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ABSTRACT Orbital angular momentum-shift keying (OAM-SK), which is the rapid switching of OAM
modes, is vital but seriously impeded by the deficiency of OAM demodulation techniques, particularly
when videos are transmitted over the system. Thus, in this paper, 3D chaotic interleaved multi-coded video
frames (VFs) are conveyed via an N-OAM-SK free-space optical (FSO) communication system to enhance
the reliability and efficiency of video communication. To tackle the defects of theOAM-SK-FSOmechanism,
two efficient deep learning (DL) techniques, namely convolution recurrent neural network (CRNN) and 3D
convolution neural network (3DCNN) are used to decode OAM modes with a low bit error rate (BER).
Moreover, a graphics processing unit (GPU) is used to accelerate the training process with slight power
consumption. The utilized datasets for OAM states are generated by applying different scenarios using a
trial-and-error method. The simulation results imply that LDPC-coded VFs achieve the largest peak signal-
to-noise ratios (PSNRs) and the lowest BERs using the 16-OAM-SK model. Both 3DCNN and CRNN
techniques have nearly the same performance, but this performance deteriorates in the case of larger dataset
classes. Moreover, the GPU accelerates the performance by almost 67.6% and 36.9% for the CRNN and
3DCNN techniques, respectively. These twoDL techniques are more effective in evaluating the classification
accuracy than the other traditional techniques by almost 10− 20%.

INDEX TERMS 3DCNN, chaotic interleaver, OAM-SK, CRNN, turbulence channel.

I. INTRODUCTION
In recent years, free space optic (FSO) communication, which
offers a straightforward tool to transfer excessive bit rates,
has gained more and more interest as a complement or
an alternative to the line-of-sight (LoS) radio relay link-
age communication [1]. Recently, FSO using orbital angular
momentum (OAM) has attracted a considerable attention
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as an emerging candidate for technology beyond the 5th
generation, due to its potential as a means of permitting
high-speed wireless transmission [2]. Since OAM can be
used to establish multiple independent channels, wireless
OAM multiplexing can effectively increase the transmis-
sion rate in a point-to-point link, such as wireless back-
haul and/or fronthaul [3]. In [4], Kai et al. suggested an
FSO communication scheme that uses OAM-shift keying
(OAM-SK) as a modulation technique, where an encoded
image is transmitted by a series of OAM states. The recov-
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ered image displays high fidelity compared to the original
image with a novel phase hologram after free-space transmis-
sion. In [5], the M -ary OAM-SK modulation efficiency was
investigated with a Laguerre-Gauss (LG) beam considered
over ocean turbulence. The results show that the optimum
transmitted OAM mode set is mainly limited by the inter-
fering energy and the decaying productive energy. In [6],
it was demonstrated that the direct demodulation approach
provides a feasible way to demodulate OAM-SK signals
and can demonstrate potential in complex OAM modulation
communication.

The three complete families of exact and orthogonal solu-
tions for the paraxial wave equation are Hermite-Gaussian
modes (HGMs), Laguerre-Gaussian modes (LGMs), and
Ince-Gaussian modes (IGMs) [7]. Thirugnanasambandam
et al. discovered a way to generate very-high order LGMs in
end-pumped Yb: YAG ceramic lasers. Chen et al. proposed
an approach to generate LGMs in end-pumped solid-state
lasers (SSLs). Researchers recently invented a method for
selectively producing a variety of higher-order LGMs from
end-pumped SSLs by moving the pump to one of the bright-
est spots (target spot) from which the stimulated emission
is generated. In the literature, a crosshair with a laterally
uniform gain distribution is often introduced into the laser
cavity in experiments involving higher-order HGMs in gas
lasers. The LGM approaches HGMs as the ellipticity of the
LGM approaches infinity [7].

