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Abstract—High Efficiency Video Coding (HEVC) provides 
more compression than its predecessors. One of the modules 
that contributes to higher compression rates is the Motion 
Estimation module, which consists of Integer and Fractional 
pixel motion estimation. The Fractional Motion Estimation 
(FME) process performs interpolations to find sample values at 
fractional-pixel locations, which can be computationally 
demanding. In this paper, we propose an interpolation-free 
method for FME based on Artificial Neural Networks (ANNs). 
Our proposed method is implemented in HEVC reference 
software (HM-16.9). According to our results, ANNs can 
accomplish FME task with an average increase of 2.6% in BD-
Rate and an average reduction of 0.09 dB in BD-PSNR. 

Keywords—Fractional Motion Estimation (FME), High 
Efficiency Video Coding (HEVC), Deep Learning, Artificial 
Neural Networks (ANNs) 

I.  INTRODUCTION 
High Efficiency Video Coding (HEVC) is a new and 

trending video coding standard. It’s a strong candidate to be 
a successor for Advanced Video Coding (AVC) standard, as 
it provides better compression of up to 50% bitrate reduction 
with the same video quality [1]. One of the techniques that 
contribute to better video compression is Motion Estimation 
(ME), where frames of the video are predicted depending on 
past or future reference frames. The ME process is achieved 
using two steps: Integer-pixel Motion Estimation (IME) and 
Fractional-pixel Motion Estimation (FME). 

First, IME predicts the location of the best matched 
Prediction Block (PB) in a reference frame with integer-
pixels precision. Second, FME is a refinement of the IME 
result that searches for a better match with sub-pixels 
precision. The FME block is computationally expensive 
since it interpolates the sub-pixels around the selected integer 
location of the MV. Additionally, the ME process demands 
40-60% of the processing time of the whole HEVC encoder 
[2]. Therefore, simpler FME approaches are highly desired. 

 Deep Learning [3] have proven successful in lots of 
applications. Inspired by the huge success of deep learning, 
we propose an interpolation-free Artificial Neural Network 
(ANN) approach that performs FME and predicts the 
optimum MV with quarter-pixel precision. The ANN is fed 
with error values of the best integer location and eight 
surrounding integer points, along with the PB size. The 
network was trained by a dataset extracted from six well-

known video sequences, using the traditional Stochastic 
Gradient Descent (SGD) backpropagation algorithm. Our 
results show that ANNs can effectively perform FME task at 
the cost of an average increase of 2.6% in BD-Rate and 
average reduction of 0.09 in BD-PSNR. It also shows great 
promise for optimizations in terms of prediction accuracy 
and computational cost.  

The rest of the paper is organized as follows: Section II 
shows previous efforts to perform interpolation-free FME. 
Section III showcases the proposed ANN architecture, and 
the techniques used to enhance its performance. The 
experimental results are presented in Section IV, and Section 
V concludes the paper and presents ideas for future work. 

II. RELATED WORKS 
Due to the computationally intensive traditional 

interpolation method used in standard HEVC, different 
approaches have been presented to overcome this huge 
complexity. The basic idea is to estimate the optimum 
fractional pixel MV by modelling the matching error surface 
surrounding the best integer position. Several works use 
eight matching error values spaced one pixel from the center, 
which can be fitted as 2-D paraboloid surface, then get the 
minimum point as the best fractional location. The previous 
approaches model the error surface mathematically using any 
of 9 terms [4], 6 terms [5], or 3 terms [6]–[8].  

The authors of [5] derived the mathematical model terms 
from 9 matching error values by solving overdetermined 
equations using convex optimization method. In [9], the 
fractional MV is estimated by the intersection of the two 
main parabolas derived from the parallel horizontal and 
vertical planes. The algorithm is then improved by rejecting 
the outliers amidst the 9 integer-pixel locations.  The 
previous results were improved in the work of [10] by 
analyzing the error surface and investigating the vertex 
direction. In [11], the author evaluates the best fractional 
matching MV from among four different directional patterns. 
Works of [12] proposes estimating the fractional MV using 
25 matching error values, which incur additional overhead in 
the case of IME fast search mode, since it does not estimate 
the required 25 matching error values.  

