent symbols always dif-
fer by only one bit. Thus a bit error occurs with probability
Tgi—ﬁ given symbol error. From this discussion we obtain

1 1

P(1) =3P+ g e

Similar argument leads to
1 1

! —_——— ——

Pi2) = 5P+ g
Substituting in (1), yields

1 M-1

P, = §Pe + mpa

= %exp[—K,]-{-
M

+ e 21]‘[ exp[—K,(1 — m)}(1 — exp[-K,7]) (2)

C. Bit Error Probability with Background Noise

When background noise is significant the ambiguity and
erasure channel model no longer holds. We derive here an
upper bound on the bit error rate. The symbol error prob-
ability is given by

M
Ps = Tlxijzz‘;PS(j) = %[2&(1} +(M - 2)Ps(2)]

where Ps(j) is the symbol error probability given j was sent.
This can be bounded as

Ps() = Pr{{JIN (1) < N(IiT}

i£]

< Y Pr{N(I;) < NI} -

i#j
When j = 1 we have

Ps(1) < Pr{N (L) S N(D)I1} + iPr{N(Il) <N}

= Pr{N(Il ~ L)< N(Ip - 11)|1}+

+ (M -2 Pe{ V(1) < NI} .



Define the following two quantities:

00 k
p&f Zexp[—Kb(l - r)]wx
k=

X Eexp[ (&, + Kt — ) (e +Kb )1 -r)*

and

(K, + Kb)

Zexp Kb]

Hence the bound on Ps(1) can be rewritten as

Zexp[—(K + Ky

Ps() <p+(M—-2)q.

In a similar way we can show that Ps(2) < 2p + (M —
3)q which leads to the upper bound on the symbol error
probability Ps < #21[2p + (M — 2)q). The bit error rate is
thus

®3)

M-2
P <p+ q-

ITI. NUMERICAL RESULTS
A. Bit Error Rate

In order to compare between the performance of PPM
and OPPM for different values of r, eqs. (2) and (3) were
evaluated numerically as functions of the average signal pho-
tons per nat (u) and the overlapping index (r) under
pulsewidth () and throughput (R, nats/slot) constraints.
The alphabet size M is chosen so as to give the best per-
formance satisfying the throughput constraint, that is we
choose M that solves the following optimization problem:

Py(r)= min Py(r), O
RS R
where Py(r) is given by (2) or (3) with K, = ulog M; and
def log M
R(r) = M—(M=T)r nats/slot

is the throughput of OPPM with overlapping index r. Figs.
1 and 2 show the quantum-limited bit error probability,
Py (r), with Ro = 0.3 and 0.35 nats/slot, respectively. When
Ry = 0.35, the best performance is obtained at r = 0.3
whereas the worst occurs at » = 0 (PPM). When Ry = 0.25
or 0.3 the best performance occurs at 7 = 0.1 and the worst
at r = 0.5. The performance of PPM is close to the worst
when Ro = 0.3 and close to the best when Ry = 0.25. On
the other hand PPM starts to perform better than OPPM
when Ry decreases under 0.2; moreover, the performance
gets worse by increasing r.

Our explanation of this behavior is as follows. For large
values of throughput (Rp > 0.2) the alphabet size M, sat-
isfying the throughput constraint and achieving minimum
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error rate as described by (4), increases with r. This leads
to a decrease in the bit error probability. As r increases
above some value, however, the increase in M is insufficient
to continue improving the error probability and Py(r) be-
gins to increase with ». When r reaches 0.5, the increase
in the error probability becomes maximum; at this point
P} (0.5) might still be better than P;(0) (as in Ro = 0.35)
or be worse (as in Rg = 0.3or 0.25). On the other hand if
the throughput constraint is low (< 0.2 nats/slot), M val-
ues achieving the best performance are large; and hence the
increment in M with r becomes insensitive. This leads to
insufficient improvement in the bit error rate and the per-
formance gets worse as the overlap increases.

Under pulsewidth constraint it is not possible to in-
crease PPM throughput above l°33 0.3662 nats/slot
hence OPPM with suitable r is a practical solution to in-
crease the throughput. Bit error rates for OPPM with R =
0.4 nats/slot are evaluated for different values of y and
r € [0.1,0.5]. We have found that the differences between
the curves are insignificant and the best performance is ob-
tained for r = 0.4 or 0.5.

Similar results can be obtained when the background
noise is significant. Upper bounds on P; (r) with one noise
photon per slot (K; = 1) are calculated for Ry = 0.35; the
best performance occurs at r = 0.3.

