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Abstract—Atmospheric turbulence, also called scintillation, is
one of the major challenges that face free space optics (FSO) com-
munications. In this paper, we derive both exact and approximate
expressions for the average symbol-error rate (SER) of free-space
optics systems adopting multipulse PPM (MPPM) technique in
gamma-gamma channels. Our expressions are then verified by
getting the same results using lognormal and exponential channel
expressions where lognormal and exponential distributions are
valid only for weak and strong turbulence, respectively. As the
computation of the exact expression is time consuming, we get an
approximate expression based on Gauss-Laguerre quadrature.
Both expressions produce almost the same results. Finally, we
make a comparison between the average SER performance of
MPPM and PPM assuming equal average energy per bit and
equal data rate. We found that the performance of MPPM is
better than that of PPM in case of weak turbulence but at
strong turbulence both MPPM and PPM have nearly the same
performance.

I. INTRODUCTION

The need for very high data rate point-to-point communica-
tions can be fulfilled using a promising technology called free-
space optics (FSO) [1]. FSO has several advantages over radio-
frequency (RF) technology such as extremely high bandwidth,
license-free, and interference immunity. Because of all of these
advantages, FSO is used for a variety of applications such as
last mile connectivity and optical-fiber backup [2]. However,
since FSO uses atmosphere as transmission medium so its
performance is affected by many challenges like atmospheric
attenuation, scintillation, window attenuation, alignment or
building motion, solar interference, and line-of-sight obstruc-
tions particularly over ranges greater than 1 km [1]. One
important phenomenon that degrades the performance of FSO
is atmospheric turbulence or scintillation. Scintillation results
in random fluctuations in both the amplitude and the phase of
the received signal which can degrade the FSO performance
and leads to increasing in the bit error rate (BER) [1].

Both on-off keying (OOK) and PPM techniques have been
widely used in FSO. In addition, multipulse PPM (MPPM)
has been recently proposed as an alternative modulation
technique to OOK and PPM because it is more bandwidth
efficient than PPM, yet slightly more complex [1], [3]. In

fact MPPM can be considered as a generalization to PPM,
where n ∈ {1, 2, . . . ,M/2} pulses are transmitted during a
symbol frame of M slots and as a result MPPM frame will
transmit log2

(
M
n

)
bits and this is the reason why MPPM is

more bandwidth efficient than PPM.
The studies that have been made to investigate the per-

formance of MPPM in the case of FSO in gamma-gamma
channels are rare. First Hamkins and Moision have obtained an
exact expression for the symbol-error rate (SER) of MPPM in
the case of discrete memoryless channels in non turbulent at-
mosphere [4]. Nguyen and Lampe have studied coded MPPM
FSO transmission using discrete-time Poisson channel model
in non turbulent atmosphere. They have studied two issues,
first when MPPM is better than PPM and second how MPPM
could be used with error control coding [5]. Gappmair and
Muhammad have got an exact expression for the SER of PPM
under gamma-gamma optical scintillation model [6]. Xu et. al
have discussed the use of binary convolutional coding with
iterative detection for the case of MPPM modulation [1], [7].
Wilson et. al have studied the use of multiple-input/multiple-
output (MIMO) channel for FSO adopting MPPM. They
have concluded that the resulting MIMO channel can reduce
FSO turbulent effects in both log-normal and Rayleigh-fading
channel models [8]. Balsells et al. have calculated the average
BER for a rate adaptive transmission technique using MPPM
block coding of variable Hamming weight under turbulence
conditions [9]. This type of block coding has a variable
amount of pulses and has been shown to have a high peak
to average optical power ratio. Their analysis was based on a
hyperexponential fitting and Monte Carlo simulation.

