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Recently, orbital angular momentum (OAM) rays passing through free space have attracted the attention of
researchers in the field of free-space optical communication systems. Throughout free space, the OAM states are
subject to atmospheric turbulence (AT) distortion leading to crosstalk and power discrepancies between states. In
this paper, a novel chaotic interleaver is used with low-density parity-check coded OAM-shift keying through an
AT channel. Moreover, a convolutional neural network (CNN) is used as an adaptive demodulator to enhance the
performance of the wireless optical communication system. The detection process with the conjugate light field
method in the presence of chaotic interleaving has a better performance compared to that without chaoticinterleav-
ing for different values of propagation distance. Also, the viability of the proposed system is verified by conveying a
digital image in the presence of distinctive turbulence conditions with different error correction codes. The impacts
of turbulence strength, transmission distance, signal-to-noise ratio (SNR), and CNN parameters and hyperparam-
eters are investigated and taken into consideration. The proposed CNN is chosen with the optimal parameter and
hyperparameter values that yield the highest accuracy, utmost mean average precision (MAP), and the largest value
of area under curve (AUC) for the different optimizers. The simulation results affirm that the proposed system can
achieve better peak SNR values and lower mean square error values in the presence of different AT conditions. By
computing accuracy, MAP, and AUC of the proposed system, we realize that the stochastic gradient descent with
momentum and the adaptive moment estimation optimizers have better performance compared to the root mean
square propagation optimizer. © 2020 Optical Society of America

https://doi.org/10.1364/A0.390931

1. INTRODUCTION

Attaining excessive data transmission capacity and overcoming
the crunch problem of the unresolved bandwidth are the utmost
crucial concerns of the photonics community [1]. An exemplary
model for enhancing both the transmission capacity and the
spectral efficiency of lightwave systems depends on multiplexing

been given to space-division multiplexing (SDM) for capacity
augmentation in optical systems along with the existing multi-
plexing techniques. Mode-division multiplexing (MDM) is a
distinctive SDM case, where every mode can convey an autono-
mous data channel [3]. Orbital angular momentum (OAM),
exposed and verified by Allen ez al. in 1992 [4], is a prospec-
tive candidate for an MDM system with an orthogonal mode

miscellaneous autonomous data channels. The different data elementary set. OAM is the circumstance of the spatial dispersal

channels can be localized on a diversity of polarizations, wave-
lengths, or spatial channels, congruous to different categories of
division multiplexing [2]. Recently, a great deal of curiosity has
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of the electric field around the beam axis, resulting in a helical
phase front. Laguerre—Gaussian (LG) beams are considered as
an extraordinary subcategory among all beams of OAM, and
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their fundamental distribution is counted from the actuality
that they are paraxial eigen-solutions of the wave equation in
both free-space and cylindrical coordinates [5]. To meet the
ever-increasing demands of wireless communication systems,
alternative technologies are recommended by the implementa-
tion of OAM. There are three types of the implementation of
free-space optical (FSO) communication systems concentrating
on the nature of OAM, including OAM-division multiplexing
(OAM-DM) [6], OAM multicasting [7] and OAM shift keying
(OAM-SK) [5].

Recently, to cope with the rapid growth of the machine
intelligence (MI), deep learning (DL) methods have been
successfully employed in several applications such as image
classification and speaker recognition [8]. The utilization of
convolutional neural networks (CNNs) has achieved great
success in the field of computer vision applications [9]. The udi-
lization of CNNis in different fields has motivated us to use them
in adaptive demodulation. The major task of the OAM adaptive
demodulator is to categorize the received OAM beam images to
get the original information of the OAM modes. When OAM
demodulation is performed with a neural network, a high recog-
nition rate is required, which means that a high-quality training
set and a more complex network structure are required to train
an excellent model [10]. Although the recognition rate may
reach extreme levels, the bit error rate (BER) may not preserve
the realistic communication process.

Forward error correction (FEC) coding is an efficient tool
that can be used to enhance the reliability of data communica-
tion and get a minimal value of BER, and this is done by adding
redundant bits before transmitting the data. The FEC provides
the receiver with the ability to correct the errors with no supple-
mentary channel to ask for data retransmission. To enhance the
performance of OAM FSO systems, some codes such as Reed—
Solomon (RS) codes [11], low-density parity-check (LDPC)
codes [12], and Turbo codes [10] have been introduced.