Authors of [13] proposed performing fractional-pixel 
Motion Compensation (MC) using a Convolutional Neural 
Network. The difference between our approaches is that in 
[13], the interpolation-based ME algorithm is the same as the 
standard, and only the MC algorithm is replaced. While in 
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our approach, we replace the ME algorithm with an 
interpolation-free ANN that predicts the output MV. 

All aforementioned schemes model the error surface 
mathematically without considering different video 
characteristics. To the best of our knowledge, our work is the 
first attempt to utilize deep learning in performing 
interpolation-free FME task, and to predict the best fractional 
MV without modelling the error surface mathematically. 

III. PROPOSED ARCHITECTURE 
In this section, we describe the architecture of our 

proposed ANN. We justify the design choices we took for 
the network’s hyperparameters, as well as the optimization 
techniques used to improve both training time and prediction 
accuracy. Information about the data used in our network’s 
training and validation are also presented. 

A. Artificial Neural Network Architecture 
At first, we need to define the inputs and expected output 

of our network. The inputs are nine matching error values of 
integer-pixel locations, plus the height and width of the 
assigned PB. We approach the FME problem as a multi-class 
classification problem, where the output can only be one of 
49 points - the center integer point and surrounding 48 pixel 
locations with quarter precision - as shown in Fig. 1. The 
most suitable deep learning architecture for that kind of 
problem is a Fully Connected (FC) ANN. The network has a 
total of 11 inputs, and its output is a Log-Softmax layer with 
49 outputs, which predicts the most probable quarter-pixel 
location for the given inputs. We trained our network with 
the traditional SGD backpropagation algorithm. 

Several deep learning optimization techniques have been 
employed, such as: a) Dropout [14], b) Batch Normalization 
(BN) [15], c) Entity Embeddings [16]. Dropout is the process 
of dropping a fraction of the network’s activations at the start 
of each training epoch, so as to prevent overfitting. BN 
handles normalizing the activations of each layer, and 
scaling according to a trainable parameter, which accelerates 
the training process. BN also has a slight regularization 
effect which contributes in preventing overfitting. Both 
dropout and BN are used in all layers of our network. 

Entity Embeddings are used to handle the input values of 
PB width and height, which can only be one of certain 
values. Such inputs are also known as categorical variables. 

With Entity Embeddings, each categorical variable gets 
replaced with several floating-point numbers (in our case, 
four floating-point numbers) that are trainable along with the 
network’s weights and biases.  

One ANN was trained for each Quantization Parameter 
(QP), having a total of four trained ANNs. An illustration of 
the architecture is shown in Fig. 2. The training process was 
carried out using FastAI library, which is based on PyTorch. 

B. Choice of Hyperparameters 
FC networks may consist of several hidden layers. We 

have experimented with multiple combinations of hidden 
layers and found that two layers provided the best trade-off 
between prediction accuracy and computational cost. Hence, 
only two hidden layers were used for our work. Our layers 
consist of 22 and 20 neurons respectively. The choice of the 
number of neurons per layer was mostly arbitrary, where we 
only considered having a smaller number of neurons on the 
second layer to reduce the number of computations.  

To find the optimum learning rate, we used the cyclical 
learning rate method proposed in [17], where we found it to 
be equal to 1x10-3. As a result, we trained our network with 
1x10-3 learning rate for 44 epochs. Furthermore, our model 
was trained for 6 more epochs with 1x10-4 learning rate to 
achieve extra fine-tuning, resulting in a total of 50 training 
epochs for each network. 