Up till now, no one has got an exact expression for the
average SER of MPPM in the case of FSO under gamma-
gamma distribution. In this paper, we derive both exact and
approximate (based on Gauss-Laguerre quadrature) expres-
sions for the average SER of this system and verify our
mathematical expressions by getting the same results using
lognormal and exponential channel expressions where log-
normal and exponential distributions are valid only for weak
and strong turbulence, respectively [10], [11]. In fact, gamma-
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gamma distribution has been proposed as a general scheme as
it is valid for both weak and strong turbulence [11]. Finally,
we make comparison between the average SER performance
of both MPPM and PPM assuming equal average energy per
bit and equal data rate.

II. MPPM AVERAGE SER ANALYSIS IN ATMOSPHERIC
TURBULENCE CHANNEL

A. MPPM SER in Non Turbulent Atmosphere

At the receiver side, we assume that the received photon
count per MPPM slot follows a Poisson distribution. In that
case the SER is given by [4] after slight modifications:

Pe =
∞∑

Kmin=0

M−n∑
l=1

n∑
m=1

(
n

m

)(
M − n
l

)
p1 (Kmin)

m

× (1− P1 (Kmin))
n−m

[
P0 (Kmin)

M−n−l
(1− P0 (Kmin))

l

+ p0 (Kmin)
l
P0 (Kmin− 1)

M−n−l

(
1− 1(

l+m
m

))]
(1)

where M is the number of slots per frame, n is the number
of signal slots, Kmin is the minimum photon count in symbol
signal slots, and

p0 (Kmin) =
KKmin
b

Kmin!
e−Kb (2)

p1 (Kmin) =
(Ks +Kb)

Kmin

Kmin!
e−(Ks+Kb) (3)

P1 (Kmin) =
Kmin∑
j=0

(Ks +Kb)
j

j!
e−(Ks+Kb) (4)

P0 (Kmin) =

Kmin∑
j=0

Kj
b

j!
e−Kb (5)

Here, Kb and Kb + Ks denote the mean values of photon
count in non-signal and signal slots, respectively.

B. Channel Models

Several channel models have been assumed to model atmo-
spheric turbulence in literature, however, the most commonly
used statistical models are:
• Lognormal distribution: This is suitable in weak turbu-

lence and its probability density function (PDF) is [10]:

f (Ks) =
1

Ks

√
2πσ2

l

e
− (lnKs−µl)

2

2σ2
l , Ks > 0 (6)

where σ2
l = ln (1 + χSC) , µl = ln (λ) − 1

2σ
2
l , χSC =

E[K2
s ]/E[Ks]

2−1 is the scintillation index, and λ is the
average received photon count (the average of Ks).

• Exponential distribution: This is suitable in strong turbu-
lence and its PDF is [10]:

f (Ks) =
1

λ
e−

Ks
λ , Ks > 0 (7)

• Gamma-Gamma distribution: This is suitable in both
strong and weak turbulence so we will use it in our
analysis and its PDF is given by [11]:

f (Ks) =
2 (αβ)

(α+β)
2

λΓ (α) Γ (β)

(
Ks

λ

) (α+β)
2 −1

× Kα−β

(
2

√
αβKs

λ

) (8)

where

α =

exp
 0.49σ2

R(
1 + 1.11σ

12
5

R

) 7
6

− 1


−1

(9)

β =

exp
 0.51σ2

R(
1 + 0.69σ

12
5

R

) 5
6

− 1


−1

(10)

where α and β are the scintillation parameters that
are dependent on σ2

R, σ2
R is unitless Rytov variance,

Γ (.) is the gamma function, and Kc (.) denotes the cth
order modified Bessel function of the second kind. The
scintillation index is related to α and β as

χSC =
1

α
+

1

β
+

1

αβ
. (11)

