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Abstract—A mathematical model is introduced for performance
evaluation of an OBS core node employing either no or full
wavelength conversion strategies. Furthermore, the model assumes
long-range dependent (LRD) traffic arrivals to the OBS
intermediate node which are accurately modeled by Pareto
distribution. In our proposed model, each output port is imitated
by a GI/M/w/w queue for which a single performance measure;
namely the burst loss probability, is evaluated from the model
equations. Also, results of this model are compared with those
obtained while assuming short-range dependent (SRD) Poisson
arrivals to the core node in the two cases of no and full wavelength
conversion. Finally, results show that traditional Poisson traffic
models yields over-optimistic performance measures in terms of
lower burst loss probability when compared to the more accurate
long-range dependent Pareto traffic model. This discrepancy
between the two models is much clearer for light traffic scenarios
due to the more significant impact of self-similarity.
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The tremendous increase of the data rate demand necessitates
utilizing the vast bandwidth available on optical fiber links which
makes it obligatory to realize the dream of all optical networks
(AONBs). One of the approaches that target this goal is a paradigm
called optical burst switching (OBS) which was first proposed in
literature by Qiao and Yoo in [1] and [2]. In OBS, switching is
made on a burst by burst basis where the burst comprises of a
group of aggregated packets having the same destination and
class.

INTRODUCTION

The OBS network architecture consists of three components;
ingress nodes, core nodes and egress nodes [3]. The data burst
(DB) enters the network through the ingress node after
aggregating the data packets with the appropriate assembly
algorithm. While at the core node, the CP is processed reserving
appropriate resources for the upcoming DB and configuring the
switch fabric to bypass the DB upon its arrival to the destined
port. The egress node is the destination node at which the DB is
disassembled into original packets, each of which is directed to
its own destination.
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In order to closely simulate the real network scenario thereby
verify the effectiveness of protocol designs, it is necessary to
model the traffic flows carried over realistic networks. The
confidence of the results obtained of mathematical models built
for performance evaluation of realistic networks depends on the
closeness of the traffic model adopted to the real traffic scenario.
For that reason, while building a mathematical model for
performance evaluation of an OBS core node, we should model
the traffic arrivals to the OBS intermediate node in the most
possible accurate form.

Statistical analysis of high-resolution traffic measurements
from a wide range of working packet networks, such as Internet,
have convincingly shown that the actual traffic streams in such
networks exhibit the property of self-similarity or long range
dependency (LRD) [4]. That means that similar statistical
patterns may occur over different time scales that can vary by
many orders of magnitude (i.e. ranging from milliseconds to
minutes and even hours). This means that the behavior of these
traffic streams significantly departs from the traditional telephone
traffic and its related Markov models with short-range
dependency (SRD). In particular, the common Poisson arrival
process and corresponding analysis based on Erlang-B formula
are no longer valid. Alternatively, another probability distribution
function rather the conventional Poisson distribution is needed to
model these new statistical properties. The Pareto probability
distribution has been suggested, as a heavy-tailed distribution,
many times as a good fit for such LRD data streams.

The aim of this paper is to present a mathematical model that
evaluates an upper and lower bounds of the burst loss probability
for DB arrivals at an OBS core node in case of full and no
wavelength conversion (NWC and FWC) respectively.
Furthermore, DB inter-arrival times are assumed to follow the
Pareto distribution in order to accurately model the real self-
similar traffic streams in OBSNs. Finally, results of our model
that assumes Pareto LRD DB arrivals are compared against
traditional models that assume Poisson SRD DB arrivals.
Comparison shows that conventional Poisson traffic models
gives lower estimates for the burst loss probability when
compared to the more realistic Pareto traffic models especially in
case of light traffic scenarios.



The remainder of this paper is organized as follows. In
Section II, we present a detailed description for our proposed
mathematical model. Section III is devoted for the numerical
results. Finally, we give our conclusion in Section IV.

1I. PROPOSED MODEL DESCRIPTION

This section is organized as follows. First, we give the
assumptions made in order to build the model. Next, we the
present our model equations for both cases considered: FWC and
NWC.

A.  Model assumptions

We are going to build our model upon the following set of
assumptions:

» We assume that the destination output port for an incoming
DB to the OBS core node is uniformly distributed among
all available output ports. Thus, it is sufficient to model the
behavior of a single output port instead of considering all
output ports of the node.