The LG laser mode is the most common type of a helically-
phased beam. A mode function is a mathematical expression
that describes the magnitude and phase of the electric field
at various points in the cross section. This function is the
product of a Hermite polynomial and a Gaussian function
for most laser beams without helical phasing. The HGMs
have several intensity maxima arrayed in a rectilinear pattern
and separated by intensity zeros, depending on the order of
the polynomials. Due to the existence of an explicit phase
factor in cylindrical LGMs [8], they are the natural choice
for representing OAM rays. Although LGMs are produced
directly in laser systems, they are more easily produced by the
conversion of HG beams using cylindrical lenses. An anal-
ogous trick was introduced by the Leiden group employing
cylindrical lenses to transform an HG beam without angu-
lar momentum into an LG beam with OAM. Although the
conversion process is very successful, each LGM requires
a specific HGM to begin with. This restriction limits the
number of LGMs that can be generated. As a result, numer-
ically computed holograms have become the most popular
tool for generating helical beams. From the same initial
beam, such holograms produce beams with any desired OAM
mode [8].

Due to themerits of the 3Dmultiview video coding (MVV)
applications in future multimedia communication, it will be
recommended for wireless communication networks [9]. For
active transmission of 3D MVV, the improvement of encod-
ing performance is achieved by taking into consideration the
sequential and longitudinal correlations amongst frames in

the same video and themerit of the inter-viewmatching inside
different streams [10].

Recently, the absenteeism of twirls in convolution neu-
ral networks (CNNs), and feed-forward neural networks
(FFNNs), has made them insufficient techniques for use in
sequence labeling [11]. Recurrent neural networks (RNNs)
have been used for superior exploration of the temporal
information of sequential data. Unlike FFNNs, RNNs per-
mit recurrent connections to create loops, thus allowing a
‘‘memory’’ of previous inputs to remain in the interior state
of the network. However, in the training process of the RNN,
two major problems exist, namely vanishing and explod-
ing gradients. To tackle these issues, long short-term mem-
ory (LSTM) models have been utilized [12]. The LSTM
is a modified RNN that was designed to store and access
information in a sequence of long periods. The feature maps
in the convolution layer are connected to multiple contiguous
frames in the preceding layer by this construction, which
allows capturing motion information [13].

The OAM mode recognition is an essential and very
important task in OAM-based communication systems [14],
[15]. The recognition technique must have the ability to
mitigate the effect of turbulence on OAM modes. A high-
quality recognition process requires a large training set and a
more complex network structure in the classification model.
The efficient OAM mode recognition improves the OAM-
SK demodulation. With successful OAM mode recognition
and demodulation, the capacity of the photonic system is
enhance.

Due to the orthogonality between different OAM modes,
the vortex beam carrying OAM modes has attracted a great
attention in the optical communication field. To recognize
OAM modes, several popular methods were used to demod-
ulate incident LG beams into Gaussian-like beams, including
grating, spiral phase plates (SPPs), and computer-generated
holograms (CGHs) equipped with spatial light modulators
(SLMs). Incident beams bearing a variety of OAM states
can be demodulated into Gaussian-like beams, and the initial
information can be retrieved by looking for a bright spot on
the camera screen [14], [15]. In addition, a method based on
coordinate transformation was also proposed for separating
and recognizing OAMmodes [15]. However, an OAM-based
FSO communication system is subject to atmospheric turbu-
lence (AT) effect, which may unexpectedly distort the phase
front of a light beam, cause channel crosstalk, and deterio-
rate the communication system performance. Several turbu-
lence mitigation techniques, such as multi-input multi-output
(MIMO) equalization, adaptive optics (AOs), and phase
correction algorithms, such as the Gerchberg-Saxton (GS)
algorithm, have been investigated to improve the accuracy
of the transmitted beams and reduce the turbulence-induced
distortion [14], [15]. To further improve the performance of
OAM modulation detection, efficient artificial neural net-
work (ANN), CNN, RNN, and K-nearest neighbor (KNN)
based recognition methods have been proposed. With these
methods, intensity images of received beams are directly
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recognized and the corresponding OAM mode information
is successfully obtained [15]–[18].

To the best of our knowledge, it is the first time in this paper
to use coding with convolution codes, Reed Solomon (RS)
codes, Turbo codes, Bose-Chaudhuri-Hocquenghem (BCH)
codes, or Low-Density Parity Check (LDPC) codes on 3D
chaotic interleaved VFs over an N -OAM-SK-FSO system,
where N refers to the number of employed OAM states. In
addition, we deduce the optimum operating parameters in
terms of coding type, N -OAM states and VFs. The 3D-CNN
and the convolution recurrent neural network (CRNN) tech-
niques with and without GPU are utilized to further enhance
and accelerate the detection process and to study the classifi-
cation and prediction performance under different conditions.

