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Abstract—A comparison between the perfor-
mance of several optical code-division multiple-
access (CDMA) correlation receivers is presented.
The performance is measured in terms of an un-
coded throughput capacity. It is defined as the
maximum data rate (in nats/chip time) that can
be achieved with arbitrary small error probabil-
ity. Both on-off keying (OOK) and pulse-position
modulation (PPM) CDMA schemes are consid-
ered. Signature code correlations bounded by ei-
ther one or two are employed. Our results reveal
that the throughput capacity of the optical PPM-
CDMA systems can be increased by increasing the
code-correlation constraint from one to two. That
of OOK-CDMA systems, however, cannot be in-
creased. Further, the throughput capacity of PPM-
CDMA systems with code-correlation constraint
of two is greater than that of OOK-CDMA sys-
tems with code-correlation constraint of one or
two. In fact, this improvement in the through-
put of PPM-CDMA systems over that of OOK-
CDMA approaches a limiting factor of 10 as the
pulse-position multiplicity increases to infinity.

Index Terms—Optical SS communications, op-

tical CDMA, code division multiple access, optical
networks, channel capacity.

I. INTRODUCTION

Optical code-division multiple-access (CDMA)
techniques can be utilized in fiber-optic local area net-
works because of the great advantages resulting from
employing high-bandwidth optical components [1]-[6].
They suffer, however, from the multiple-user interfer-
ence, which degrades both the bit error probabilities
and the data bit rates (of the corresponding systems)
as the number of users increases. Further, they ex-
hibit error probability floors, which cannot be reduced
without the addition of interference cancellation sub-
systems [5]. The traditional method to recover the
data at the receiving end of an optical CDMA system
is to use an optical correlator followed by a photode-
tector and a decision device (2],

The author is on leave from the Department of Electrical
Engineering, Faculty of Engineering, University of Alexandria,

Alexandria 21544, Egypt.

0-7803-6560-7/00/$10.00 (C) 2000 IEEE

179

Our goal in this paper is to evaluate the uncoded
throughput capacities of both optical OOK- and PPM-
CDMA correlation systems when using two different
code-correlation constraints, namely A € {1,2}. The
uncoded throughput capacity is defined as the maxi-
mum data rate (in nats/chip time) that can be trans-
mitted with arbitrary small error probability. We em-
ploy the optical orthogonal codes (OOCs) [1], with
periodic cross-correlations and out-of-phase periodic
auto-correlations that are bounded by either one or
two (A € {1,2}), as the users’ signature code sequences
in our theoretical analysis.

The remainder of this paper is organized as fol-
lows. The optical OOK- and PPM-CDMA receiver
models are described in Section II. The uncoded
throughput capacity of the optical OOK-CDMA sys-
tem, under code correlations bounded by one, is de-
rived in Section III. Section IV is devoted for the devel-
opment of the uncoded throughput capacity of the op-
tical OOK-CDMA system under code-correlation con-
straint equal to two. In Section V, we derive the corre-
sponding results for PPM-CDMA systems. In Section
VI, we compare between the uncoded throughput ca-
pacities of both OOK- and PPM-CDMA systems with
different code-correlation constraints. Finally the con-
clusion is given in Section VII.

II. OpTicaL OOK- aAND PPM-CDMA
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Fig. 1. An optical OOK-CDMA correlation receiver.

The block diagram for the optical QOK-CDMA
correlation receiver is shown in Fig. 1, where T and
T. denote the bit time and the chip time durations, re-
spectively. The optical CDMA correlator usually splits
the received optical signal into a number of branches,
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Fig. 2. An optical PPM-CDMA correlation receiver.

which is equal to the code weight w, and then combines
these branches after properly delaying the split optical
pulses in accordance to the signature code. The elec-
tronic switch in Fig. 1 samples at a rate that is equal
to the data bit rate R, = 1/7. This rate is much less
than the optical processing rate R, = 1/7;. In fact
Ry = R./L, where L is the code length.

The corresponding block diagram for the PPM-
CDMA correlation receiver is shown in Fig. 2, where
M denotes the pulse-position multiplicity and 7 de-
notes the slot time duration. The transmitted data
takes values in the set {0,1,...,M — 1}. The elec-
tronic switches sample at the end of all M slots. The
index of the maximum sample is declared to be the
transmited data.

III. UNCODED THROUGHPUT CAPACITY OF
OOK-CDMA SYSTEMS WITH A =1

The bit error probability for the correlation re-
ceiver of Fig. 1, with A = 1, is given by

=1
~ 32

where, for a given threshold 6,

P, = 5 (P[E|0] + P[E|1]) (1)

P[E|0] = Pr{x; > 6}

and

PE1] = Pr{xk; < 6 ~w} .
Here k1 denotes the number of users that cause inter-
ference to the desired user at one pulse position. It
can be modeled as a binomial random variable:

N-1 1~
PT{K«I :l}:( ! )pll(l—pl)N 1 l,

where N denotes the number of simultaneous users,
l€{0,1,...,N — 1}, and p; denotes the probability
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that a single user interferes with the desired user at
only one pulse position. It is given by

w?