The major objective of this study is to present an OAM
ESO system that adopts a novel CNN-based technique for
modulation and coding classification with the aid of a chaotic
interleaver to reduce the BER. The proposed system consists
of three parts. The first part is the chaotic interleavering with
LDPC coding and OAM modulation. The second part is the
free-space atmospheric turbulence (AT) channel. The third part
is chaotic deinterleavering and OAM demodulation. The major
objectives of this system are decreasing the BER of the com-
munication process and increasing the peak SNR (PSNR) for
image communication in the presence of different turbulence
parameters. This is accomplished through successful demodula-
tion and decoding processes. The adaptive moment estimation
(ADAM), root mean square propagation (RMSProp), and
stochastic gradient descent with momentum (SGDM) equal-
izers are used and compared to get the optimal parameter and
hyperparameter values of the CNN for the three optimizers in
order to achieve the highest demodulation accuracy.

The main original contribution of this study is presenting a
novel coded OAM-SK-FSO system with chaotic interleaving.
In addition, the paper presents an alternative CNN architecture
that is designed based on the optimal values of both the param-
eters and hyperparameters of the network using the ADAM,
RMSProp, or SGDM optimizers. The proposed CNN model
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achieves the minimum loss and the highest value of accuracy
for different batch sizes, epochs, and learning rates based on
optimization. The rest of this paper is organized as follows. In
Section 2, we present related work on OAM in the presence of
AT. In Section 3, we describe the components of the proposed
system. In Section 4, we demonstrate the process of image trans-
mission with the proposed system. In Section 5, we explain the
CNN architecture and show all simulation results with different
parameters and hyperparameters based on optimization.

2. RELATED WORK

In [13], a deep CNN model based on compensation of turbu-
lence was proposed for the purpose of modifying the distorted
vortex beam and enhancing the performance of OAM mul-
tiplexing systems by increasing the accuracy from 39.52% to
98.34% for strong turbulence strengths. In [14], a trade-off was
made between the system’s computational complexity and the
recognition efficiency by introducing a particularly designed
CNN architecture to professionally realize the OAM mode.
Numerical simulation indicates that the recognition accuracy
is increased to 96.25% even with elongated distance and high
turbulence. In [15], the decoding accuracy of 16-ary-OAM-SK
based on CNNis in an underwater optical communication sys-
tem was experimentally demonstrated; the results showed that
the decoder accuracy was more than 99% in clean water, and it
needed more pixels to reach an accuracy of more than 99% in
turbid water.

In [16], the simulation results showed that the CNN decod-
ers achieved an excellent performance of nearly 100% within
dozens of meters or in the presence of weak to moderate tur-
bulence, and 93% with strong turbulence or at a distance of
60 m through an oceanic turbulence channel. The average
BER (ABER) performance of the CNN-based demodulator
outperforms that of the conventional conjugate demodulator
by several orders of magnitude. The ABER of a noisy system
approaches the saturation level when the instantaneous SNR is
about 26 dB greater than the pass loss, as in [17]. An adaptive
demodulator based on machine learning for optical beams
transferring OAM over free-space turbulence channels was
presented, and the value of the CNN demodulator error rate
(DER) was 0.86% in the case of 1000 m for an 8-OAM system
in the presence of strong turbulence, as shown in [18]. In [19],
by combining five bidirectional recurrent neural networks
(B-RNNs) into one model, the multiple time interval feature-
learning network (MTIFLN) becomes strongly able to extract
the long-term traffic characteristics at different time intervals. In
addition, the MTIFLN stacked architecture helps to diminish
prediction errors by a resampling mechanism.

3. PROPOSED COMMUNICATION SYSTEM

Figure 1 demonstrates the implementation of the coded OAM-
SK-FSO system with chaotic interleavering and adaptive
CNN-based demodulation and decoding. The transmitter
sequence is ordered as follows. First, input data are translated
into bit streams and coded via Turbo or LDPC code. Then,
the encoded data are interleaved using a chaotic interleaver.
Subsequently, an enhanced mapping scheme is applied on the
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Fig. 1. 16-ary OAM coded FSO communication system based on
chaotic interleaving.

interleaved coded data through the use of a spatial light modu-
lator (SLM) to yield super-imposed OAM states. Through
the mapping process, each quadruple bit is transformed into
one of 16 states that are obtained from the superposition of
four OAM basic states due to OAM beams’ orthogonality.
Those orthogonal beams conveying the raw binary interleaved
coded data are passed through the AT channel to the receiver.
At the receiver, the corrupted images shown in Fig. 1 are passed
through the charge coupled device’s (CCD) image sensor. After
that, the received data are passed directly to the CNN, which
can be used as a switch with two options: a demodulator or a
classifier to identify OAM states. The conjugate mode sorting
technique is used to determine the OAM mode of a detected
beam. The demapping scheme is implemented by multiplying
the transmitted coded data with the conjugates of the original
beams. Finally, we apply the chaotic deinterleaver, and then
perform decoding via LDPC or Turbo decoding to recover the
original data.