C. Training Data 
Our approach when extracting the training data was to 

generalize the ANN to work well under all conditions. 
Therefore, the data was extracted from six video sequences. 
The selected sequences were a mixture of high and low 
resolutions, and with fast and slow movements. To balance 
the number of error values pulled from each sequence, we 
chose a lower number of frames for higher resolution videos, 
and vice versa. Table I shows the selected video sequences, 
along with the specific frames in each sequence. 

Four sets of data were extracted for QP values of {22, 27, 
32, 37}, and each set was used to train an independent ANN. 
First, each data set was normalized by subtracting the mean 
and dividing by the standard deviation of each of the inputs, 
resulting in input error values with zero mean and unit 

 
Figure 1.  Integer and Fractional pixel locations 

 
Figure 2.  Neural Network Illustration 
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variance. The values of mean and standard deviation for each 
input were stored for later, to perform normalization of error 
values during run-time. Then, for each set, 80% of the data 
were used for training, and 20% were used for validation. 
The validation set was chosen randomly. 

D. Computational Cost 
Training process of our network is done offline, and only 

the forward pass is executed during video encoding.  The 
predicted output of the network only depends on the error 
values computed by the IME step, hence saving the 
complexity of the filters used for interpolation process used 
by HEVC standard. Instead, ANNs operate by performing 
consecutive multiplications and additions. 

Our network, with two hidden layers, requires a total of 
1936 additions and 1854 multiplications per prediction. A 
breakdown of the used operations is shown in Table II. Data 
normalization is the process of subtracting the mean and 
dividing by the standard deviation for each input. Linear 
layers describe multiplying weights and adding biases for 
each layer, and BN is a technique used for accelerating the 
training process. 

Having four independent networks in our implementation 
does not incur any additional overhead in terms of 
computational resources. The only overhead is in terms of 
memory used to store all four sets of network parameters, 
and the slight delay of initializing the parameters depending 
on the used QP, which happens only once per video.  

It’s worth mentioning that several techniques can be used 
to reduce the number of used operations. For example, ANN 
pruning can be used to decrease the number of neurons, 
resulting in smaller and faster networks. Quantizing trainable 
parameters can also be used to reduce multiplication 
complexity with only a slight reduction in prediction 

accuracy. The implications of pruning and quantization are 
yet to be studied and are out of the scope of this paper. 

IV. EXPERIMENTAL RESULTS 
To evaluate our proposed architecture, we' implemented 

it in HEVC standard software (HM-16.9). The QP values are 
{22, 27, 32, 37}. The configuration used for our 
implementation is “encoder_lowdelay_P_main”, with fast 
search algorithm for IME and search range of 64. Finally, the 
error criterion used is the Error Sum of Squares (SSE).  

Table III shows the computed BD-Rate and BD-PSNR 
for our proposed implementation. Our results are compared 
with works of [5], [9], [10], which are all interpolation-free 
and require only 9 matching error values. We have 
implemented the work of [5] and ran it on the same 
configuration of our architecture. The algorithms of [9], [10] 
have been implemented in the work of [11]. It’s shown that 
our proposed network achieves an average increase of 2.6% 
in BD-Rate, and an average reduction of 0.09 dB in BD-
PSNR. Compared to [5], our method was able to achieve an 
average of 0.7% lower BD-Rate and 0.04 dB higher BD-
PSNR. The BD-PSNR was not reported in the works of [9] 
and [10], and only the BD-Rates of classes B, C and D were 
reported. For the average BD-Rate of classes B, C, and D, 
our proposed network achieved 0.5% lower BD-Rate than 
[8] and 0.1% lower BD-Rate than [9]. 

