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Underwater localization using visible-light communications is proposed based on neural networks (NNs) estima-
tion of received signal strength (RSS). Our proposed work compromises two steps: data collection and NN train-
ing. First, data are collected with the aid of Zemax OpticStudio Monte Carlo ray tracing software, where we config-
ure 40,000 receivers in a 100 m × 100 m area in order to measure the channel gain for each detector in seawater. The
channel gains represent the input data set to the NN, while the output of the NN is the coordinates of each detector
based on the RSS intensity technique. Next, an NN system is built and trained with the aid of Orange data mining
software. Several trials for NN implementations are performed, and the best training algorithms, activation func-
tions, and number of neurons are determined. In addition, several performance measures are considered in order to
evaluate the robustness of the proposed network. Specifically, we evaluate the following parameters: classification
accuracy (CA), area under the curve (AUC), training time, testing time, F1, precision, recall, logloss, and specificity.
The corresponding measures are as follows: 99.1% for AUC and 98.7% for CA, F1, precision, and recall. Further,
the performance results of logloss and specificity are 7.3% and 99.3% respectively. © 2021 Optical Society of America

https://doi.org/10.1364/AO.419494

1. INTRODUCTION

Over the past years, the demands for high-speed underwater
communication links have expanded due to the development of
human applications in underwater communications. Having
an accurate location definition is considered a vital approach
in the communication field. In the same context, underwa-
ter exploration, offshore oil field discovery, deep submarine
communication, disaster prevention through environmental
monitoring, and military systems are considered among its
significant applications.

Besides, there are colossal challenges in underwater wire
communication installation due to high implementation costs
and the nonexistence of flexibility for many underwater applica-
tions. Accordingly, there is an increasing interest in underwater
wireless communication, which transmits data using wireless
carriers.

Radio frequency (RF), acoustic, and optical communications
are three famous techniques for underwater wireless communi-
cations. However, RF exhibits high attenuation in underwater

transmission. Consequently, it is suitable only for very short
distances and data rates less than 1 Mbps. On the other hand,
acoustic waves support ranges up to kilometers but with limited
data rates up to kbps. Furthermore, acoustic waves consume
power in a range of tens of watts, whereas RF power consump-
tion is contingent on the distance and varies from milliwatts to
hundreds of watts [1].

Underwater optical wireless communications (UOWC)
use optical waves as transmission carriers. The optical link
power consumption is in range from milliwatts to tens of watts,
depending on the transmitter type. It can support high data rates
up to Gbps. It is of low cost and considered the safest technology
for marine life. However, UOWC suffers from severe absorption
and scattering, which need to be addressed to lessen this effect. A
lot of researchers are attempting to increase the current average
link distance, which is just a few tens of meters up to 100 m
[2]. Moreover, comprehensive surveys of UOWC have been
introduced in many works to cover the technical background,
e.g., [1].
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Recently, localization is becoming granular to commercial
and scientific communities. It involves many applications
related to monitoring, surveillance, and tracking [3]. In
addition, underwater localization is of special importance
nowadays. Indeed, it is useful for underwater surveillance sys-
tems, tracking and studying oceanic animals, following climate
changes, assisted navigation, industrial applications (offshore
exploration), etc. [4].

Accordingly, in this paper, we focus on localization in under-
water environments, specifically, to localize a diver or any object.
The proposed system is characterized by the ability to find the
exact coordinates of any object under the effect of absorption
and scattering inside seawater. This system is featured with high
precision, cheap cost, and low computational complexity, which
enables the system’s hardware feasibility.

In general, localization may be classified as range-based and
range-free techniques [4]. Typically, the range-based schemes
achieve higher accuracy than that of range-free schemes. Several
technologies utilize range-based localization, e.g., time of arrival
(TOA), angle of arrival (AOA), and received signal strength
(RSS) techniques. Both TOA and AOA techniques provide high
accuracy at the expense of high cost and complexity. On the
other hand, the RSS technique provides medium accuracy but
has low cost [3]. Consequently, RSS is utilized in this paper as an
inexpensive technology for underwater localization.

Previous efforts on RSS localization included different envi-
ronments. An underwater acoustic positioning system has been
one of the forefront techniques. Specifically, in [5], Zhang et al.
proposed an RSS-based underwater acoustic sensor network
localization algorithm with stratification compensation. In [6],
by analyzing the mobility patterns of water near the seashore,
Zhang et al. proposed a localization method for underwater
acoustic wireless sensor networks based on a mobility prediction
and a particle swarm optimization algorithm. On the other
hand, in [7], Saeed et al. proposed RSS-based localization
technique for underwater optical wireless sensor networks.

Researchers have used Zemax OpticStudio as an MCRT
simulator. Specifically, in [2], the authors performed differ-
ent underwater channel scenarios using Zemax OpticStudio,
and the results have shown to be consistent with experimental
results. In [8], the authors used Zemax OpticStudio, combined
with Zemax programming language (ZPL), for underwater
dynamic channel modeling for single-input multiple-user
scenarios. In addition, the statistical distributions have been
obtained, which are required for bit error rate and outage
probability analyses.