P1=§E-

If we choose an optimum threshold (2], § = w, then

P, = =Pr{x; > w}

N-1

N-1
> (V7 ra-pyo,
I=w

Using Chernof bound we can find an upper bound to
the last probability: For any z > 1

N = DN

N-1
! N-1 L
B<- 52( l )zlpau—plw“
=0
—w N-
27Y(1 —p1 + 2p1) !
2% exp[Nzpy] .

By finding z > 1 for the tightest bound, we get

w 2L

= = —
T Np wN =

2(w~1).

The last inequality holds because of the condition on
the available number of OOCs [2]:

L~—1
~w(w—1)°

(2)
Hence
by ey

In order to satisfy the error constraint P, < ¢, then

Nﬁi—éexp[—————a_l()g2} , {3)

w

where o = —loge. The uncoded throughput capacity
is defined as

log2
L

def .
Ry = max V- nats/chip time .

PySe—

It can be lower bounded by choosing the achievable
value of N from the right-hand side of (3).

2log 2
we exp ["‘—'—Il“}’iz] ’

Ro 2



Further from the constraint on N given in (2), the
throughput cannot increase above

log 2 L-1
ww—-1) L

Thus the Rp is lower bounded by

2log 2 log 2 .L—l}
we exp [ 27282] " w(w — 1) L §°

Rozmin{

For a sufficiently large value of L, we obtain

2log?2 log 2 } (@)
W exp [g;i?gg +1] Tww—-1)) "

ROZmin{

IV. UncopED THROUGHPUT CAPACITY OF
OOK-CDMA SYSTEMS WITH A= 2

Let p;, t € {1,2}, denote the probability that a
single user interferes with the desired user at exactly
t pulse positions. It was shown in 3] that

t 2 - w2
P1 T 2P2 = 5T,
In this section, we only study the worst case, which
occurs when py = 0 in the last equation, and hence

w?

= (5)

D2
That is, if a single user interferes with the desired user,
it will cause interference to exactly two mark positions
of the desired user. The system performance in this
case provides an upper bound to the more general one
with p; > 0 {3]. Let k2 denotes the number of users
that cause interference to the desired user at two pulse
positions. Then

N -1 -
et =1y = (M7 )t 20

where [ € {0,1,..., N — 1}. The optimum error prob-
ability is given by

Py= %P?”{Q'ﬂz >w}p < %PT{K:Z > w/2}.

Following a similar argument to that in Section III we
get, for any 2> 1

P, < 5272 exp[Nzps] .

BO) =
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By finding z > 1 for the tightest bound, we get

s w2
~2Np2_wN'

But the condition on the available number of OOCs
when A = 2 [3], is now given by

N< % . (6)
Hence the code length should be chosen so as z > 1.
In fact if we let
L<2w-1)(w—-2)+2, (7)
then z > 1. In our analysis in this section we take L

equal to the RHS of (7). The error rate is now given
by

1/2Npoe\w/2 1/ Nwe\w/2

P, < = = =(—
b= 2( w ) 2( 2L )

In order to satisfy the error constraint P, < € = ¢~ ¢,

then

2L 2(a — log
N< E—éexp[——-————-(a 002)] . (8)

w
The corresponding throughput capacity is thus

2log 2

w exp [2—(%@ +1]

Ry > . (9

Further from the constraint on NN given in (6), the
throughput cannot increase above

log2 (L-1)(L-2)
ww — 1)(w —2) ) L ’

which is always greater than the RHS of (9) for a value
of L given by the RHS of (7). Thus (9) gives the

required bound on the throughput capacity when A =
2.

V. UNCODED THROUGHPUT CAPACITY OF
PPM-CDMA SYSTEMS WITH A € {1,2}

We denote by &5, j € {0,1,...,M — 1}, the num-
ber of users that interfere with the desired user in slot
4. Thus for any A € {1,2}, the word error probability
can be written as
M-1
E Pr{dg; > Ak; +w, some j # |
i=0

1

PM:M

i was sent}
= Pr{Ak; > Akg +w, some j # (0}
< Pr{Ax; > w, some j #0} .



Applying a union bound, we have for any 2z > 1

Py < (M=1)Pr{k, > %} = (M~1)Pr{z™ > 2#/*}.
Here x, is again a binomial random variable with pa-
rameters N — 1 and p;:

N -1 1
prim =ty = (V] )k -
and
=ML

Using the Markov inequality, we get

Pp < (M~ l)z_w/*E{zm}
=(M =121 —-p; +2p)V1.