» Each OBS core node considered in our model is assumed to
have the following resources:

1. A number of w wavelengths available to serve the
incoming burst arrivals.

ii. No fiber delay lines, i.e. there are no buffering
capabilities for contention resolution in the OBS nodes.

iil. A number of wavelength converters, each of them can
convert the wavelength of the incoming burst to any
other free wavelength from the set of the available
wavelengths w whenever a contention is encountered by
the arriving burst. Typically, the set of available
wavelengths is denoted by A% {A, 25, ..., A,,} while the
node has u wavelength converters
where u € {1,2,...,w}. This means that only u
wavelengths of A can be converted to any other
wavelength in the set, while the remaining w-u
wavelengths are nonconvertible ones. We define the
node conversion capability asy ":f% If y = 0, this
means that the node has no wavelength conversion
capability (NWC), whereas if y = 1, this implies that it
has full conversion capability (FWC). If 0 <y < 1, the
node has partial wavelength conversion capability
(PWC). In this model, we are only considering the two
limiting cases of y = 0andy =1, i.e. the calculated
burst loss probability from the model can be considered
as lower and upper bounds for the burst loss probability
that can be achieved when PWC is employed in the
OBS core node where the lower bound is set by the case
of FWC (y = 1) and the upper bound by the case of
NWC (y = 0).

» Inter-arrival times between incoming DBs to the OBS core
node are assumed to follow a Pareto distribution with an

average 1/7\ seconds, where A is the average arrival rate in
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bursts/second. The service time of an incoming burst is
assumed to have an exponential distribution with a mean

1/ p seconds which is equal to the average duration of the
data burst.

The Pareto distribution is given by the following probability
distribution function (pdf):

ab®
(b + x)a+1

It can be easily shown that the Pareto pdf has a finite mean
and infinite variance for 1 < a < 2 and its mean is given by:
b

E(X)=m @)

fx(x) = wherex > 0,a>0andb >0 (1)

In order to model a self-similar or LRD traffic stream, we are
going to assume that the inter-arrival times are Pareto distributed
with parameter ¢ where 1 < a < 2. This is to make the mean of
the inter-arrival times finite while their variance is infinite. The
infinite variance syndrome is equivalent to the LRD property
exhibited by the traffic as already known in literature. Moreover,
the degree of long range dependency or self-similarity of the
traffic is measured by the Hurst parameter denoted by H where
0 < H < 1. It is proved that when 0.5 < H < 1, the process has
a non-summable autocorrelation function (ACF), i.e. the process
exhibits the same statistical properties for different lag times or
equivalently self-similar. On the other hand, if 0 < H < 0.5, the
process has a summable ACF and is said to be SRD.

The Hurst parameter A of a Pareto distributed stochastic
process is related to the parameter a of the Pareto pdf as follows:
3—a 3

- 3

Thus, we are going to adjust the degree of self-similarity of
the generated traffic stream by the varying the parameter a
between 1 and 2. More specifically, a = 1 corresponds to H = 1
which means that the generated traffic has the maximum degree
of self-similarity, whereas a = 2 corresponds to the least degree
of self-similarity when H = 0.5. Furthermore, as given by
equation (4), the mean value of the inter-arrival time (7,) of the
generated traffic is going to be:

1 b
E(T,) =1=7°1 €))

H =

B.  Model Equations
e Case 1l (FWC case)

For the FWC case, we are going to model each output port of
the OBS core node as a semi-Markov GI/M/w/w queueing system
which has a general independent arrivals (Pareto in our case)
with a mean arrival rate 1, Markovian service times (exponential)

with a mean 1/ > W servers imitating the w available wavelengths




and a system capacity restriction w as the OBS core node is
assumed to have no buffering capabilities.

From Takacs [5], the steady-state probabilities of the
GI/M/w/w queue are given in [6] and [7] as follows:

m =Y (-1 (’]‘)B forj=012,..,.w (5
=)
where
P P
- S (6)
wo )c
and
3 F*(ip)
G = | | T=F (7)

where F*(s) is the Laplace transform of the pdf of the inter-
arrival times. For the Pareto pdf fy(x) given by equation (1), the
Laplace transform F*(s) is derived in [8] as follows:

F*(s) = a(bs)*e?T(—a, bs) (®

where I'(a, x) is the incomplete gamma function defined by:

[oe]

I'(a,x) =ft“‘1e‘tdt

X

)

Furthermore, we use the same expressions in [8] in order to
calculate the incomplete gamma function on MATLAB for our
numerical results. The following expression is used to evaluate
F*(s) ifa = n = 1 is a positive integer:

( )n 1{

F*(s) = n(bs)"ebs Ei(—bs)

- = (log( bs) — log (— i)) + log(bs)}

bsz(bs)k n— 1]

] (=)

where Ei(-) denote the exponential integral function defined by:

(10)

Ei(x) = fe?tdt (11)

and (x), = x(x + 1) ...(x + ¥y — 1) is the Pochhammer symbol

defined in [9].