Recently, NNs have been successfully utilized in several
spectra of applications with data-intensive robotics, track-
ing, navigation, object recognition, medical diagnoses, image
processing, and other applications [9]. In a related context,
many studies have taken advantage of NN hybrid with VLC
systems to improve system performance [10–13]. In [10],
Chaleshtori et al. studied the effect of training algorithms in an
artificial neural network (ANN) equalizer in VLC systems using
an organic light source. In [11], Ma et al. investigated the design
and implementation of machine-learning-based demodulation
methods in the physical layer of VLC systems. In [12], Irshad
et al. developed a decision tree algorithm and examined it with
different machine learning classifiers for indoor and underwater

localization in VLC networks. In [13], Alonso-González et al.
proposed a fingerprinting indoor positioning estimation system
based on NN to predict device position in a 3D environment.

In this paper, we perform an MCRT simulation using ZPL
and Zemax by configuring 40,000 detectors, so that we measure
the channel gains for each detector in seawater. Realistic con-
figurations are taken into consideration by adding commercial
transmitters and detectors as well as wavelength-dependent
reflection coefficients and objects. Furthermore, new tech-
niques with different strategies for underwater localization are
proposed based on NNs. Specifically, the NN is performed as
a predictive technique to estimate a 2D positioning system.
That is, in order to estimate the Cartesian coordinates (x , z)
of a mobile device, a grid of RSSs is processed in the proposed
system. The power-received signal is utilized as NN input. In
order to acquire a superb proposed positioning system, four
group of trails are presented to define the best training algorithm
and the best activation function. First, an identity-activation
function is processed with several training algorithms, specifi-
cally, stochastic gradient descent (SGD), adaptive moment
estimation (Adam), and limited memory Broyden-Fletcher-
Goldfarb-Shanno bound (L-BFGS-B) constraints. Next, a
logistic-activation function and an ReLu activation function are
executed, respectively, with the previously mentioned training
algorithms. Finally, the previously mentioned training algo-
rithm is performed using a tanh activation function. It turns out
that the proposed positioning system features low complexity;
therefore, it is appropriate to be integrated into mobile devices.

The rest of this paper is organized as follows: In Section 2, the
simulation model used to generate the data set is introduced.
Section 3 is devoted to the description of NN construction,
activation function, and training algorithms used. Orange
data mining and methodology are presented in Section 4. In
Section 5, the results are discussed in order to evaluate the per-
formance and robustness of the networks as well as nominate
the best technique. Finally, concluding remarks are given in
Section 6.

2. CONCEPT OF SIMULATION MODEL

Underwater visible light communications (UVLC) refer to
data transmission in an aquatic environment using optical
signals [14]. In this section, we specify a channel model for
the geometry of an underwater environment. Specifically, a
3D simulation environment is created with determination
of the dimensions and shape of the working environment. In
addition, the properties and locations of the transmitter LEDs
and receiver photodiodes are specified. In our channel model-
ing, we utilize Zemax OpticStudio combined with ZPL. The
channel gains of 40,000 detectors in seawater of a 100 m2 area
are evaluated at a 7 m depth. Zemax OpticStudio determines
the channel gains by tracing and collecting the energies of the
detected rays. In our proposed technique, four CREE white
LEDs filtered by a cyan color (490 nm) are placed on the sea sur-
face. Each CREE lamp features a rectangular array of 10× 10
LED chips [15]. Therefore, in order to simulate the light ray, an
array of four lamps, each with 100 chips, is utilized; each chip
also emits 500,000 rays. In addition, the seawater is modeled as a
wavelength-dependent medium. The cyan color is utilized here,
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Table 1. Simulation Parameters Used in Zemax
Solver

Transmitter specifications Source: Rectangular array with 4 LEDs
Cree white LED filtered in cyan color
[8,15]
Power: 1 W
Viewing angle: 120◦ [8]
Number of rays per LED chip: 500,000
rays [8]

Receiver specifications Total area: 100 m2

Aperture area: 5 cm2 [8]
Field of view: 180◦ [8]

Type of water Seawater

as it exhibits the minimum extinction coefficient in seawater [8].
The channel impulse response used in the Zemax OpticStudio
solver is given by [2,16]

h(t)=
Nr∑

i=1

piδ(t − τi ), (1)

where pi and τi are the power and delay for the i th ray, respec-
tively, and Nr is the total number of rays emitted by the LEDs.
Accordingly, the DC channel gain H0 is defined as [2]

H0 =

∫
∞

−∞

h(t)dt . (2)

The total received power at the receiver is defined as [17]

Pr = Pt Hd (0)+
∫

wall
Pt Href(0), (3)

where Hd (0) and Href(0) are the DC channel gains of the direct
and reflected paths, respectively, and Pt is the total optical
transmitted power by LEDs. In our study, we configure five
reflections for all objects.