The OAM-SK image recognition (IR) capability is restricted
by the response times of the SLM and the CCD sensor. Due to
the low scanning speed and the low frame rate of CCD-based
cameras, long data acquisition times affect the performance.
Despite these deficiencies, SLM and CCD cameras achieve
better performance in many applications of IR-based OAM sys-
tems. They are used in OAM holography to achieve ultra-high
capacity and high security [20]. CCD cameras have been used
in stable OAM mode fiber laser systems with a polarization-
maintaining fiber (PMF) structure to createan OAM mode fiber
laser that is resistant to environmental disturbances without any
polarization controller [21].

CCD cameras have been used in OAM propagation with
cylindrical vector beams in an annular core photonic crystal
fiber (AC-PCEF). This system has many potential applications in
SDM, optical sensing, and trapping [22]. These cameras have
also been implemented in OAM-SK underwater wireless optical
communication (UWOC) systems in oceanic turbulence chan-
nels [17]. In low-frequency heterodyne interferometry, CCD
cameras are used to measure the wave front distortion of optical

beams induced by AT [23].

A. OAM Transmission through AT Channel

One of the common formulas of electromagnetic beams, which
transfers OAM modulation, is known as the LG beam. The
Gaussian beam expression is used to represent the LG beam.
The expression for the LG beam that conveys OAM is given
by [5,17]
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where D is a normalization constant, 7 is the radial distance
from z, L is the topological charge and the number of twists
in the helix wavefront, p is the radial index, (7, 8, 2) are the
cylindrical coordinates, £, =2 /A is the wave number, A is
the optical wavelength, and / PlL l'is the generalized Laguerre
polynomial. The beam radius of the fundamental Gaussian
beam at distance z is given by

w(2) = wo, 1+ (i> . P

ZR
The Rayleigh range zp is given by
sz(na)(z))/A, (3)

where wy is the beam waist at z=0. From the previous equa-
tions, we can get an approximation for the beam radius by
putting wy as a constant and setting A = 1550 nm. The term zg
will be constant, and the beam radius satisfies the relation

w(2) xv1+ 2% (4)

Depending on radial indices p and the orthogonality prop-
erty of LG beams, we can use Eq. (1) to get the 16-ary OAM
states using different values of L, and then adopt these states to
map the coded binary sequence to these states. After mapping,
we transmit the data through weak, moderate, and strong AT
channels with different propagation distances. The equation
that controls the transmitted data through the turbulence
channel is [24]

2T
T@T(B)

where ¥ (h) refers to the probability density function (pdf) of
AT b, « represents the effective number of large-scale eddies of
the scattering process, and B represents the effective number of
small-scale eddies of the scattering process. The values of o and
B are calculated with the help of the following equations:

a+p
2

v (h) x h T 5 Ky g (2 oz,B/J), (5)

o = [exp(0.4902/(1 + 1.11p2°Y7/6) —1] ",

p=[esp(05102/(1+ 0695 ) 1] (@)

7 11
where p2 =1.23¢2kS 1,5 is the variance of the irradiance
fluctuations, 7 is the normalized received irradiance, K, (-)
is the modified Bessel function of the second kind of order 7,
I'(-) represents the Gamma function, ¢2 is the AT strength,
and /, is the propagation distance. Due to the existence of
the modified Bessel function in Eq. (5), a significant math-
ematical complexity in dealing directly with the ¥ (/) of the
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channel exists. Consequently, we use the Meijer G-function to
express the modified Bessel function and turbulence channel as

follows [24]:
_ l 2,0 a—p p—o
Kop (V 0‘:3/7) = 2G0,2 (ph |55, 55 ).

(@p)
D=1 "
V= e

(7)

After traveling through the turbulence channel, the distorted
data arrive at the receiver. At the receiver, the detection is per-
formed by multiplying the received data with the conjugates
of the originally used OAM states. The result of this product is
estimated according to one of the two following decisions.

1. If the real and the imaginary parts equal zero, then the
present mode number is 16.

2. If only the imaginary part equals zero, then it is the correct
state, and the mode number is detected successfully.

We demap all received data to different OAM states, and then
decode the data to get the original bit sequence:

(GLGU ) (7, 0, 2), X Gl (7, 0, 2)4)
:/ GLGUp.p) (7 0, 2),, X GfG(/M))(r, 0, z),rdrdé

2
— f |GLG(/m,p)| rd}’de; for m Zk, (8)
0; for k= 16.