The major motivation of this work is studying the impact
of 2D and 3D chaotic interleaving (CI) of coded VFs on the
performance of the N -OAM-SK-FSO system. The perfor-
mance of both deep learning (DL) techniques, namely 3D-
CNN and CRNN is assessed by computing the mini-batch
and validation accuracy, the training and validation loss, and
the processing time with and without GPU. We adopt a trial-
and-error method in both DL techniques, and the employed
datasets are obtained by applying different scenarios, such as
changing code types, using differentN -OAM states, applying
multiple classes, and employing various VFs. The perfor-
mance metrics are estimated on these different datasets until
reaching the optimum ones for all scenarios. Finally, a com-
parison is presented between the two proposed DL techniques
and the other traditional techniques.

The main contributions of this work are as follows:
• Offering a 3D chaotic interleaving technique for enhanc-
ing the performance of coded VF transmission through
N -OAM-SK-FSO model.

• Introducing two alternative effectual DL techniques,
namely 3D-CNN and CRNN, for enriching the
OAM-SK detection efficiency and enhancing the clas-
sification performance of the model for different coded
and encrypted VFs.

• Studying the different metrics of deep neural networks
with different datasets untill getting the optimal dataset
and the best coded encrypted VFs.

• Monitoring of the bias values by comparing validation
and training losses for various dataset cases to get the
best ones without overfitting or underfitting.

• Implementation of parallel processing with GPU to
accelerate the interleaving process and determine the
optimum DL technique and parameters.

The structure of this paper is as follows. In Section II,
we present the related work about OAM-SK transmission
through the AT channel. In Section III, we describe, in detail,
the propagation of the different 3D chaotic interleaved VFs
through N -OAM-SK-FSO system. In Section V, we explain
two adaptive demodulation mechanisms for OAM-SK using
two DL techniques, namely CRNN and 3DCNN, and then
we use them for OAM mode detection. Finally, Section VI is
devoted to the conclusion.

II. RELATED WORK
In [19], a progressive Turbo encoder/decoder construction
and an OAM mapping scheme have been implemented to
reduce the CNN misclassification and to efficiently reduce
the bit error rate (BER) under different AT conditions. The
mitigation of AT effects has been studied theoretically using
phase patterns, and the experimental results show that the
inter-channel crosstalk is diminished by up to 21 dB as shown
in [20]. In [21], an AT correction approach based on DL has
been proposed to correct and increase the mode purity of the
distorted vortex beam from 39.52% to 98.34% under strong
AT. It has been shown that OAM-carrying beams produced by
impressing only a helical phase structure on a simple Gaus-
sian beam or truncated plane-wave beam are not optimal for
AT-impaired practical OAM-based FSO communication sys-
tems. In addition, the control of the initial beam-field ampli-
tude is useful for weakening of the OAM mode scrambling
of [22]. In our previous work [23], an alternative effectual
CNN architecture designed on the basis of trial and error till
getting the optimum network parameter and hyperparameter
values was introduced. It yields the highest accuracy and
mean average precision (MAP), and the largest area under the
curve (AUC) value for the different optimizers. The goal is to
get the optimum model using 2D CI with Turbo and LDPC
coded images through a 16 OAM-SK system.

In [24], an OAMmultiplexing method based on the combi-
nation of the Mach-Zehnder interferometer (MZI) implanted
pair of dove prisms (DP) (MZI-DP) and a complex phase
grating (CPG), was used to sort and detect multiple OAM
modes, simultaneously. The OAM modes can be sorted into
odd and even topological charge values, and analysis of
several OAM modes can be performed without overlapping
between adjacent modes. In addition, 50 different OAM
modes can be successfully demultiplexed, while controlling
their propagation paths, demonstrating high recognition rates
and superior efficiency. In [25], a high-density OAM analyzer
made up of two OAM mode converters and a modified MZI
was presented. The MZI is made up of a standardized MZI
and a pair of DPs that effectively avoids the inherent overlap
of two adjacent OAM modes in the OAM mode converter.
As a result, the scheme precisely avoids the overlapping
effect, while also solving the problem of minimal discrimina-
tion resolution, allowing for the study of high-density OAM
modes. A comparison between the efficiency of different
multiplexing methods (coherent superposition or incoherent
superposition) and de-multiplexing methods (2D-Dammnn
fork grating (DFG) or multiplexing phase hologram (MPH))
for vortex beams was presented in [26]. To recover infor-
mation, the detector uses the optical intensity at a specific
location to decide if a data bit is ‘0’ or ‘1’. So, an image can
be delivered and retrieved pixel by pixel with less errors by
this way.