In order to estimate and detect the powers and path lengths
from each source to each detector, the nonsequential ray tracing
feature of Zemax OpticStudio is utilized. With the aid of ZPL,
the received channel gain for each pixel is extracted. ZPL gives
the possibility to divide the total detection area (10 m× 10 m)
into smaller areas, each of dimension 50 mm× 50 mm. That is,
it converts one large detector to tiny detectors. Consequently,
we are able to measure the channel gains of 40,000 detec-
tors. Besides, each power received in each detector enables
us to obtain the localizations of 40,000 coordinates. Table 1
represents the simulation parameters utilized in Zemax
OpticStudio.

On the other hand, UWOC scattering in seawater, which
is due to the random nature of molecular motions, has a non-
negligible effect [18]. Therefore, each detector area has a
different channel gain because of various fading effects caused by
the attenuation and scattering variations in UVLC. In addition,
the reflection characteristics from both sea surface and sea bed
have significant impacts on the channel gain. Therefore, all these
effects are taken into consideration in our simulation. The total
extinction coefficient C(λ) of seawater in Zemax OpticStudio is
configured as

C(λ)= a(λ)+ b(λ), (4)

where a(λ) and b(λ) represent the absorption and scattering
contributions, respectively, and λ is the transmission wave-
length. Their utilized values are according to [19]. Furthermore,
both shot and thermal noises are taken into considered at the
receiver side [20].

3. NEURAL NETWORKS

Recently, there have been several machine learning methods that
vary based on accuracy and computational requirements. NNs
have become among the most efficient and robust methodolo-
gies for solving classification problems and pattern-recognition
method preferable than many others, for instance, Enhanced
J48 tree, ICT-Net, and scaled conjugate gradient (SCG)
[21]. NNs have become one of the most efficient and robust
methodologies for solving classification problems and pattern
recognition. An NN predicts an output pattern after training
it using input data samples. The NN consists of several layers
of nodes. Specifically, an input layer (of n nodes), K hidden
layers (with K ≥ 1), and an output layer. There are mk nodes
in the kth hidden layer, k ∈ {1, 2, . . . , K }. In addition, a set
of biases {bi }

K
i=1 exists in the network structure. The nodes

are connected through a set of links, each has weight wji,

j ∈ {1, 2, 3, . . . ,mk−1}, i ∈ {1, 2, 3, . . . ,mk}. Here, m0
def
= n,

representing the number of nodes in the input layer. The weights
are adjusted dynamically through the training process. In each
node, the estimated output Ŷi is evaluated as

Ŷi = f

∑
j

wji.x j + bi

 , (5)

where f (·) is an activation function. It should be noted that the
outputs of one hidden layer are the inputs of the next hidden
layer. Figure 1(a) shows the case of one hidden layer (K = 1) and
one output. The structure of a node is shown in Fig. 1(b).

There are several kinds of activation functions, e.g., Identity,
Logistic, Tanh, and ReLU, which will be discussed later.

A. Training Stage

Training stage or learning process is the main step in NNs. It is
an iterative operation based on minimizing a cost function J (·)
on the difference between the estimated output Ŷ and target
output Y . Basically, it depends on adjusting both sets of weights
w= {wji} and biases b = {bi }:

J (Ŷ , Y )= fcost(w, b). (6)

When the cost function is minimum or the training process
reaches a predefined number of iterations (epochs), the training
stage is terminated.

B. Training Algorithms

The following training algorithms are utilized in our NN
implementations. Stochastic gradient descent (SGD) [22],
adaptive moment estimation (Adam) [23], and limited memory
Broyden-Fletcher-Goldfarb-Shanno bound (L-BFGS-B) [24].



3980 Vol. 60, No. 13 / 1May 2021 / Applied Optics Research Article

(a) (b)

Fig. 1. (a) Neural network construction. (b) Basic structure of a node.

L-BFGS-B is considered an extension to the limited memory
algorithm (L-BFGS). It has been utilized for optimizing large
nonlinear problems; besides, it has the ability to deal with a
variable’s bounds. It relies on minimizing a nonlinear function
G with n variable

min U(G), (7)

subject to simple bounds

l ≤ G ≤ u, (8)

where U is a nonlinear function with available gradient g , and l
and u vectors are the upper and lower variable bounds, respec-
tively. Details of the algorithm and its mechanism are described
in [25]. Specifically, at each iteration, a limited-memory BFGS
approximation is updated to the Hessian. Moreover, this limited
memory matrix is used to identify a quadratic model of the
objective function U . Next, the search direction is estimated
using two phases: first, defining the active variables set that uti-
lize the gradient projection method. Subsequently, the quadratic
model is minimized with reference to the free variables. The
search direction is defined as the vector leading from current
iteration to the approximate minimizer.

C. Activation Functions

The identity activation function has a linear output:

f (x )= x . (9)

Its range extends from −∞ to∞. One of the main disadvan-
tages of identity function is that it cannot be used in complicated
models with several parameters.

To overcome the problem of linearity, there are many activa-
tion functions that execute nonlinearity transformations, e.g.,
Logistic, Tanh, and ReLU.