Using the conjugate light field detection method, the estima-
tion of the value of / is performed based on the orthogonality
property of OAM states. Assuming that the transmitted LG
beam is Grg(,.) (7, 0, 2)m, we can compute the prod-
uct between the selected LG beam and each of the modes
GfG(lk.[?) (r, 0, 2), where m and /£ characterize the mth and £th
beams, respectively:

GDetection(”a 97 Z)m = GLG(lm,p) (77 0’ z)me‘G(l/eaP) (7', 97 Z)/e‘

©)

At the receiver, the arriving photonic beam is developed by
the product of the vortex field with all the available OAM beams,
and the resultis given in the following equation:

GDetection (7, 0, Z)m

= GLG(. p) (7, 0, 2),, Z Glaupn (s 0,2 (10)
[

The total error rate is evaluated by multiplying the calculated
error rate of the proposed model with the error rate of the turbu-
lence channel. Then, the error rate value is calculated by taking
the average value as follows:

PG (aph | S, 52 ).
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Figure 2 reveals this principle through computing the orthog-
onality between OAM beams with different values of / by taking
the inner product of the two equivalent optical fields [5,17].

B. Coding with LDPC and Turbo Codes

Coding is one of the essential techniques that make near-
capacity operation conceivable. By encoding and decoding of
data, error detection and correction can be realized. The LDPC
and Turbo codes are common types of near-capacity codes
that allow the noise threshold to be very close to the theoretical
Shannon limit for a symmetric memoryless channel. Turbo
codes are error-correcting codes that are used to enhance the
reliability of communication. They achieve an impressive effi-
ciency by encoding and decoding algorithms with relatively
low complexity. Turbo coding is adopted to reduce continuous
errors in the transmission process for more effective retrieval
of information. The configuration of the encoder depends on
parallel concatenation of two convolutional coders separated
by an interleaver, while the decoding process is performed
according to an iterative procedure to decode the received data
from the channel. LDPC codes are structured by exploiting a
generator matrix H with slight non-zero elements [25]. In the
case of binary codes, H has a large number of zeros and few ones.
To be consistent with the Gallager demarcation, the following
conditions must be satisfied.

1. In each row and column, the matrix H has R and V ones,
respectively.

2. To avoid the cycles in each dual rows (or columns), the
occurrence of ones should not be more than one location.

3. The R and V should be as small as possible compared to
the codeword length L, and the LDPC code is defined as
Crppc(L, V, R).

For a control matrix with 7 columns and 7 — % rows, the fol-
lowing condition must be satisfied:

Vxm=Rx (m—Fk), (12)
and the code rate (CR) is given by

v
=1-—. 1
CR z (13)
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Fig.3. Tanner graph ofan LDPC code.

The Tanner graph shown in Fig. 3 is a bipartite graph reveal-
ing the relationship between two nodes, namely, variable bit
nodes V that signify the launched symbols, and the parity nodes
C thatrepresent the emanating symbols.

For every bit node, a code symbol exists, and for every par-
ity node, a parity equation exists. A straight line is connected
between the bit node and the parity node only if that bit is
involved in the parity equation. Some parity node equations are
given by

CG=N+WVn+Va+V+Vet+Vi+ Vs+ Wy,
Co=WV,+V3+ Vo+ Vig+ V11, (14)

where V represents the launched nodes, and C represents the
emanating nodes. The LDPC decoding may be “soft decision”
or “hard decision” decoding, and it is used to reconstruct the
primary message in the absence of cycles in the bipartite graph.
If q is an obtained vector, the resultant equation is S = q x H”.

C. Chaotic Interleaver

To protect the transmission of data over turbulence channels,
the necessity for error correcting codes exists to correct the errors
due to AT. Due to the burst nature of communication channels,
interleaving is utilized to reorganize the transmitted coded data
and let errors propagate over various codewords. Initially, the
block interleaver was the simplest and most popular one. Due
to its deficiency in dealing with two-dimensional (2D) error
bursts, a progressive interleaver was used. With this interleaver,
the bits are arranged in a 2D format and after that, the ran-
domization is performed with a chaotic Baker map. The spatial
dimensions of chaotic maps could vary from one-dimensional
to higher dimensions. With one-dimensional maps, the ran-
domization operation is performed on a single axis, while with
higher-dimension ones, this unique axis is not sufficient. The
chaotic interleaver is an effectual tool to randomize the items
in a rectangular matrix and yield a permuted version of the data
with less correlation between items. It has a simple scrambling
algorithm with small delay. Due to these benefits, it adds a high
degree of encryption to the coded transmitted data and achieves
better BER performance [26]. The chaotic permutation is
accomplished as indicated in [27].

