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Abstract: We derive both exact and approximate expressions for the symbol-error rate of free-
space optics systems adopting multipulse PPM technique in gamma-gamma channels. Our 
expressions are then verified using traditional lognormal and exponential channel expressions. 
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1. Introduction  

Free-space optics (FSO) has several advantages over radio-frequency (RF) technology. Indeed, FSO offers 
extremely high bandwidth, license-free, and interference immunity [1]. This makes FSO a suitable candidate for last 
mile connectivity and optical-fiber backup [2]. One important phenomenon that degrades the performance of FSO is 
atmospheric turbulence or scintillation [1]. Scintillation results in random fluctuations in both the amplitude and 
phase of the received signal. Multi-pulse PPM (MPPM) has been recently proposed as a modulation technique in 
FSO because it is more bandwidth efficient than PPM, yet slightly more complex [1]. 

The studies that have been made to get an expression for the symbol-error rate (SER) of MPPM in the case of 
FSO under gamma-gamma optical scintillation are rare. Up till now, no one has got an exact expression for the SER 
of MPPM in the case of FSO under gamma-gamma distribution. In this paper, we derive both exact and approximate 
(based on Gauss-Laguerre quadrature) expressions for the SER of this system and verify our mathematical 
expressions by comparing them to traditional lognormal and exponential channel expressions. 

2.  MPPM SER Analysis in Atmospheric Turbulence Channel 

A. MPPM in Poisson Discrete Memoryless Channels 
At the receiver side, we assume that the received photon count per MPPM slot follows a Poisson distribution. In that 
case the SER is given by [3] after slight modifications: 

௘ܲ = ෍ ෍ ෍ ቀ ݊݉ ቁ ቀܯ − ݈݊ ቁ ௠൫1(௠௜௡ܭ)ଵ݌ − ଵܲ(ܭ௠௜௡)൯௡ି௠ ቎ ଴ܲ(ܭ௠௜௡)ெି௡ି௟൫1 − ଴ܲ(ܭ௠௜௡)൯௟௡
௠ୀଵ

ெି௡
௟ୀଵ

ஶ
௄೘೔೙ୀ଴+ ௟(௠௜௡ܭ)଴݌  ଴ܲ(ܭ௠௜௡ − 1)ெି௡ି௟ ቌ1 − 1ቀ݈ + ݉݉ ቁቍ቏ (1) 

where ܯ is the number of slots per frame, n is the number of signal slots, ܭ௠௜௡ is the minimum photon count over 
all signal slots, ݌଴(ܭ௠௜௡) = ௄಼್೘೔೙௄೘೔೙! ݁ି௄್, (௠௜௡ܭ)ଵ݌  = (௄ೄା௄್)಼೘೔೙௄೘೔೙! ݁ି(௄ೄା௄್), ଵܲ(ܭ௠௜௡) = ∑ (௄ೄା௄್)ೕ௝!௄೘೔೙௝ୀ଴ ݁ି(௄ೄା௄್), ଴ܲ(ܭ௠௜௡) =∑ ௄ೕ್௝!௄೘೔೙௝ୀ଴ ݁ି௄್, and ଴ܲ(ܭ௠௜௡ − 1) = ∑    ௄ೕ್௝!௄೘೔೙ିଵ௝ୀ଴ ݁ି௄್ . 
Here, ܭ௕ and ܭ௕ +  .௦ denote the mean values in non-signal and signal slots, respectivelyܭ

 
B. Exact Mathematical Analysis of MPPM SER with Gamma-Gamma distribution 

Several channel models have been assumed in literature, however, the most commonly used statistical models are 
lognormal distribution which is suitable in weak turbulence, exponential distribution which is suitable in strong 
turbulence and gamma-gamma distribution which is suitable in both strong and weak turbulence [4]. 

The average SER can be obtained by averaging ௘ܲ with respect to ܭ௦ using a gamma-gamma model. After 
rigorous mathematical analysis, we are able to show that the SER for MPPM under gamma-gamma distribution is 
obtained by replacing  ݌ଵ(ܭ௠௜௡)௠൫1 − ଵܲ(ܭ௠௜௡)൯௡ି௠

 in (1) by the value of  ଶܲ(ܭ௠௜௡),  
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where ߪோଶ is unitless Rytov variance, ߣ is the average of ܭௌ and α and β are the scintillation parameters that are 
dependent on ߪோଶሾ4ሿ.To define ݂(݆), let ܵ(݆) be a set of vectors, each has a dimension of (݊ − ݉). The vector 
elements are integer and are between (ܭ௠௜௡ + 1)  and   ݆ − (݊ − ݉ − ௠௜௡ܭ)(1 + 1). In addition, the summation of 
all elements of any vector is equal to ݆: ݂(݆) = ∑ 1/ ∏ ௡ି௠௝ୀଵ௡௨௠௕௘௥ ௢௙ ௩௘௖௧௢௥௦௜ୀଵ!(݅ ݎܾ݁݉ݑ݊ ݎ݋ݐܿ݁ݒ ݊݅ ݆ ݎܾ݁݉ݑ݊ ݐ݈݊݁݉݁݁)              (3)                                    

C. Approximate Expression of MPPM SER with Gamma-Gamma distribution 
As the computation of the exact expression is time consuming so we get approximate expression based on Gauss-
Laguerre quadrature which its computation is faster than the exact expression and both expressions produce almost 
the same results. Using Gauss-Laguerre quadrature, we are able to show that. 

ଶܲ(ܭ௠௜௡) = ∑ ௜ݓ ௘ష೙಼್௄೘೔೙!೘ ௜ݔ) + ௕)௠௄೘೔೙ܭ ቂ݁(௫೔ା௄್) − ∑ (௫೔ା௄್)ೕ௝!௄೘೔೙௝ୀ଴ ቃ௡ି௠ ௖௜ୀଵ(௜ݔ)݂         (4) 
where ݓ௜ denotes the weighting coefficient, ݔ௜ is a root of the Laguerre polynomial with degree ܿ and ݂(ݔ௜) is the 
atmospheric turbulence distribution [4]. 

3.  Numerical Results 

We use both exact and approximate (numerical) expression to get MPPM average SER under gamma-gamma 
distribution for ߪோ = 5 and as shown in figure 1 below they are nearly identical so we will produce our results using 
approximate expression as its computation is faster as we said before. Figure 2 illustrates the change of SER with λ 
under gamma-gamma model verified by the curves for both exponential and lognormal distributions with ܯ = 8, ݊ = ௕ܭ ,4 = 1, Laguerre polynomial degree ܿ = 50 and ߪோ =  {0.25, 0.75, 5}. All of the distributions have the same 
mean value for ܭ௦ which equals ߣ, with the variance of the lognormal distribution governed by the same scintillation 
index as gamma-gamma model. We conclude that at strong turbulences with ߪோ = 5, the gamma-gamma model 
approaches the exponential model. On the other hand, at weak turbulences gamma-gamma approaches lognormal 
models as ߪோ decreases. So at ߪோ = 0.25 gamma-gamma model reflect more lognormal model than at ߪோ = 0.75.  

 
Fig. 1. Average SER versus average of ܭ௦ using exact and 

approximated method under gamma-gamma distribution with ܯ = 8, ݊ = 4, and ܭ௕ = 1. 

 
Fig. 2. Average SER versus average of ܭ௦ using the approximate 

method for different channel models. 
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