The logistic activation function, also called the sigmoid func-
tion, is given by

f (x )=
1

1+ e−x
. (10)

It is a suitable solution in the case of a probability prediction out-
put model because its range is between 0 and 1. However, its out-
put is not zero-centered.

At the first glance, the tanh activation function looks like a
sigmoid:

tanh(x )=
e 2x
− 1

e 2x + 1
. (11)

However, its performance is superior to a sigmoid because of
its ability to map values between −1 and 1. Accordingly, it is
the best choice in the case of classification between two classes.
On the other hand, its output saturation is still a problem as in a
sigmoid.

The ReLu activation is given by [26]

ReLu(x )=max(0, x ). (12)

It plays an important role in overcoming the saturation issues
(through the positive region only). In addition, its range extends
from 0 to∞.

4. ORANGE DATA MINING

Data mining is becoming a vital approach in machine learning
due to its advantages and widespread applications in business,
economics, health, science, and engineering. In this paper, we
utilize Orange as our data-mining tool. Orange is an open-
source data-mining tool in machine learning [27]. It is used
as data analysis and data visualization with various toolboxes.
In addition, Orange comprises diverse add-ons to extend
functionality [28].
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Fig. 2. Summary of major steps of proposed system.

A. Methodology

In this section, we present our methodology for obtaining the
best NN configurations for target localization. It is split into
two phases. The first phase is data set collection using Zemax
software as discussed. The second phase is training an NN using
the estimated data set through the Orange data-mining toolbox.

In our proposed technique, the data set is determined in a
10× 10 m2 underwater area in pure seawater at a depth of 7 m.
The data set collection stage passes through many levels, as
illustrated in Fig. 2, which provides an overall summary of the
major steps followed in the adopted channel modeling meth-
odology. Specifically, in the first step, we create a 3D simulation
environment, where we specify the geometry of the underwater
environment, the objects within it, the reflection characteristics
of the surface materials, and the aspects of the light sources and
detectors. In the second step, we apply the nonsequential ray
tracing feature of Zemax to calculate the detected power and
path lengths from source to detector for each ray. In the third
step, we import this data to model the simulation environ-
ment, where we need to specify the dimensions and shape of
the environment as well as the properties and locations of the
transmitter (LED) and receiver photodiode. The source CREE
LED is chosen with a cyan color to provide minimum extinction
coefficient. The output 40,000 records of Zemax are used as the
Orange data set input. The CAD model of seawater volume is
obtained from [29].

Figure 3 explains the steps of our proposed technique in the
stage of using the Orange toolbox.

After importing our data set from Zemax, a normalization
technique, as a prepossessing step, is applied to RSS data so as

Fig. 3. Block diagram of proposed work utilizing Orange data
mining.

to be centered to a mean µ in order to improve it and reduce
its redundancy. Next, to convert the training data from mul-
tivariable targets to single-variable targets, a new feature is
formed using feature constructor widgets. This feature is built
according to

X 1 = x 2
+ z2, (13)

where it is utilized to convert the training data from points in the
x−z plane to a line. Therefore, X 1 is considered as the estimated
target. Finally, NN widgets with several training algorithms and
activation functions are utilized for training the data. Finally,
NN widgets with several training algorithms and activation
functions are utilized for training the data. Test and score as well
as confusion matrix widgets are used as our evaluation metrics.

As aforementioned, a multilayer perceptron (MLP) neural
network with one hidden layer is constructed. Our experiments
include studying the effect of changing the number of neurons
in the hidden layer. The number of neurons is changed from
one to 10 neurons to acquire the best number. Several types of
activation functions (Identity, Logistic, Tanh, and ReLU) are
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Table 2. SGD Learning Algorithm with Identity Activation Function

No. of
Neurons

Training
Time [s] Test Time [s] AUC CA F1 Precision Recall Logloss Specificity

1 34.073 0.044 0.989 0.987 0.987 0.987 0.987 0.149 0.993
2 23.972 0.052 0.991 0.987 0.987 0.987 0.987 0.073 0.993
3 24.078 0.036 0.991 0.987 0.987 0.987 0.987 0.073 0.993
4 16.497 0.036 0.991 0.987 0.987 0.987 0.987 0.072 0.993
5 17.387 0.035 0.991 0.987 0.987 0.987 0.987 0.072 0.993
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 16.844 0.036 0.991 0.987 0.987 0.987 0.987 0.073 0.993

Table 3. Adam Learning Algorithm with Identity Activation Function

No. of
Neurons

Training
Time [s] Test Time [s] AUC CA F1 Precision Recall Logloss Specificity

1 31.495 0.04 0.991 0.987 0.987 0.987 0.987 0.071 0.993
2 25.247 0.034 0.991 0.987 0.987 0.987 0.987 0.071 0.993
3 25.885 0.034 0.991 0.987 0.987 0.987 0.987 0.073 0.993
4 21.267 0.039 0.991 0.987 0.987 0.987 0.987 0.073 0.993
5 18.731 0.045 0.991 0.987 0.987 0.987 0.987 0.073 0.993
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 19.654 0.039 0.991 0.987 0.987 0.987 0.987 0.073 0.993

performed. SGD, Adam, and L-BFGS-B are utilized as our
solvers. We used 200 iterations in our experiments. In order to
reap the advantage of using all the data sets for training and vali-
dation, stratified tenfold cross validation is used as our sampling
technique in test and score widget [30]. In addition, our results
are averaged over a set of three classes.