Let D, .4, signify the discretized chaotic Baker map, and
the vector (a1, ..., a,) represent the secret key (SEj,). The
secret key is selected such that each integer 7, divides M and
a1+ ...+a, =M. The data item at the indices (%, v) after
interleaving is moved to the indices given by the following
equation:
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where M, <u<M;+m;, 0<v<M, M =0, and
mod(x, y) represents the remainder of x/y. Here, M is the
number of elements in a single row.

D. Enhanced Mapping Scheme for OAM

Due to the miscellaneous impacts of the free-space channel on
the different OAM states, the choice of the OAM fundamen-
tal states has an excessive influence on the performance of the
OAM-SK-FSO system. Because the CNN can be used asa good
classifier for the characteristic features of OAM beams, we use
quaternary states to form 16-ary OAM. Figure 4 indicates the
16-ary format tensors that characterize the code alphabet in
the form of {(0,0,0,0), (0,0,1,0), (0,0,0,1), (0,0,1,1), (0,1,0,1),
(0,1,0,0), (0,1,1,0), (1,0,0,0), (0,1,1,1), (1,0,0,1), (1,0,1,1),
(1,0,1,0), (1,1,0,0), (1,1,0,1), (1,1,1,1), (1,1,1,0)}.

4. IMAGE BROADCASTING WITH THE
PROPOSED SYSTEM

In this section, we investigate digital image transmission with
the proposed system with and without chaotic interleaving
in different scenarios. We study the BER performance of the
proposed system for different SNR values, AT strengths, and
propagation ranges. We also investigate the designed CNN
architecture that yields the highest recognition rate of OAM
symbols and the highest MAP for ADAM, RMSProp, and
SGDM with different parameters.

Figure 5 shows the image transmission process through the
coded OAM-SK-FSO system with chaotic interleaving. First,
the digital image is encoded using Turbo or LDPC code. After
that, the encoded image is mapped using OAM modulation,
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Complete image transmission process with the proposed

and this is done by mapping each set of four bits into a single
state of the 16-ary OAM states. After that, we apply chaotic
interleaving on the modulated data. Then, the modulated
data are transmitted over the AT channel to the receiver. At the
receiver, the demodulation is performed after applying chaotic
deinterleaving to demap each OAM state to four bits in order to
get the original coded data. Finally, we apply Turbo or LDPC
decoding to get the original image. The PSNR value of the
received image is used as a quality metric.

5. SIMULATION RESULTS
A. Design Methodology of the CNN Model

The use of high-cost optical devices can be diminished with the
assistance of an adaptive demodulator based on a CNN, and this
proficiently enhances the recognition rate of OAM states in a
turbulent atmosphere. Figure 6 demonstrates the construction
of the proposed CNN model. This model is designed using trial
and error, and it depends on numerous considerations to obtain
the optimal parameters and hyperparameters to yield the highest
accuracy and the maximum MAP. This is achieved by:

1. changing the number of layers (convolution and pooling)
and/or the number of neurons per layer;

2. modifying the CNN parameters such as filter size, pooling
size, stride, and number of kernels;

3. changing the hyperparameters of the network such as opti-
mization algorithm, batch size, learning rate, and number

of epochs.

Now, we can construct the proposed CNN model using
Egs. (16) and (17), and it contains a single input layer, four
convolution layers, one pooling layer, three dropout layers, three
batch normalization layers, one additional layer, a single fully
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Fig.6. Structure of the proposed CNN demodulator.

connected layer, and one output layer. In each convolution layer,
filters are convolved with the input image to get a number of
convolution outputs or activations, based on the sizes of the ker-
nels, the distance between accessible fields (stride), and padding,.
Initially, resizing of the input images to 128 x 128 is performed
before the input layer. Then, convolution is applied on the input
image in the first convolution layer using 32 kernels each of size
5 X 5 to acquire the feature maps of the image. In the second
and third convolution layers, the same stages are performed
but with a filter of size 3 x 3. After that, in the average pooling
layer, we perform pooling with a size of 2 x 2, and stride of 2
to get feature maps of 128 x 6 x 6 elements with the average
pooling algorithm that diminishes the computational cost.
Subsequently, 16 nodes in the fully connected layer are corre-
lated with the nodes in the first average pooling layer. Finally,
the detection of the OAM states is performed with 16 nodes
through the SoftMax classifier. After that, we add a convolution
layer to the used layers to modify the network performance with
afiltersizeof 1 x 1 to get feature mapsof 128 x 4 X 4 elements,
asindicated in Table 1.