However, in this work, compared to our previous
work [23], multiple error detection and correction codes
with 3D CI technique are used to improve the efficiency
of VF communication via the N -OAM-SK-FSO system.
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Two effective DL techniques, namely CRNN and 3DCNN
are used as adaptive demodulators and a study of the dif-
ferent performance metrics of them is presented on multiple
datasets. The aim is to determine the optimum implemented
code, OAM state, number of classes, and the supreme DL
technique with and without GPU. This is performed to ensure
the highest classification and prediction accuracy with the
least runtime, and the minimum training and validation losses
to mitigate the bias effect, and minimize the BER.

III. MULTIPLE VF TRANSMISSION THROUGH
THE PROPOSED SYSTEM
Figure 1 demonstrates the implementation of the proposed
system for VF communication. In the proposed system, inten-
sity modulation and direct detection (IM/DD) are employed,
where the transmitter modulates the optical power and the
receiver consists of a single photodiode, a clock recovery
module, and a symbol decision unit. At the transmitter,
the encrypted VFs are passed through one of five coding
selections (Turbo, LDPC, RS, Convolution, and BCH). Next,
the modulation process is performed through an N-OAM-SK
mapping scheme according to the value of N as shown
in Fig. 2 thanks to OAMbeam orthogonality. EachOAM state
is represented by a topological charge and a binary value as
shown in Table 1. After propagation through the turbulence
channel, the blurred images are passed through a charge
coupled device (CCD) camera [19]. After that, the received
images are passed through a switch with two options. The
first option is the utilization of one of two DL-based adap-
tive demodulation techniques, namely 3DCNN, and CRNN.
The second option is obtaining the electrical amplitude sig-
nals from the optical brightness of the CCD image sensor.
At every time, only a single beam reaches the receiver, i.e., the
system is single-input single-output (SISO).

The demapping process is performed in consistence with
the conjugate mode sorting technique to clarify the mode
numbering of the detected beam [27]. After demapping,
the decoding process is performed according to the previously

FIGURE 1. Video frame communication through the proposed system.

FIGURE 2. Different states of OAM-SK for N = 64.

selected code. Finally, a 3D chaotic deinterleaver is applied
on the decoded data to decrypt it and restore the original 3D
VF to constitute various videos. Thermal noise is caused by
the load resistor and amplifier noise of the photodetector.
It typically dominates shot noise in mild conditions, where
high-sensitivity receivers are not needed. So, the used link is
thermally limited [28]

The response speed of the SLM and the CCD limits the
OAM-SK image recognition (IR) capability. Long data pro-
cessing times have a significant impact on performance due
to the slow scanning speed and frame rate of CCD-based cam-
eras. Despite these limitations, SLM and CCD cameras out-
perform IR-basedOAM systems in several applications. They
are used to achieve ultra-high capacity and encryption secu-
rity in the OAM holography system [29]. The CCD camera is
integrated into a robust OAMmode fiber laser device with an
all-polarization-maintaining fiber (PMF) structure, resulting
in an OAMmode fiber laser that is resistant to environmental
disruptions and does not require the use of a polarization
controller [30]. In a recently constructed annular core pho-
tonic crystal fiber (AC-PCF), the CCD cameras were used in
stable OAM propagation and cylindrical vector beams. Sev-
eral applications in space-division multiplexing, optical sens-
ing, and tracking are possible with this method [31]. These
cameras were used in OAM-SK underwater wireless opti-
cal communication (UWOC) systems in oceanic turbulence
channels [32]. The wave front distortion of optical beams
induced by atmospheric turbulence is measured using CCD
cameras in low-frequency heterodyne interferometry [33].