In order to validate the robustness of underwater localization
application using NNs, different metrics are used, specifically,
the training time, test time, AUC, CA, F1, precision, recall,
logloss, specificity [31,32], and receiver operating characteristic
(ROC) curve [33]. Furthermore, a confusion matrix is used
to represent both proportions of prediction and number of
instances for the neural network, besides computing all the used
metrics through it. This is a list of rates that is often computed
from a confusion matrix. Therefore, discrete widgets are used to
divide the declares into three equal classes.

5. RESULTS

In order to obtain the superb robustness of our proposed tech-
nique, several trials, including varying training algorithms,
activation functions, and number of neurons in the hidden
layer, are performed in this section, and the results are presented.

A. Identity Activation Function

In this subsection, we evaluate the performance when using
NNs with an identity activation function and various training
algorithms.

1. SGDTrainingAlgorithm

First, we adopt an NN with an SGD training algorithm and
identity activation function. This NN is evaluated by changing
the number of neurons from one to 10 neurons, and the results

are presented in Table 2, which shows that AUC, CA, F1, preci-
sion, and recall give high accuracy around 0.987 with a training
time of 34.073 and one neuron in a hidden layer. However, the
best results are obtained when using two neurons, where the
AUC increases to 0.991. The values of both logloss and speci-
ficity are 0.073 and 0.993, respectively. The performance does
not improve when increasing the number of neurons above two;
however, the training time decreases a bit.

2. AdamTrainingAlgorithm

The same procedure is repeated using identity as the activa-
tion function, but Adam algorithm is used instead of SGD.
The results are shown in Table 3. It is clear that the best results
are obtained when using one neuron with a training time of
31.495 s and test time of 0.04 s. The other metrics are similar to
the best results when using identity and SGD.

3. L-BFGS-BTrainingAlgorithm

Combining the identity activation function with the L-BFGS-B
algorithm gives the same result but with one difference, i.e., a
small training time (Table 4). Specifically, the training times are
2.137 and 3.057 s when using one and 10 neurons, respectively.
Good results are obtained using two neurons in the hidden layer.

From the last three tables, we can determine the best training
algorithm used with the identity activation function. Our selec-
tion metrics are based on number of neurons and training time.
As can be seen, identity with SGD gives the best results with
two neurons in the hidden layer at a training time of 23.972 s.
While identity with Adam gives best results with one neuron in
the hidden layer at a training time of 31.495 s. When combin-
ing identity with L-BFGS-B, the best results are obtained for
two neurons in the hidden layer at a training time of 3.184 s.
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Table 4. L-BFGS-B Learning Algorithm with Identity Activation Function

No. of
Neurons

Training
Time [s] Test Time [s] AUC CA F1 Precision Recall Logloss Specificity

1 2.137 0.047 0.989 0.987 0.987 0.987 0.987 0.149 0.993
2 3.184 0.035 0.991 0.987 0.987 0.987 0.987 0.071 0.993
3 2.603 0.033 0.991 0.987 0.987 0.987 0.987 0.071 0.993
4 2.624 0.04 0.991 0.987 0.987 0.987 0.987 0.071 0.993
5 3.116 0.058 0.991 0.987 0.987 0.987 0.987 0.071 0.993
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 3.057 0.037 0.991 0.987 0.987 0.987 0.987 0.071 0.993

Table 5. Adam Learning Algorithm with Logistic Activation Function

No. of
Neurons

Training
Time [s]

Test
Time [s] AUC CA F1 Precision Recall Logloss Specificity

1 125.467 0.045 0.992 0.987 0.987 0.987 0.987 0.075 0.994
2 58.662 0.06 0.992 0.987 0.987 0.987 0.987 0.073 0.994
3 53.329 0.067 0.991 0.987 0.987 0.987 0.987 0.072 0.994
4 40.75 0.058 0.991 0.987 0.987 0.987 0.987 0.072 0.994
5 34.917 0.061 0.991 0.987 0.987 0.987 0.987 0.073 0.994
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 31.466 0.077 0.991 0.987 0.987 0.987 0.987 0.072 0.994

Table 6. SGD Learning Algorithm with Logistic Activation Function

No. of
Neurons

Training
Time [s] Test Time [s] AUC CA F1 Precision Recall Logloss Specificity

1 160.016 0.043 0.988 0.987 0.987 0.987 0.987 0.209 0.993
2 111.396 0.042 0.991 0.987 0.987 0.987 0.987 0.078 0.993
3 109.075 0.047 0.991 0.987 0.987 0.987 0.987 0.078 0.993
4 82.641 0.052 0.991 0.987 0.987 0.987 0.987 0.075 0.993
5 76.674 0.048 0.991 0.987 0.987 0.987 0.987 0.076 0.993
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 66.228 0.065 0.991 0.987 0.987 0.987 0.987 0.074 0.993

Consequently, the L-BFGS-B algorithm with the identity acti-
vation function performs superbly when compared with other
algorithms with the same activation function.