The size of the convolution layer output image is given
by [28]

I+2p—Fk
) i +
Sd

O, 1, (16)

where O, is the size of output image, / is the size of input image,
k is the size of kernels in the convolution layer, s is the stride of

the convolution operation, and p is the padding size The size of
the output image of the pooling layer is given by

]_
Op=—"2 41, (17)
Sd

Table 1. Different Parameters of Each Layer in the
Proposed CNN

Layer Name No. ofFilters Filter Size Stride Pad Size
Convl 32 5x%x5 2 2
Dropout 0.5 dropout

Conv2 16 3x3 2 1
Conv3 128 3x3 3 1
Average 128 2 — 2
pooling

Fully 16 fully connected layers
connected

Conv4 128 1x1 3 2
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Table 2. Platform Specifications

System Specifications

Type 64 bit Windows 10

Processor Intel Core i7-6700 CPU at 2.6 Ghz

Graphics card NVIDIA Geforce GTX 1070
compatible

Installed memory (RAM) 16 GB memory

where Op is the size of the output pooling image, and p; is the
poolingsize.

In the proposed model, the nonlinear rectified linear unit
(ReLU) activation function is utilized with the convolution
layers to allow the other layers to contribute to the learning task,
and the dropout layer is used to reduce the probability of overfit-
ting of the network. Finally, a mini-batch value is used with the
batch normalization layer to normalize each input channel. The
usage of this layer accelerates the CNN training and makes it less
sensitive to network initialization. Then, the SoftMax layer is
utilized to discriminate between the OAM mode patterns. In the
training steps of the proposed network, the SGDM, RMSProp,
and ADAM optimizers are tested to update the overall weights
during 100 epochs, and the loss cross-entropy is used to com-
pute the loss of the network. Also, we use different values of
both parameters and hyperparameters of the network to get the
optimal conditions that give the highest accuracy and the lowest
cost. We have 16,000 images for the 16-ary OAM states in the
training process. The input images are reshaped from the size
of 875 X 656 to 128 x 128 to diminish the whole system cost.
All results have been obtained using the platform specifications
displayed in Table 2.

In Table 3, we present a comparison between the accuracy of
the model of [10] and the proposed model through the use of
different hyperparameters such as batch size, learning rate, num-
ber of epochs, and regularization parameter to select the optimal
values for the three used optimizers. The letters S, R, and A refer
to SGDM, RMSProp, and ADAM optimizers, respectively. By
making a trade-off between the accuracy and training time for
obtaining the optimum hyperparameter values, it is realized
that these values are: 128, 0.001, 2150, and 0.0001 for batch
size, learning rate, number of iterations, and regularization
parameter, respectively.

The comparison between different machine learning algo-
rithms such as deep neural network (DNN) and distributed
random forest (DRF) is performed by measuring the area under
curve (AUC) using the ADAM optimizer, and it reveals the

following conclusions.

1. From [29], it is clear that the classification accuracy for
forest DNN (FDNN) is from 77% to 98% according to the
selected hyperparameters, and it is superior to those of the
DNN and RFs.

2. For the proposed model, it is found that the classification
accuracy for the CNN ranges from 96% to 99% according
to the hyper parameters values.

Based on the obtained optimal values, we measure the per-
formance of the proposed deep CNN model as shown in Table 4
by calculating the precision, recall, specificity, Fycore, AUC, and
negative predictive value (NPV) using Eqs. (18)—(25).
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Table 3. Effect of Different Parameters on the
Accuracy of the System with Different Optimizers (%)

Proposed Model Previous Model
Parameter Values S R A S R A

Batch size 32 979 94 97.8 955 929 945
64 97.8 972 978 959 972 96.7

128 979 977 978 959 959 952

256 979 979 979 96.7 97 94.3

Learning 0.1 6.3 31.3  69.7 94.8 92 78.9
rate 0.01 979 442 89.2 96.8 88.9 97.1
0.001 97.8 97 979 959 972 96.7

0.0001 979 933 979 97 96.5 94.1

Numberof 215 979 943 979 938 978 96.3
iterations 430 979 968 979 938 979 975
860 979 963 97.8 949 97.8 975

2150 97.8 97 97.9 959  96. 96.66

Table 4. Effect of Different Parameters on the
Performance of the System with Different
Optimizers (%)