A. THE ENCRYPTION PROCESS OF 3D CHAOTIC
INTERLEAVED CODED VFs
To encode the different 3D videos, the 3D multi-view video
coding prediction structure (3D-MVC PS) is employed due
to its efficient coding and decoding performance as shown
in Fig. 3. It incorporates eight separate time pictures in a
group of pictures (GOPs). The horizontal axis represents the
temporal axis, while the vertical axis represents numerous
camera views. For example, depending on the motion com-
pensation prediction (MCP), the S0 view is only coded using
time correlation [34]. The MCP is also used to code the other
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TABLE 1. The representation of the different 64 OAM states.

even views as S2, S4, and S6. The main key frames, on the
other hand, are coded using inter-view prediction (disparity
compensation prediction (DCP)). Both inter-view and tempo-
ral estimations (DCP+MCP) are used simultaneously in the
odd views S1, S3, and S5 to improve the coding efficiency. The
3DV view is studied from the perspective of the 3DV frame
basic locality. As shown in this figure, the odd (S1, S3, and S5)
views are referred to as E views, the even (S2, S4, and S6)
views as O views, and the So view as I view. Based on the
suggested 3D-MVC PS GOPs, the final view could be even
or odd. It is suggested in this paper to be an O view [34], [35].

The CI technique is selected based on the weak correla-
tion between output samples, and the elimination of either
huge memory or wide bandwidth. A major criterion of it is
the interleaver depth that is defined as the minimum sep-
aration between any pair of symbols, whether adjacent or
separated with a certain distance at the output [36]. When
the length of a burst of errors is less than the interleaver
depth, after de-interleaving, the two symbols affected by the
burst cannot be adjacent. So, a simple isolated error correc-
tion code can be used to enhance the performance. In the
presented 3-D CI, the goal is to increase the randomness,
security, depth, and reliability of the N -OAM-SK model.
The 3D-MVC coding scheme is implemented to compress
the transmitted 3DV sequences due to its efficient coding
and decoding. Several simulation tests on the standard
well-known 3DV test sequences, e.g., Shark, PoznanStreet,

FIGURE 3. Video coding and prediction structure.

Dancer, and Newspaper, have been carried out with a resolu-
tion of 1920 × 1088 [36]. The utilized 3D video sequences
have different spatial and temporal characteristics. The
Dancer and PoznanStreet videos are fast-moving sequences.
The Shark stream is amoderate animated video. TheNewspa-
per sequence is an intermediate slow motion video. For each
3DV sequence, eight views with 250 frames in each view are
coded and the frame rate is 20 frames/sec. For each sequence,
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the coded 3D H.265/HEVC bit streams are produced by
employing the reference HEVC test Model (HM) codec [35].

To generate the data, the first step is the segmentation pro-
cess of different 3DVs to get the different 3DV frames. The
different VFs are then encrypted using 3D chaotic map [36]
according to:

Ej+1 = α · T 3
j + β · P

2
j · Ej + γ · Ej(1− Ej)

Pj+1 = α · E3
j + β · T

2
j · Pj + γ · Pj(1− Pj)

Tj+1 = α · P2j + β · E
2
j · Tj + γ · Tj(1− Tj) (1)

where E , P, and T are the original locations of image pix-
els, α = 0.0125, β = 0.0157, γ = 3.7700, and j ∈
{1, 2, . . . , 80000}. The initial conditions are E1 = 0.2350,
P1 = 0.3500, and T1 = 0.7350. The histogram equalization
is then used to prepare the image for use, and this is done
according to:

E = integer (E × ϒ2) mod ϒ

P = integer (P× ϒ4) mod 9

T = integer (T × ϒ6) mod 256 (2)

where ϒ is the number of rows, 9 is the number of
columns, andϒ2, ϒ4, andϒ6 are random numbers larger than
10, 000 [36]. Then, a column-row rotation is accomplished
followed by an XOR on the subsequent shifted image and
chaos operation to develop the encrypted image. Finally,
the coding process is applied on the encrypted image accord-
ing to the selected switch as shown in Fig. 1. After that, a type
of error-correction and detection codes such as Turbo, LDPC,
and RS is used.

B. CODING PROCESS
Coding is one of the fundamental techniques that makes
near-capacity operation conceivable. Widespread possibili-
ties for error detection and correction can be realized by
encoding and decoding the transmitted data. Some types of
error-correction codes such as convolution codes, RS codes,
Turbo codes, BCH codes, and LDPC codes are used [37].