On the other hand, if a =n — 1/2 is a positive half-integer
then, F*(s) can be evaluated as follows:

525

F*(s) = (n - %) (bs)”_l/zebs[ (1/)2;/_ erfc(v=bs)
n-1 (bs)

— (bs)Y/?~ne=bs =0—(1/2 — n)k+1] (12)

where erfc(:) denotes the complementary error function defined
by:

2 ; 2
erfc(x)=1—ﬁ!e t (13)

Intuitively, we can obtain the burst loss probability Py by
obtaining the probability that all w servers are busy, which can be
easily found from equation (5) as follows:
Case 2 (NWC case)

The NWC is similar to the FWC case except for the
following. We will model each output port in the OBS core node
as w independent GI/M/1/1 queues each having Pareto arrivals

with a mean arrival rate A/ w- Then, we can use the same set of
equations used in the FWC case above in order to calculate the
burst loss probability Py in the NWC case.

II1.

This section is devoted to present the results of our
mathematical model that assumes Pareto LRD DB arrivals to the
OBS core node. Also, our model results are compared with those
of conventional mathematical models that adopt Poisson SRD
DB arrivals focusing on showing the effect of considering the
self-similarity property possessed by traffic arrivals.

NUMERICAL RESULTS

For the Poisson SRD arrivals, we employ the Erlang-B
formula to derive the burst loss probability while assuming for
FWC and NWC cases. For an M/M/c/c queue, the Erlang-B
formula calculates the blocking probability as follows:

(@ /-
o () /1

First, in FWC case (y=1), one can calculate the burst loss
probability from the Erlang-B formula by simply putting the
number of servers c¢ equal to the number of wavelengths w.
Second, in NWC case (y=0), one can also use the Erlang-B
formula to obtain the loss probability by putting the number of
servers ¢ equal to one while replacing the original arrival rate A

by A/ w- This is justified by the fact that each one of the w servers
available is accessible only by DBs incoming on its specific

(15)

wavelength which arrive by a rate A/W, i.e. the M/M/w/w queue
in case of no wavelength conversion can be replaced by w similar
M/MJ/1/1 queues one for every wavelength.



By employing equations (5), (14) and (15), the burst loss
probability Py is plotted in Fig. 1 versus the average burst arrival
rate A in bursts/second in NWC (y = 0) and FWC (y = 1) cases. In
both cases, we plot three curves. The first curve is for the case of
Pareto distributed LRD arrivals with a Hurst parameter H = 0.5,
i.e. the traffic exhibits a low degree of self-similarity. The second
curve is for the case of Pareto distributed LRD arrivals with a
Hurst parameter H = 0.75, i.e. the traffic exhibits a higher degree
of self-similarity. The third and last curve is for the case of
Poisson SRD traffic arrivals, i.e. the traffic does not exhibit any
kind of self-similarity, which is drawn from the Erlang-B formula
in (15).

Comparing the three curves for the NWC case, we can easily
notice that Py increases as A increases for all curves because as
the traffic arrival rate increases, the probability for contention to
occur increases, and hence the probability to drop a DB
increases. What is more interesting is that Py is at its lowest value
for the Poisson SRD arrivals, while Py increases as H increases,
i.e. as the degree of self-similarity increases. This is the most
important observation from our model results as one can easily
conclude that mathematical models depending on conventional
traffic models that assume Poisson arrivals give over-optimistic
results for the loss probabilities when compared to their actual
values when the self-similarity property is considered. Moreover,
the difference between the values of PB for SRD and LRD
traffics is much clearer for lower values of 4, i.e. for low traffic
scenarios. This is because heavy tailed distributions like the
Pareto distribution assigns a high probability for the large values
of inter-arrival times compared to the Poisson distribution. The
significance of these high values of inter-arrival times is much
more evident in case of light traffic values; hence Py for LRD
traffic is significantly higher than for SRD traffic for light traffic
scenarios. The same observation can be easily noticed for the
other three curves drawn for the FWC case. Finally, the
importance of the wavelength conversion is also clear for both
SRD and LRD traffics which is easily deduced from the lower
values of PB for the FWC cases compared to the NWC case.

Next in Fig. 2, we plot Py versus 4 in FWC case while
considering Poisson and Pareto distributed traffic arrivals with H
= 0.5 and 0.75. In this figure, we want to study the effect of
changing the average burst length 1/p. In order to do so, we plot
Py versus A for the three traffic cases stated for two different
values of 1/p. It is evident from the figure that Py increases for
larger burst length because the probability for two DBs to overlap
is larger if their lengths are larger. Also, comparing the set of
curves drawn at 1/p = 10 with those drawn at 1/p = 100, one
can easily notice that as the burst length decreases, the effect of
self-similarity is clearer, i.e. LRD traffic has much higher loss
probabilities than SRD traffic especially when the burst length is
small. The reason is simply clear; for a fixed arrival rate A, as the
burst length 1/p decreases, the traffic or the offered load p is
smaller, i.e. a lighter traffic scenario is considered which turns
the difference between SRD and LRD traffics clearer for the
same reason stated previously.
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Fig. 1. Burst loss probability versus the average traffic arrival rate for NWC and
FWC cases for Poisson and Pareto arrivals at different values for the Hurst
parameter.