Iterations Batch Size

2150 64 128

Learning Rate
0.001 0.0001

Hyperparameters 430

Precision S 97.9 97.8 97.8 97.9 97.8 97.9
R 963 968 968 978 96.8 9538
A 979 979 979 979 979 9738
Recall S 98.1 98.1 98.1 98.1 98.1 98.1
R 96.8 97 97 98 97 98.1
A 98.1 98.1 98.1 98.1 98.1 98.2
Sp S 999 999 999 999 999 999
(TNR) R 99.8  99.8 99.8 999 99.8 999
A 999 99.8 998 999 99.8 999
Foore S 97.8 978 978 978 979 979
R 959 96.6 966 978 96.6 97.8
A 97.8 978 978 978 97.8 979
NPV S 99.9 999 999 999 999 100
R 99.8  99.8 99.8 999 99.8 999
A 99.8 99.8 99.8 998 99.8 999
AUC S 99.7 99 99 99 99 96.2
R 983 983 983 989 983 95.1
A 98.7 99 99 99 99 96.2

These metrics are computed from the confusion matrix in dif-
ferent cases with the help of the following parameters.

1. True positive (TP), defined as the number of accurately cat-
egorized cases that belong to the class.

2. True negative (TN), defined as the number of accurately
categorized cases that do not belong to the class.

3. False positive (FP), defined as the cases that are erroneously
categorized as belonging to the class.

4. False negative (FN), defined as the cases that are not catego-
rized as class cases.

The equations used to measure the above-mentioned metrics
are [30] as follows.

Recall or TP rate (TPR):

TP

TPR= —.
TP+ FN

(18)
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To achieve a balance between precision and recall, we measure
the value of F,e according to the following equation:

2x TP
Fscore = x . (23)
(2 x TP) + FP + FN
The AUC is given by
TP TN
AUC=0. . 24
5X(TP+FN+TN+FP> (24)

The MAP, defined as the average value of PPV that are calcu-
lated for all classes, is used to assess the model:

N
1
MAP = — 3PPV, 25
~ ; (25)

where Vis the number of classes.

Figure 7 demonstrates a comparison between the proposed
model and the model in [10] using different optimizers. In this
figure, we present the MAP values for the two models to be com-
pared and notice that the proposed model has the best detection
performance compared to the previous model. The ADAM
optimizer has the ability to detect the classes of the model better
than the other optimizers, which agrees with the state of the art.

TNR= — . (19) ] . .
TN + FP Figure 8 shows the plots of the receiver operating charac-
Accuracy: teristic (ROC) curves for different optimizers using different
' hyperparameters for the two models. The ROC curve is used
A TP + TN 00 to check the quality of the classifier depending on the values of
ccuracy = . . ..
Y= TP f TN+ FP + FN (20) the TPR and the FP ratio (FPR). We notice in the figure that the
proposed model is superior to the previous model in all cases.
Precision or positive predictive value (PPV): The utilization of 10 epochs and different learning rates makes
TP the SGDM optimizer better than the other two optimizers,
PPV = ——. (21) while 50 epochs make the ADAM optimizer better. Changin
TP + FP
the learning rate and batch size makes the proposed model better
NPV: than the previous models. The ADAM optimizer has the best
TN performance compared to the other optimizers with different
NP V= —— . (22) batch sizes
FN+ TN ’
e = . 1 o 1 --- o - o ! o 1
© S s | [ [ © [
-‘go.s 1 go.s -50.5 g . -go.s -go.s
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Fig.8. ROC curves for different models using different optimizers for different hyper-parameters: (a) SGDM with 430 iterations, (b) RMSProp
with 430 iterations, (c) ADAM with 430 iterations, (d) SGDM with 2150 iterations, (¢) RMSProp with 2150 iterations, (f) ADAM with 2150 itera-
tions, (g) SGDM with 0.0001 LR, (h) RMSProp with 0.0001 LR, (i) ADAM with 0.0001 LR, (j) SGDM with 256 batch size, (k) RMSProp with 256

batch size, and (1) ADAM with 256 batch size.
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B. Performance of the Proposed System in Different
Scenarios

Figure 9 demonstrates the effect of using different codes on the
quality of the system with and without chaotic interleaving.
In the figure, we notice that the value of PSNR decreases with
an increase in turbulence strength. For weak, moderate, and
strong turbulence strengths, the LDPC code gives better results
than those of the Turbo code with and without interleavering.
At 1074, the chaotic interleaver improves the performance
by about 2 dB and 4 dB for Turbo and LDPC codes, respec-
tively. Figure 10 shows a comparison between the Turbo and
LDPC codes with chaotic interleaving. The figure indicates
that increasing the propagation distance or turbulence strength
makes the LDPC code have a better BER performavce than that
of the Turbo code in cases of interleaving and no interleaving.