C. TRANSMISSION OF DIFFERENT CODED VFs
THROUGH N-OAM-SK OVER AT CHANNEL
After coding of the interleaved VFs, the mapping process is
performed by exchanging every log2 N bits with one of N
OAM states as reported by the different states. The different
OAM states are generated according to the following equa-
tion [19], [38]:

κLG(ln,p)(r, θ, z)n =
D(

1+ z2

((πω2
0)/λ)

2

)1/2 e
−

ikr2z
2(z2+((πω20)/λ)

2)

· e
−

r2

ω2(z)

(
r
√
2

ω (z)

)|l|
lp|l|(

2r2

ω2 (z)
)e−ilθeikz

· e
i(2p+|l|+1)tan−1

(
z

(πω20)/λ

)
(3)

where D is a normalization constant, r is the radial distance
from z, l is the intertwined helical phase front, p is the
radial index, p + 1 is the number of circular or ring regions,
(r, θ, z) are the cylindrical coordinates, k = 2π/λ is the wave
number that refers to the number of radians per unit distance,
and it is sometimes called ‘‘angular wave number’’, λ is
the optical wavelength, and lp|l| is the generalized Laguerre
polynomial. The beam radius of the fundamental Gaussian
beam at distance z is given by [19]:

ω (z) = ω0

√
1+ (z/zR)2 (4)

where ω0 is the beam waist at z = 0.
In the simulation process, the beam waist ω0 at the trans-

mitter for all beams is set to 1.5 cm to ensure a minimum
beam waist at the receiver plane [38]. The propagation dis-
tance is from 200 to 1000 m and the numbers of OAM
channels are 2, 4, 8, 16, 32, and 64. Also, the wavelength λ
is equal to 1550 nm. On the other hand, the optical receiver
is assumed to be large enough to collect all obtained OAM
beams.

The generation process of the OAM modes with state
l ∈ {1,−2, 3,−5, 8, 10} in practical implementation can
be accomplished using cylindrical lenses, SPP, SLM, holo-
graphic plate, liquid-crystal devices, metamaterials, and
CGH [39], [40]. In communication experiments involving
OAM beams at various wavelength ranges, SLMs are the
most widely used instruments [38]. The obtained OAM-SK
modulated signals are transmitted over the AT channel. The
transmitted OAM beams are exposed to atmospheric turbu-
lence (AT) in real life communication scenarios, which causes
spatial variations in the air refractive index. When OAM
beams travel through a turbulent atmosphere, they experience
phase-front distortions, beam spread, and wandering. More-
over, modal crosstalk occurs, when the power of a signal
carried by an OAM mode is spread across other modes as
shown in Fig. 4. The distribution of optical power to other
OAM modes is low in the presence of weak turbulence.
However, in a strong turbulence regime, optical power
spreads widely, and there is a significant power leakage to
other OAM modes. The latter is mode-dependent, and it
causes a loss of orthogonality betweenOAMmodes, resulting
in loss disparities known as mode-dependent loss (MDL),
which causes system performance degradations [38], [41],
[42].

In this work, we model the channel impact as a
gamma-gamma turbulence model given by [43], [44]:

ψ(h) =
2(µν)

µ+ν
2

0(µ)0(ν)
h
µ+ν
2 −1Kµ−ν

(
2
√
µνh

)
(5)

where µ and ν represent the effective number of large-scale
and small-scale eddies of the scattering process, respectively.
The values of µ and ν are calculated with the help of the
following equations [19], [43]:

µ =
[
exp

(
0.49ρ2v /(1+ 1.11ρ12/5v )7/6

)
− 1

]−1
(6)
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FIGURE 4. The received power distribution for OAM modes l = 1, 3, and 10 for weak and strong atmospheric turbulence regimes: (a):(c) Weak AT,
(d):(f) Strong AT.