=
=)
T

—+—Pareto amivals, H= 0.5, 1/p =100
—&— Pareto arrivals, H = 0.75, 1/p =100
—5—Pareto armivals, H=0.5, 1ju=10
—5-Pareto amivals, H=0.75, fu=10
—— Poisson arivals, 1/u = 100

— Poisson arivals, 1/u = 10

e
=
T

b=t
)
T

Burst Loss Probability (Pg)
e o o o
[

=
T

08 1 1.2 14 16 1.8 2
Average Traffic Amival Rate (2)

P
=)
%)
2,
.
=
>

Fig. 2. Burst loss probability versus the average traffic arrival rate for FWC case
for Poisson and Pareto arrivals at different values for the Hurst parameter and
burst length.

Finally, we plot Pz versus the number of wavelength
channels w in Fig. 3.8 for the same three traffic cases. It is
intuitive that as w goes larger, Py decreases because it is less
probable for contention to occur. Interestingly, as w increases
the difference between Py values in case of SRD and LRD
traffics increases, i.e. the self-similarity property is much more
evident. This is because as the number of wavelengths increases
the traffic per wavelength is lighter, which means that the inter-
arrival times between DBs are going to be larger which is a
more probable case for LRD traffic modeled by Pareto
distribution rather than SRD traffic modeled by Poisson
distribution.
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Fig. 3. Burst loss probability versus the number of wavelengths for FWC case for

Poisson and Pareto arrivals at different values for the Hurst parameter.

IV. CONCLUSION

Upon the aforementioned results and observations, we can
come up with the following conclusions:

(1]

e Results of the proposed model prove the effectiveness
of adding wavelength conversion to the resources of the
OBS core node for both SRD and LRD traffics.

e In spite of the disability of our proposed mathematical
model to calculate the burst loss probability in PWC
case while assuming self-similar or LRD traffic arrivals,
the model proves the fact that other mathematical
models that assume SRD Poisson traffic arrivals, thus
neglecting the self-similarity property exhibited by real
network traffic, are insufficient. This is because these
traditional models give lower values for burst loss
probabilities when compared to more complicated
traffic models that consider the long range dependency,
i.e. traditional models gives over-optimistic results for
the loss probabilities.

e The difference between the values of the burst loss
probabilities obtained from this model (Pareto LRD
arrivals) and the results of the traditional Erlang-B
formula (Poisson SRD arrivals) is much clearer for low
traffic scenarios. Thus, for low traffic values, we should
try to accurately model the real traffic LRD properties
by using one of the heavy tailed distributions (Pareto for
example) instead of using the conventional Poisson
based models.

REFERENCES

M. Yoo and C. Qiao, “Just-enough-time (JET): A high speed
protocol for bursty traffic in optical networks,” in [EEE/LEOS
Summer Topical Meetings Dig. for Conf. Technologies Global
Information Infrastructure, 1997, pp. 26-27.

(2]

(3]
(6]

(7]

(8]

527

Qiao and M. Yoo, “Optical burst switching (OBS)—A new
paradigm for an optical internet,” J. High SpeedNetw., vol. 8, no.
1, pp. 69-84, Jan. 1999.

T. Battestilli and H.Perros, “An Introduction to Optical Burst
Switching,” IEEE Commun. Mag., vol.41, no. 8, pp. S10- S15
Aug. 2003.

W. Leland, M. Taqqu, W. Willinger and D. Wilson, “On the self-
similar nature of Ethernet traffic,” IEEE/ACM Transactions on
Networking, vol. 2, no. 1, Feb. 1994.

Takacs, L., Introduction to the theory of queues, Oxford
UniversityPress, New York (1961).

M. J. Fischer, A. M. Girard, D. M. B. Masi, and D. Gross,
“Simulating Internet-type queues with heavy-tailed service or
interarrival times,” Proceedings of the Applied Telecommunication
Symposium, Bohdan Bodnar, Editor, 2001; Advanced Simulation
Technologies Conference, Seattle, WA, Society for Modeling and
Simulation Inter-national (SCS), pp. 161-167, April 22-26, 2001.
M. Fischer, D. Masi, D. Gross, and J. Shortle, “Loss systems with
heavy-tailed arrivals,” The Telecommunications Review, no. 15,
pp. 95-99, 2004.

S. Nadarajah and S. Kotz, “On the Laplace transform of the Pareto
distribution,” IEEE Communications Letters, vol. 10, no. 9, Sep.
2009.

I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and
products, Sixth Edition. San Diego: Academic Press, 2000.