B. Logistic Activation Function

In this subsection, the three training algorithms are tested with
the logistic activation function.

1. AdamTrainingAlgorithm

First, the same previous procedure is performed using the Adam
algorithm (the results are illustrated in Table 5). One of its
distinguishing features is the high training and testing times
compared with the other combinations, whereas the other
results are almost same. The best results are acquired when using
the first neurons. In the same context, according to Table 25
in [34], it is observed that the training time varies from 132.82
to 37.99 s, utilizing the logistic activation function, while our
results obtain the training time from 125.467 to 31.466 s with
more time stability. Note that the more neurons, the less the
training time.

2. SGDTrainingAlgorithm

Next, adding the logistic activation function to the SGD algo-
rithm gives the results shown in Table 6. The results obtained are
almost the same as the previous results, except for one difference.
It has a high training time of 160.016 s, which is acquired with
one neuron. However, the training time decreases with increas-
ing the number of neurons and reaches 66.228 s for 10 neurons.
The best results can be obtained when using two neurons with a
training time of 111.396 s and test time of 0.042 s.

3. L-BFGS-BTrainingAlgorithm

In order to exploit the merit of low computational time, the
logistic activation function is used with the L-BFGS-B algo-
rithm. Table 7 shows the corresponding results. It behaves
similarly, despite the small training time, which value increases
with increasing number of neurons and reaches 5.415 s for
10 neurons. The best results are gained when using two
neurons with training and test times of 3.609 and 0.055 s,
respectively.

The last three tables show that, with the logistic activation
function, the best training time is 125.467 s with one neuron,
111.396 s with two neurons, and 3.609 s with two neurons
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Table 7. L-BFGS-B Learning Algorithm with Logistic Activation Function

No. of
Neurons

Training
Time [s] Test Time [s] AUC CA F1 Precision Recall Logloss Specificity

1 3.178 0.041 0.989 0.987 0.987 0.987 0.987 0.149 0.993
2 3.609 0.055 0.991 0.987 0.987 0.987 0.987 0.071 0.993
3 3.6 0.042 0.991 0.987 0.987 0.987 0.987 0.071 0.993
4 2.444 0.04 0.991 0.987 0.987 0.987 0.987 0.071 0.993
5 3.8 0.059 0.991 0.987 0.987 0.987 0.987 0.071 0.993
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 5.415 0.053 0.991 0.987 0.987 0.987 0.987 0.071 0.993

Table 8. Adam Learning Algorithm with Tanh Activation Function

No. of
Neurons

Training
Time [s] Test Time [s] AUC CA F1 Precision Recall Logloss Specificity

1 79.98 0.045 0.991 0.987 0.987 0.987 0.987 0.072 0.993
2 37.067 0.057 0.991 0.987 0.987 0.987 0.987 0.072 0.993
3 39.432 0.051 0.991 0.987 0.987 0.987 0.987 0.072 0.993
4 23.947 0.037 0.991 0.987 0.987 0.987 0.987 0.072 0.993
5 27.558 0.039 0.991 0.987 0.987 0.987 0.987 0.072 0.993
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 24.009 0.039 0.991 0.987 0.987 0.987 0.987 0.072 0.993

Table 9. L-BFGS-B Learning Algorithm with Tanh Activation Function

No. of
Neurons

Training
Time [s] Test Time [s] AUC CA F1 Precision Recall Logloss Specificity

1 2.888 0.026 0.989 0.987 0.987 0.987 0.987 0.149 0.993
2 3.393 0.055 0.991 0.987 0.987 0.987 0.987 0.071 0.993
3 2.512 0.055 0.991 0.987 0.987 0.987 0.987 0.071 0.993
4 2.673 0.038 0.991 0.987 0.987 0.987 0.987 0.071 0.993
5 3.031 0.053 0.991 0.987 0.987 0.987 0.987 0.071 0.993
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 4.229 0.061 0.991 0.987 0.987 0.987 0.987 0.071 0.993

for the Adam, SGD, and L-BFGS-B algorithms, respectively.
Accordingly, the L-BFGS-B algorithm with the logistic activa-
tion function performs superbly when compared with the other
algorithms with the same activation function.

C. Tanh Activation Function

About the tanh activation function, the same mechanism is used
in order to obtain the best training algorithm.

1. AdamTrainingAlgorithm

First, Table 8 shows that the preferable results are acquired when
using one neuron with the Adam training algorithm. The NN
behaves similarly but with a training time of 79.98 s and a test
time of 0.045 s.

2. L-BFGS-BTrainingAlgorithm

As known, L-BFGS-B is famous for its low training time.
Table 9 shows the results of it with the tanh activation function.
It is clear that the best results are gained when using two neurons
with a low training time of 3.393 s and a test time of 0.055 s.

It is clear from the table that, as the number of neurons increases,
the training time increases.