ν =

[
exp

(
0.51ρ2v /

(
1+ 0.69ρ12/5v

)5/6)
− 1

]−1
(7)

where ρ2v = 1.23c2n k
7
6
o D

11
6
p is the variance of the irradiance

fluctuations [19], [38], [48], h is the normalized received
irradiance, Kn(·) is the modified Bessel function of the 2nd
kind of order n, 0(·) represents the Gamma function, c2n is the
air refractive index structure constant, used to describe the
strength of the AT, and Dp is the propagation distance.
Due to the presence of the modified Bessel function in

(5), a significant mathematical complexity in directly dealing
with the ψ(h) of the channel exists. Therefore, we use Meijer
G-function to represent the modified Bessel function, and
ψ(h) becomes [1], [43]:

ψ(h) =
2 · (µν)

µ+ν
2

0(µ)0(ν)
h
µ+ν
2 −1G2,0

0,2

(
µνh

∣∣∣∣ ., .
µ−ν
2 ,

ν−µ
2

)
. (8)

Then, after the turbulence channel, the reverse operation
of the transmitter can be carried out at the receiver side using
the same device to convert the incoming OAMmode back to a
Gaussian beam. The idea is to apply an optical scalar product
measurement on the image plane of a Fourier transforming
lens between the incident OAM beam and a CGH with the
conjugate phase [38], [43].

κ̂(r, θ, z)m
= 〈κLG(lm,p) (r, θ, z)m κ

∗

LG(ln,p) (r, θ, z)n〉

=

∫
κLG(lm,p)(r, θ, z)mκ

∗

LG(ln,p)(r, θ, z)nrdrdθ

=

{∫ ∣∣κLG(lm,p)∣∣2rdrdθ; for m = n,
0; for n = 2, 4, 8, 16, 32, 64.

(9)

where ln is the topological charge of the originally-used OAM
states, lm is the topological charge of the received corrupted
data. κLG(lm,p)(r, θ, z)m refers to the cylindrical coordinates
of the mth received corrupted beam.

The result of this product is estimated according to one of
the two subsequent decisions [27]:

1) If the real and the imaginary terms equal zero, then the
current mode number is 2, 8, 4, 16, 32, or 64 according
to the value of N .

2) If the imaginary term only equals zero at any time, then
it is the state of interest, and this is the correct mode
number.

3) If the real and imaginary parts exist and are not equal
to zero, then it is the case of m 6= n and n not equal to
any index of the applied states.

The detection process is performed using the conjugate
light field detection method. The estimation of l is per-
formed based on the orthogonality property of OAM states.
Assuming that the LG beam after turbulence channel is
κLG(lm,p)(r, θ, z)m, we can compute the product between the
selected LG beam and the conjugate of each of the used
modes κ∗LG(ln,p)(r, θ, z)n, for beam recovery, where m and n
characterize the mth and nth beams [27]:

After demapping all received data to the different OAM
states, the decoding process is performed and followed by the
decryption process of the recovered data to yield the original
bit stream, and then get the original videos. Now, the absolute
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error rate is obtained by multiplying the computed error rate
of the introduced model with the average error rate of the
turbulence channel. The BER value is calculated by taking
the average value:

BER = κ̂(r, θ, z)m − κLG(ln,p)(r, θ, z)n (10)

Finally, we calculate the image quality metrics between the
reconstructed image and the original image as follows [37],
[44]:
• MSE (Mean Square Error):

MSE =
1
ϒ9

ϒ∑
i=1

9∑
k=1

(
xi,k − yi,k

)2 (11)

• PSNR:

PSNR = 10 log
(2w − 1)2

MSE
(12)

• NX (Normalized Cross Correlation):

NX =

∑ϒ
i=1

∑9
k=1

(
xi,k × yi,k

)2∑ϒ
i=1

∑9
k=1

(
xi,k
)2 (13)

• AD (Average Difference):

AD =

∑ϒ
i=1

∑9
k=1

(
xi,k − yi,k

)2
ϒ9

(14)

• MD (Maximum Difference):

MD = max
(∣∣xi,k − yi,k ∣∣) (15)

• SC (Structural Count):

SC =

∑ϒ
i=1

∑9
k=1

(
xi,k
)2∑ϒ

i=1
∑9

k=1
(
yi,k
)2 (16)

• NAE (Normalized Absolute Error):

NAE =

∑ϒ
i=1

∑9
k=1

∣∣xi,k − yi,k ∣∣∑ϒ
i=1

∑9
k=1

∣∣xi,k ∣∣ (17)

Here, ϒ and 9 are the dimensions of the monochromatic
image, x is the original image, y is the noisy image, and w
is number of bits per sample.