In order to figure out the implementation simplicity of
the OPPM detection system compared to PPM, denote by
Mpe(r) the optimizing alphabet size corresponding to an
overlapping index 7. We found that if Ry = 0.35, then
Mp:(0.3) = 8 while M,p:(0) = 3. For Ro = 0.3, Mpi(0.1) =
7 while Mpe(0) = 5. For Ro = 0.25, M,pe(0.1) = 10 while
Mep:(0) = 8.

B. Minimum Energy per Information Nat

In this section we search for the minimum energy re-
quired to transmit, reliably, a given amount of information
per second. Reliability is accounted for by requiring the final
bit error rate to be less than 10~%. We can formulate the
problem as follows:

K,
log M

.( )def

min
M,K,:

» LA
Py(r)<10-5, R(r)2Ro

Here p*(r) represents the optimum energy in photons/nat
and Py(r) is given by eq. (2). This energy is plotted (Fig.
3) versus throughput constraint for different values of r. For
throughput constraints less than 0.2 nats/s the gain in using
OPPM is insignificant; but after this value OPPM starts to
become superior to PPM. For example if Ry = 0.35, 30% of
energy per nat can be saved when using OPPM with » = 0.3
instead of PPM. In other words we can transmit about 40%
more nats per photon when using OPPM with r=0.3 . This
should be compared with our results in [6] where we have
shown that over 100% in efficiency capacity (in nats/photon)
can be gained when using OPPM with throughput capacity
of about 0.35 . This much information (capacity) cannot be
achieved, however, without involving complex methods of




encoding techniques but the 40% increase can be obtained
with uncoded OPPM. Throughput more than 0.3662 are not
shown in the figure because (as mentioned previously) it is
not possible to use PPM with such values of throughput.
The abrupt jumps in the curves correspond to the instants at
which M should\be decreased to satisfy the throughput con-
straint. At these instants the energy must be increased by a
suitable amount to maintain the bit error rate below 10~5.
It is clear also from the figure that the minimum energy is
always achieved for » < 0.3, which justifies our restriction of
the overlap to only two positions per pulsewidth. When r is
increased over 0.5, error correcting codes will be mandatory
(2,3]. In Fig. 4 we plot u*(r) versus r for different values
of throughput. This figure is useful in determining the val-
ues of r that will achieve the minimum energy required to
transmit prescribed values of Ry. For example these opti-
mum values are approximately 0.3, 0.155, and 0.09 when
Ry = 0.35, 0.3, and 0.25, respectively. The jumps in these
curves identify the values of » where it is possible to increase
M without disturbing the throughput constraint. At these
values energy can be decreased and still have the error prob-
ability under the threshold. p*(r) begins to increase again
next to each jump because M cannot be increased contin-
uously with r but it should be held fixed for some interval
immediately after a jump. In this interval energy must be
increased to equalize the degradation in performance due to
increasing the overlap.

C. The Maximum Throughput

The objective here is to obtain maximum throughput
(in nats/slot), given average power, pulsewidth, and bit error
rate constraints. In other words, we consider:

log M

By = M= (M-1)r’

max
M:
Py(r)g10-8%,
Ky<na(M—(M=1)r)

where Py(r) is given by (2) and n, denotes the average power
in photons/slot. This maximization was performed numeri-
cally for different values of n, and r. The results are shown
in Fig. 5. It is seen that for ny < 3 the maximum through-
put is almost independent of r. Above this value the the
maximum achievable throughput increases with r. For ex-
ample if » = 0.5 and n, > 8.5, one can have about 51%
more throughput than PPM. Furthermore energy can be
decreased when increasing the throughput as can be seen

from
K, Na

uir) = logM ~ R*(r)

Thus increasing R*(r) for fixed n, will cause u to decrease
(i.e., less photons per nat will be needed with OPPM).

IV. CONCLUSIONS

The performance of uncoded overlapping PPM with at
most two pulse positions per pulsewidth has been investi-
gated for an optical direct-detection channel under commu-
nication constraints. It was shown that under pulsewidth
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and throughput constraints, uncoded OPPM (with overlap-
ping index less than 0.3) is superior to ordinary PPM in
terms of bit error rate. This means that we can decrease
the energy required to transmit a given amount of informa-
tion without sacrificing its performance or throughput. The
overlapping index r that offers the minimum energy varies
significantly with the throughput constraint and should be
identified from characteristic curves as those given in Fig.
4. OPPM loses its advantages when the throughput con-
straint decreases below some threshold ~ 0.2, i.e., r = 0 is
the optimum index in this case.

Under pulsewidth, average power, and bit error rate
constraints, OPPM offers better throughput and efficiency
than PPM. The optimum value of = in this case is close to
0.5 when the average power exceeds 3 photons/slot.

Our results in parts B and C of the previous section
were obtained under negligible background noise (quantum-
limited case). With the aid of eq. (3), similar results can be
obtained when the background noise is significant.
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