3. SGDTrainingAlgorithm

Regarding the SGD training algorithm, the results are illus-
trated in Table 10. Note that superior results are obtained when
using two neurons with training and test times of 44.525 s and
0.059 s, respectively. The training time is directly proportional
to the number of neurons, as illustrated in the table.

By comparing the superior results of the tanh activation
function with the three training algorithms, it is clear that the
L-BFGS-B algorithm performs superbly when compared with
the other algorithms with the least training time.

D. Confusion Matrices

In order to show proportion of prediction and number of
instances for NNs consisting of the identity and logistic acti-
vation functions with all mentioned learning algorithms,
confusion matrices are utilized.

The results shown in Fig. 4(a) present these values as predic-
tion proportions over three classes. The actual prediction ratios
are 99%, 98.1%, and 99.1%, respectively. It should be noted
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Table 10. SGD Learning Algorithm with Tanh Activation Function

No. of
Neurons

Training
Time [s] Test Time [s] AUC CA F1 Precision Recall Logloss Specificity

1 117.86 0.045 0.989 0.987 0.987 0.987 0.987 0.154 0.993
2 44.525 0.059 0.991 0.987 0.987 0.987 0.987 0.073 0.993
3 42.86 0.046 0.991 0.987 0.987 0.987 0.987 0.073 0.993
4 31.303 0.052 0.991 0.987 0.987 0.987 0.987 0.073 0.993
5 34.427 0.085 0.991 0.987 0.987 0.987 0.987 0.073 0.993
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 25.94 0.041 0.991 0.987 0.987 0.987 0.987 0.073 0.993

(a) (b)

Fig. 4. Confusion matrices for NNS adopting identity, logistic, or tanh activation functions. (a) Proportion of prediction. (b) Number of
instances.

Table 11. Adam Learning Algorithm with ReLU Activation Function

No. of
Neurons

Training
Time [s] Test Time [s] AUC CA F1 Precision Recall Logloss Specificity

1 30.214 0.035 0.823 0.657 0.643 0.657 0.657 0.529 0.828
2 43.687 0.052 0.828 0.662 0.629 0.661 0.662 0.497 0.831
3 42.731 0.045 0.991 0.987 0.987 0.987 0.987 0.072 0.993
4 34.239 0.055 0.991 0.987 0.987 0.987 0.987 0.072 0.993
5 22.885 0.04 0.991 0.987 0.987 0.987 0.987 0.072 0.993
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 23.675 0.045 0.992 0.987 0.987 0.987 0.987 0.072 0.994

(a) (b)

Fig. 5. Confusion matrices for NN adopting ReLU activation function and Adam algorithm, when using one neuron. (a) Proportion of predic-
tion. (b) Number of instances.

that these values coincide for the three activation functions:
identity, logistic, and tanh.

Figure 4(b) indicates the number of instances of the three
classes corresponding to prediction proportion values.

E. ReLU Activation Function

In this subsection, the three training algorithms are tested with
the ReLU activation function.

1. AdamTrainingAlgorithm

The results of ReLU with the Adam algorithm are shown in
Table 11. Using one or two neurons gives bad results, while
the best results are acquired when using three neurons at
training and test times of 42.731 s and 0.045 s, respectively.
Increasing the number of neurons further does not improve the
performance.

Unlike the previous states, the confusion matrix differs with
every neuron number.

The actual prediction proportions acquired when using one
neuron are 49.5%, 98.1%, and 49.5% for the three classes of
data sets as shown in Fig. 5(a). Figure 5(b) illustrates the number
of instances of the corresponding percentages.

The prediction proportions of processing with two neurons
are 99%, 49.5%, and 50% for the three classes, respectively, as
presented in Fig. 6(a). The corresponding number of instances
are given in Fig. 6(b).

On the other hand, when using three neurons, the prediction
proportions and corresponding number of instances similar to
that are given in Figs. 4(a) and 4(b), respectively.

2. L-BFGS-BTrainingAlgorithm

Next, the same procedure is carried out with the ReLU acti-
vation function and L-BFGS-B training algorithm. Table 12
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(a) (b)

Fig. 6. Confusion matrices for NN adopting ReLU activation function and Adam algorithm, when using two neurons. (a) Proportion of predic-
tion. (b) Number of instances.

Table 12. L-BFGS-B Learning Algorithm with ReLU Activation Function

No. of
Neurons

Training
Time [s]

Test
Time [s] AUC CA F1 Precision Recall Logloss Specificity

1 1.752 0.034 0.822 0.657 0.547 0.492 0.657 0.529 0.828
2 2.644 0.04 0.827 0.663 0.552 0.496 0.663 0.497 0.831
3 3.97 0.057 0.991 0.987 0.987 0.987 0.987 0.071 0.993
4 3.96 0.039 0.991 0.987 0.987 0.987 0.987 0.071 0.993
5 3.691 0.044 0.991 0.987 0.987 0.987 0.987 0.071 0.993
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 4.385 0.04 0.991 0.987 0.987 0.987 0.987 0.071 0.993

(a) (b)

Fig. 7. Confusion matrices for NN adopting ReLU activation function and L-BFGS-B (or SGD) algorithm, when using one neuron.
(a) Proportion of prediction. (b) Number of instances.