The corresponding bit error rate is given by

M M
— < o mw/A (] N-1
P, 2(M_1)PM._ 5 % (1 —p1 + 2p1)
B2 —w/a
< 5 ? exp|[Nzpy] . (10)

The best z > 1 is given by

__w__ ML
*T XNp, _ wN °

From (2) and (6) L should be restricted as follows to
satisfy the condition z > 1:

ifA=1,

L= fA=2

{oj\;(;w—l)(w—Q)+2; (11)

By substituting the last value of z into (10), we get

Invoking the error constraint P, < € = e~ %, we obtain

NSMLexp[__/\(a+logM—log2)] a2
we w

The uncoded throughput capacity for PPM-CDMA
systems is defined as

log M

x N- AL

Pple™

Ry =

From (12), it can be lower bounded as

log M

Ro 2 Ma+log(M/2)} ’
Motlos(M/B)} 4 )

(13)

w exp [
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Further from the constraints on N given in (2) and
(6), the throughput cannot increase above

log M (L-1) i ey
Mw(w—l)‘ L A =1,

log M (L-DE-2
Muw(w — 1)(w — 2) L o HA=2

But for A = 2, if we choose L = M(w ~ 1)(w — 2) +
2, then the second constraint is always greater than
the RHS of (13). Thus the final lower bound on the
throughput capacity can be written as.

. min {wexp [alilg()é:[M/z)+1] y M:zjéwﬂ_d_l) 3 A= 1,

RO - log M . =2
weprZj_a-#—_lDw;_; M‘Lllz +1] ’ )

(14)

VI. NUMERICAL RESULTS
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Fig. 3. Uncoded throughput capacities versus the code weight
for both OOK- and PPM-CDMA correlation systems with A=1.

The throughput capacities of both OOK- and
PPM-CDMA correlation systems with A = 1 are
shown in Fig. 3 versus the code weight for different
values of M and an error rate constraint of € = 107°.
It can be seen that an optimum value of the code
weight always exist. Further for PPM-CDMA systems,
an optimum value of M also exists. It can be seen
that the OOK-CDMA systems offer a higher through-
put than PPM-CDMA systems for all values of M.
This maximum achievable throughput is about 0.00688
nats/chip time. The main limitation of the through-
put is in fact due to the codewords constraint as given

in (2).
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Fig. 4. Uncoded throughput capacities versus the code weight
for both OOK- and PPM-CDMA correlation systems with A=2.

The corresponding throughput capacities of both
OOK- and PPM-CDMA correlation systems with A =
2 are shown in Fig. 4 versus the code weight for dif-
ferent values of M and an error rate constraint of
€ = 107° The codewords constraint in this case is
now relaxed as given by (6) and thus is not a limiting
factor anymore. Again it can be seen that an optimum
value of the code weight always exist for both OOK-
and PPM-CDMA systems. An optimum value of M
does not exist, however, for PPM-CDMA systems (as
was in the case of A = 1). This is because of the re-
laxed limitation on the codewords constraint. 1t is also
obvious from the figure that the PPM-CDMA systems
offer a higher throughput than OOK-CDMA systems,
in this case, for values of M greater than 4. For ex-
ample, the maximum achievable throughput is about
0.0116 nats/chip time, when M = 64.

When comparing Fig. 3 to Fig. 4, we find that
there is no improvement in the throughput of OOK-
CDMA systems when we increase A from 1 to 2. This
is because much interference will be added when us-
ing A = 2. An improvement exists, however, in the
throughput of PPM-CDMA systems when we increase
A from 1 to 2. This is because we can increase the
pulse-position multiplicity M to compensate for the
extra interference with A = 2. The improvement in
the throughput of PPM-CDMA with A = 2 makes it
even better than that of OOK-CDMA with A = 1.

We can get the optimum code weights of the
PPM-CDMA systems of Fig. 4 by differentiating the
second line of (14) with respect to w and equating the
result to zero. We obtain

Wopt = 2<a + log _1\54_) .
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The corresponding maximum throughput is thus

> log M
~ 2e?ja + log(M/2)]

RO ,opt

The extreme reachable throughput can be obtained by
taking the limit of the last equation when M — oc.

1
Ry opt timit = 5 = 0.068 .

We notice that this himit is almost 10 times greater
than the throughput of OOK-CDMA with A = 1.

VI. CONCLUSION

The uncoded throughput capacity for both optical
OOK- and PPM-CDMA correlation systems are de-
rived and evaluated under code correlations bounded
by one and two. We have the following concluding
remarks.

i) PPM-CDMA receivers with code correlation con-
straint of two (A = 2) are very efficient when com-
pared to OOK-CDMA receivers with A € {1,2}
and to PPM-CDMA receivers with A = 1.

An optimum value of the code weight always exist
for any given constraint on the bit error rate.
For PPM-CDMA systems with A = 1, an opti-
mum value of M also exists. For A = 2, however,
no such an M exists, and the optimum through-
put increases with M till it reaches a finite limit
of 0.068 nats/chip time.

The maximum limiting throughput of PPM-
CDMA systems with A = 2 is about 10 times
greater than that of OOK-CDMA with A € {1,2}.

i)

iit)
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