In Fig. 11, we plot the measured values of PSNR for diverse
propagation distances to evaluate the performance of the sys-
tem. As long as the value of PSNR is high, the quality of the
reconstructed image will be high. In this figure, we find that the
PSNR value decreases with the increase in propagation distance
with and without chaotic interleaving. For small propagation
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Fig.9. PSNR versus turbulence strength with and without chaotic

interleaving using different codes.
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Fig.11. PSNR versus propagation ranges with and without chaotic
interleaving using different codes.
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distances, we find that the Turbo code is better than the LDPC
code. However, increasing the value of the propagation distance
makes the LDPC code better than the Turbo code with and
without a chaotic interleaver. Figure 12 demonstrates a PSNR
comparison between the utilization of Turbo and LDPC codes
with chaotic interleavering. The figure indicates that increasing
the values of the propagation distances and turbulence strength
makes the LDPC code have a greater value of PSNR than the
Turbo code in the two cases by about 7 dB. In Fig. 13, we intro-
duce a comparison between the original and reconstructed
images with chaotic interleaving and differnt codes for different
turbulence strengths and propagation distances.
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Fig.12. PSNR comparison between Turbo and LDPC codes.
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Fig. 13.  Original image, and recovered images with chaotic
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The different propagation distances are 400 m at PSNR
value of 29.09 dB for the Turbo code and 31.34 dB for the
LDPC code, 1000 m, 1 x 10~ at PSNR value of 26.87 dB
for the Turbo code and 30.15 dB for the LDPC code, and
1000 m, 1 x 10713 at PSNR value of 24.16 dB for the Turbo
code and 27.36 dB for the LDPC code. In Fig. 13, we find
that the LDPC code with a moderate turbulence strength and
400 m propagation distance reduces the BER between the
original and received images to approximately zero. In this
case, the CNN network achieves a recognition accuracy of
about 100%.

In Fig. 14, we notice that the BER increases with an increase
in propagation distance for the two codes. We note also that
with the interleaver, the LDPC code is better for all values of
propagation distance. Without interleavering, the Turbo code is
preferred for small propagation distances, and the LDPC code is
preferred for large propagation distances.

In Fig. 15, we present a comparison between the model in
[12] and the proposed model using two OAM demodulation
techniques: CNN and conjugate light field. It is clear in the
figure that both techniques have nearly the same performance
for different cases. With the chaotic interleaver, the performance
of the proposed model is better than that of the previous model
for large values of propagation distance. At a distance of 1000 m,
the value of the BER decreases from 172 to nearly 17>, while at
a distance of 600 m, the value of the BER reduces from 1le ™2 to
approximately le .

Figure 16 demonstrates the BERs for different values of SNR.
We find that the value of BER decreases with the increase in
SNR for both codes. The figure shows that the LDPC code
always gives lower BERs than those of the Turbo code with
and without chaotic interleavering. In Fig. 17, we find that
increasing the turbulence strength increases the BER for small
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turbulence strengths, while for strong strengths, the value of
BER is nearly constant. With and without a chaotic interleaver,
the LDPC code achieves lower BER values than those of the
Turbo code for all turbulence strengths: weak, moderate, and
strong.

6. CONCLUSION
In this paper, we have proposed a novel 16-ary OAM-SK-FSO

communication system based on coding, chaotic interleaving,
and CNN-based adaptive demodulation to accommodate for
strong turbulence strengths. At the transmitter, we first adoptan
encoder structure, and a progressive mapping scheme to dimin-
ish the BER for different parameters and hyperparameters of the
CNN demodulator. At the receiving side, OAM demodulation
is performed with conjugate or CNN detection methods. The
LDPC coding is recommended more than Turbo coding in the
proposed system. It is superior by about 3 dB without inter-
leaving and by 6 dB with interleaving. Training of the CNN has
been performed with different classifiers to yield the optimum
values that achieve the highest detection accuracy through a
diversity of parameters and hyperparameters. The SGDM and
ADAM optimizers have nearly the same accuracy, which is
greater than that of the RMSProp optimizer by about 3.8%.
Variation of the batch size and learning rate allows the ADAM
and SGDM optimizers to have high accuracy. By averaging the
precision value through all classes, we find that the ADAM opti-
mizer has the best MAP value compared to the RMSProp and
SGDM optimizers by about 1% and 4%, respectively. To meas-
ure the model performance, we have estimated the ROC curves,
which revealed that the SGDM and ADAM optimizers have the
best performance. The AUC is a measure of the degree of sepa-
rability, and it reveals the ability of the model to discriminate
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between classes. From this study, we find that the ADAM and
SGDM optimizers have almost the same performance, and the
selection between them will be consistent with the application of
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