C. Exact Mathematical Analysis of MPPM Average SER with
Gamma-Gamma Distribution

In our analysis we assume that we work in a clear atmo-
sphere conditions and also both the transmitter and receiver
are fixed and perfectly aligned. Scintillation or channel fading,
however, is considered in our FSO performance derivation.
The average SER can be obtained by averaging Pe with respect
to Ks using a gamma-gamma model. Because Ks is the
only parameter that depends on the channel distribution so
p1 (Kmin)

m
(1− P1 (Kmin))

n−m is the only term that will
be averaged with respect to Ks. After rigorous mathematical
analysis, we are able to show that the average SER for
MPPM under gamma-gamma distribution is obtained by re-
placing p1 (Kmin)

m
(1− P1 (Kmin))

n−m in (1) by the value
of P2 (Kmin) where

P2 (Kmin) =∫ ∞
0

p1 (Kmin)
m

(1− P1 (Kmin))
n−m

f (Ks) dKs

=

∫ ∞
0

[
(Ks +Kb)

Kmin

Kmin!
e−(Ks+Kb)

]m

×

1−
Kmin∑
j=0

(Ks +Kb)
j

j!
e−(Ks+Kb)

n−m f (Ks) dKs
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=
∞∑

j1=Kmin+1

∞∑
j2=Kmin+1

.......
∞∑

jn−m=Kmin+1

e−nKb

j1!j2!.......jn−m!Kmin!m

j1+j2+.....+jn−m+mKmin∑
i=0

2(αβλ )
α+β

2

Γ (α) Γ (β)

(
j1 + j2 + .....+ jn−m +mKmin

i

)
×Kj1+j2+.....+jn−m+mKmin−i

b

∫ ∞
0

K
i+α+β

2 −1
s

× e−nKsKα−β

(
2

√
αβKs

λ

)
dKs

(12)

Let

p =

∫ ∞
0

K
i+

(α+β)
2 −1

s e−nKsKα−β

(
2

√
αβKs

λ

)
dKs (13)

By using [12] we found that the value of p will be,

p =
Γ (i+ α) Γ (i+ β)

2
√

αβ
λ

e(
αβ
2nλ )n−(i+ (α+β)

2 − 1
2 )

×W−(i+ (α+β)
2 − 1

2 ), 12 (α−β)

(
αβ

nλ

) (14)

where Wλ,µ (z)is the Whittaker function. Then we are able to
show that,
P2 (Kmin) =



mKmin∑
i=0

(
αβ
λ

)α+β−1
2

Γ (α) Γ (β)

(
Kmin

i

)
e(−nKb)KmKmin−i

b

× Γ (i+ α) Γ (i+ β)

Kmin!m
e(

αβ
2nλ )n−(i+ (α+β)

2 − 1
2 )

×W−(i+ (α+β)
2 − 1

2 ), 12 (α−β)

(
αβ

nλ

)
, for n = m

∞∑
j=(n−m)(Kmin+1)

j+mKmin∑
i=0

(
αβ
λ

)α+β−1
2

Γ (α) Γ (β)

×
(
j +mKmin

i

)
e(−nKb)Kj+mKmin−i

b

× Γ (i+ α) Γ (i+ β)

Kmin!m
f (j) e(

αβ
2nλ )n−(i+ (α+β)

2 − 1
2 )

×W−(i+ (α+β)
2 − 1

2 ), 12 (α−β)

(
αβ

nλ

)
, for n 6= m

(15)
To define f(j), let we have a set of vectors, each has a
dimension of (n − m). The vector elements are integer and
are between (Kmin + 1) and j − (n−m− 1)(Kmin + 1). In
addition, the summation of all elements of any vector is equal

to j:

f(j) =
no. of vectors∑

i=1

1∏n−m
s=1 (element number s in vector number i)!

(16)

D. Approximate Expression of MPPM Average SER with
Gamma-Gamma Distribution

The computation complexity of the exact SER expression
given in the last subsection is high and time consuming. This
motivates us to obtain an approximate expression based on
Gauss-Laguerre quadrature rule [13]. This method produces
faster results with good approximation. Using this method, it
is easy to show that

P2(Kmin) =
c∑
i=1

wi
e−nKb

Kmin!m
(xi +Kb)

mKmin

×

e(xi+Kb) − Kmin∑
j=0

(xi +Kb)
j

j!

n−m f(xi)

(17)

where c > 1 denotes the number of terms; and for any i ∈
{1, 2, . . . , c}, xi is the ith root of Laguerre polynomial Lc(x)
with degree c, wi is the corresponding weighting coefficient
[13], and f (xi) is the atmospheric turbulence distribution.