(a) (b)

Fig. 8. Confusion matrices for NN adopting ReLU activation function and L-BFGS-B (or SGD) algorithm, when using two neurons.
(a) Proportion of prediction. (b) Number of instances.

presents the results. The optimum results for this stage of
work are acquired when using three neurons with training and
test times of 3.9 and 0.057 s, respectively. The same conclu-
sion associated with L-BFGS-B algorithm is extracted, i.e., a
small training time that increases with increasing number of
neurons.

Figure 7(a) shows the confusion matrices when adopting one
neuron in the hidden layer, while the corresponding numbers of
instances are illustrated in Fig. 7(b). Specifically, the prediction
proportions are 49.5%, 98.1%, and NA for the three classes.
Here, NA is due to the ReLU dying problem [35].

Figures 8(a) and 8(b) show the prediction proportions and
corresponding numbers of instances, respectively, with two neu-
rons in the hidden layer. We have 99%, NA, and 50% prediction
proportions of the three classes.

On the other hand, for the iterations with three neurons,
Figs. 4(a) and 4(b) give the results.

Fig. 9. ROC curve of L-BFGS-B learning algorithm with the iden-
tity activation function.
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Table 13. SGD Learning Algorithm with ReLU Activation Function

No. of
Neurons

Training
Time [s] Test Time [s] AUC CA F1 Precision Recall Logloss Specificity

1 42.72 0.043 0.822 0.657 0.547 0.492 0.657 0.53 0.828
2 53.042 0.049 0.828 0.663 0.552 0.496 0.663 0.499 0.831
3 66.112 0.047 0.989 0.987 0.987 0.987 0.987 0.076 0.993
4 46.973 0.051 0.991 0.987 0.987 0.987 0.987 0.073 0.993
5 21.926 0.04 0.991 0.987 0.987 0.987 0.987 0.073 0.993
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

10 29.786 0.039 0.991 0.987 0.987 0.987 0.987 0.073 0.993

Table 14. Superior Results of L-BFGS-B Algorithm
with Different Activation Functions

Activation Function Number of Neurons Training Time [s]

Identity 2 3.184
Logistic 2 3.609
ReLU 3 3.97
Tanh 2 3.393

3. SGDTrainingAlgorithm

The performance of the ReLU activation function with the
SGD learning algorithm is shown in Table 13. The results
show that the iterations when using three neurons perform
superbly when compared with other neurons’ iterations. The
corresponding training and test times are 66.112 and 0.047 s,
respectively.

Confusion matrices of runs using one and two neurons are
given in Figs. 7(a) and 7(b) and Figs. 8(a) and 8(b), respectively.
On the other hand, Figs. 4(a) and 4(b) illustrate the outputs of
confusion matrices for the case of three neurons in the hidden
layer.

Comparing the best results from all training algorithms
with ReLU activation function, note that the training times
(with three neurons) are 42.731, 3.97, and 66.112 s for Adam,
L-BFGS-B, and SGD, respectively. Based on this, L-BFGS-B
algorithm performs superbly compared with the others.

F. Comparing Final Results

From the previous results, L-BFGS-B can be considered the best
training algorithm because of its very low training time. To find
the superior activation function, Table 14 shows the preferable
results of the L-BFGS-B algorithm with different activation
functions. It is clear that the identity activation function per-
forms superbly when used with two neurons, where the training
time is 3.184 s.

In a related context, the ROC curve is utilized to evaluate the
best acquired results performance. Figure 9 indicates good sepa-
ration of the L-BFGS-B algorithm.

Finally, a comparative study is done with other related works
in view of the robustness of the training algorithm. This is
indicated in the percentage accuracy shown in Table 15. Our
result outperforms that of other referred works except for [13].
However, the latter suffers from an enormous computational
time, which is 880.84 s for a data set of size around 762,432.
Meanwhile, our acquired computational time is around 3.184 s
for a data set of size 40,000.

Table 15. Comparative Study with Related Works in
Terms of Percentage Accuracy

Reference Training Algorithm Percentage Accuracy

This work Neural networks 98.7%
[12] Enhanced J48 tree 98.15%
[13] SCG 99.47%
[36] ICT-Net 97.14%

6. CONCLUSION

In this paper, an underwater localization technique based on uti-
lizing neural networks (NNs) and RSS values from LED lamps
of a VLC network has been proposed. Our proposed technique
is performed with the aid of Zemax ray tracing and Orange
software through several trials, specifically, varying learning
algorithms, activation functions, and number of neurons in one
hidden layer. It has been observed that the L-BFGS-B algorithm
always achieves the best performance with two or three neu-
rons in the hidden layer and a high accuracy of about 98.7%.
Moreover, the identity activation function performs superbly
when combined with L-BFGS-B at a small training time of
about 3.184 s with two hidden layers only. It turns out that the
proposed positioning system features low complexity; therefore,
it is appropriate to be integrated into mobile devices.
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