V. CONCLUSIONS AND FUTURE WORK 
In this paper, we proposed a new technique for 

performing interpolation-free FME, which utilizes deep 
learning. The inputs for our ANN are the SSE error values 
for the best integer-pixel location and eight surrounding 
integer locations, plus the PB height and width. Our network 
predicts the best point of 49 fractional locations, including 
the best integer location, with quarter-pixel precision. 
Results from implementing our method shows an average 
increase of 2.6% in BD-Rate, and an average reduction of 
0.09 dB in BD-PSNR. Using deep learning in FME shows 
promise for reducing computational resources, hence making 
it more hardware friendly.  

This work can be extended in many ways, the most 
obvious being optimizing the ANN for better results, which 
is presumably related to finding the optimum training data. 
Next, we can research ANN pruning and quantization, and 
how would they affect both prediction accuracy and 
computational resources. Finally, tailoring the ANN to 
specific applications can be studied. For example, the ANN 
can be tailored for teleconference applications by simply 
changing the training data to reflect its nature. With the rapid 
pace of deep learning research, ANNs will only get better at 
performing FME. 
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TABLE II.  BREAKDOWN OF COMPUTATIONAL RESOURCES 

 Additions Multiplications 

Data Normalization 9 9 

Linear Layers 1885 1794 

Batch Normalization (BN) 42 51 

Total 1936 1854 

 

TABLE I.  TRAINING DATA EXTRACTION 

Class Video Sequence Number of 
Frames 

Frame 
Skip 

Class B Kimono 5 60 

Class C PartyScene 20 60 

Class D BlowingBubbles 30 60 

Class E Johnny 10 60 

Class F 
SlideEditing 10 60 

SlideShow 10 60 
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TABLE III.  RESULTS OF PROPOSED ARCHITECTURE  

 [9] [10] [5] Proposed 
BD-Rate (%) BD-Rate (%) BD-Rate (%) BD-PSNR (dB) BD-Rate (%) BD-PSNR (dB) 

Class B 

BQTerrace 2.1 2.0 4.2 -0.05 4.5 -0.06 
BasketballDrive 2.3 2.1 1.8 -0.04 1.9 -0.04 

Cactus 2.5 2.2 2.3 -0.05 1.7 -0.03 
Kimono 1.2 1.0 0.7 -0.02 1.2 -0.03 

ParkScene 2.0 1.8 1.4 -0.04 1.7 -0.05 
Average 2.0 1.8 2 -0.04 2.2 -0.04 

Class C 

BQMall 3.7 3.3 2.9 -0.1 2.6 -0.09 
BasketballDrill 3.5 3.1 2.4 -0.09 2.1 -0.07 

PartyScene 3.1 2.8 4.4 -0.15 3.0 -0.1 
RaceHorses 4.7 4.3 3.6 -0.12 2.9 -0.1 

Average 3.7 3.4 3.3 -0.11 2.7 -0.09 

Class D 

BQSquare 3.0 2.7 8.5 -0.25 6.0 -0.18 
BasketballPass 4.4 3.8 3.1 -0.16 2.5 -0.11 

BlowingBubbles 3.8 3.5 4.6 -0.14 3 -0.1 
RaceHorses 6.7 5.7 4.5 -0.18 3.7 -0.15 

Average 4.5 3.9 5.1 -0.18 3.8 -0.14 
Averge of Class B,C,D 3.4 3.0 3.5 -0.11 2.9 -0.09 

Class E 
FourPeople 

Not Reported Not Reported 
1.6 -0.05 2.0 -0.06 

Johnny 2.5 -0.05 3.0 -0.06 
KristenAndSara 1.6 -0.04 2.3 -0.06 

Average - - 1.9 -0.04 2.5 -0.06 

Class F 

BasketballDrillText 

Not Reported Not Reported 

2.8 -0.1 2.4 -0.09 
ChinaSpeed 5 -0.23 1.2 -0.05 
SlideEditing 3.1 -0.4 1.0 -0.12 
SlideShow 6.4 -0.4 3.7 -0.26 

Average - - 4.3 -0.28 2.1 -0.13 
Total Average - - 3.3 -0.13 2.6 -0.09 
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