III. NUMERICAL RESULTS

A. Numerical Results

In this subsection, we numerically evaluate both exact and
approximate expressions of the symbol-error rates obtained in
the previous subsections for different channel parameters. In
our evaluation we use MPPM frames of size M = 8 slots
and n = 4 pulses per frame. The average photon count for
background noise is assumed to be Kb = 1.
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Fig. 1. Average symbol-error rate (SER) versus average received signal
photon count λ using both exact and approximate methods under gamma-
gamma distribution with M = 8, n = 4, and Kb = 1.
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In Fig. 1 we compare between the exact and approximate
expressions under gamma-gamma atmospheric channel with
weak, moderate, and strong turbulence conditions of σR =
0.25, 0.75, and 5, respectively. We notice from the figure that
both exact and approximate expressions are nearly identical
but the computation complexity is much reduced when using
the latter.

Figure 2 illustrates the change of average SER with the
average received photon count λ under gamma-gamma chan-
nel. In our evaluations, we have used the approximate method
with Laguerre polynomial degree c = 50. We have studied
weak, moderate, and strong turbulence conditions of σR =
0.25, 0.75, and 5, respectively. As shown in the figure, in case
of the weak turbulence the system performance will be im-
proved by increasing the average received photons because this
will improve the signal to noise ratio (SNR). As the turbulence
level increases turbulence will have the dominate effect on the
system performance, so the performance will be degraded for
both moderate and strong turbulence. The symbol-error rates
of the MPPM system under both exponential and lognormal
channels (which are valid only for strong and weak turbulence,
respectively) are also included in the figure for the sake of
comparison. The variance of the lognormal distribution is
governed by the same scintillation index as that of the gamma-
gamma model, which is equal to 0.062, 0.475, and 1.214
for weak, moderate and, strong turbulence respectively. As
expected, at strong turbulence with σR = 5, the gamma-
gamma model approaches the exponential model. On the other
hand, the gamma-gamma model approaches the lognormal one
as σR decreases. So at weak turbulence (σR = 0.25) the
gamma-gamma model reflects more lognormal model than that
at moderate turbulence (σR = 0.75).
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Fig. 2. Average SER versus average received signal photon count λ using
the approximate method for different channel models with M = 8, n = 4,
and Kb = 1.

IV. COMPARISON BETWEEN MPPM AND PPM AVERAGE
SERS

In this section we make a comparison between the perfor-
mance of MPPM and PPM systems under different turbulence
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Fig. 3. Average SER versus average received photon count (λ) per bit for
MPPM with M = 11, n = 2, and PPM with M = 3 with equal data rate.

conditions. In general in case of transmitting the same data
rate using the same average energy per bit the performance of
the MPPM will have high immunity to noise if it is compared
to the PPM because MPPM will have higher peak power so
higher signal to noise ratio. At weak turbulence, the noise has
the dominant effect on the performance of the system so as
shown in Fig. 3, the performance of MPPM is better than PPM
in that case. However, at strong turbulence, the turbulence has
the dominant effect on the performance of the system so as
shown in Fig. 3, both MPPM and PPM have nearly the same
performance.

V. CONCLUSION

Both exact and approximate expressions for average SER
of free-space optics systems adopting MPPM technique in
gamma-gamma channels have been derived. Our expressions
have been verified using both lognormal and exponential
channel models. As the computation of the exact expression is
time consuming, we get an approximate expression based on
Gauss-Laguerre quadrature. Both expressions produce almost
the same results. Finally, we have made a comparison between
the average SER performances of both MPPM and PPM
schemes, assuming both equal average energy per bit and equal
data rate. We have found that the performance of MPPM is
better than that of PPM in case of weak turbulence but at
strong turbulence both MPPM and PPM have nearly the same
performance.
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