IV. SIMULATION RESULTS OF N-OAM-SK-FSO MODEL
In the simulation experiments, the value of the refractive
index structure function c2n is set according to the different
turbulence strength cases: low, moderate, and strong with
values of 10−15, 10−14, and 10−13, respectively [38]. Also,
the SNR values are changed from 0 to 20 dB and the power
of the signal is set to a fixed value relevant to the trans-
mitted data amplitude. The noise power is altered according
to the SNR. The different encrypted coded VFs are used
through OAM-SK-FSO model at different values of turbu-
lence strength, propagation distance, and SNR. In addition,
the performance metrics of image quality are measured for
different 3D encrypted coded VFs using 16-OAM-SK. The
simulation results indicate the following:

FIGURE 5. Comparison between the previous and proposed models for
different codes.

A comparison between the proposed work and other previ-
ously known research works is indicated as follows:

1) Figure 5 demonstrates a comparison between the previ-
ous model in [19] and the proposed model with differ-
ent values of propagation distance. It is clear from the
figure that the proposedmodel with LDPC coding has a
lower BER compared to those of the previous model by
a factor of about 10−4 after using the 2D CI and 10−5

after using the 3D CI.
2) Figure 6 indicates a BER comparison between the

previous model in [45] and the proposed model using
LDPC codes for different SNR values. It is clear from
the figure that the proposed model at 10 dB has a
lower BER compared to that of the previous model by
7, and 10 orders of magnitude using 2D, and 3D CI,
respectively.

3) Table 2 indicates the efficiency of the proposed model
over other models. From Table 2, it is clear that the
proposed model using 3D CI is better at an SNR value
of 7 dB by 3, 4, 6, and 6 orders of magnitude compared
to the models in [46]–[49], respectively.

It is shown from Figs. 7–9 that the BER value increases
with the increase of propagation distance, and turbulence
strength but decreases with the increase of the SNR for the
3D chaotic interleaved coded VFs. In this figure, we depict
the BER performance for the 16 OAM-SK-FSO system
using coded chaotic interleaved VFs for different values of

TABLE 2. Comparison between the BERs of the proposed and previous
models.

VOLUME 9, 2021 110123



S. A. El-Meadawy et al.: Performance Analysis of 3D Video Transmission

FIGURE 6. Comparison between the previous and the proposed models
using LDPC code.

propagation distance, turbulence strength, and SNR. For all
cases, LDPC-coded Newspaper VFs have the minimum BER

compared to other interleaved coded VFs. The BCH and con-
volution codes achieve the maximum BER for all used VFs.
Due to space limitations, only the case of 16-ary OAM-SK
is included as shown in these figures as it has the best per-
formance in comparison with 32 and 64 states due to the
existence of several repeated states as shown in all obtained
states for the different values of N . Fig. 2 shows a state of
them at N = 64.

In Table 3, we introduce a comparison between the dif-
ferent metrics of image quality for coded VFs and dif-
ferent states (L:low, M:medium, S:strong) of turbulence
strength. The usage of 1, 2, and 3 in the table refers to
without interleaver, 2D, and 3D CI cases. In all turbu-
lence states, LDPC code is better than RS, Turbo, Con-
volution, and BCH codes by almost 1, 1.5, 2.5, and 3
respectively. Using 3D CI at low turbulence strength
enhances the model performance by nearly 3 dB. Through
medium turbulence strength, the existence of 2D and 3D
CI improves the OAM-SK model by approximately 2 and
3 dB, respectively. At strong turbulence strength, the 3D CI
improves the model performance by nearly 5 dB. From the
table, we notice that the LDPC code is the optimum code

FIGURE 7. BER using 4 video frames at 16 OAM-SK for different propagation distance values. (T: Turbo code, L: LDPC code, R: RS code, B: BCH code, and
C: Convolution code).
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FIGURE 8. BER using 4 video frames at 16 OAM-SK for different turbulence strength values. (T: Turbo code, L: LDPC code, R: RS code, B: BCH code, and
C: Convolution code).

that achieves the best image quality for different turbulence
strengths followed using RS, Turbo, Convolution, and finally
BCH code.

In Table 4, we make a comparison between the different
metrics of image quality using coded OAM-SK and different
values of propagation distance. The existence of 1, 2, and
3 in the table refers to the cases of without interleaver, 2D,
and 3D CI. Through different values of propagation distance,
LDPC code is better than RS, Turbo, Convolution, and BCH
code by almost 1, 1.5, 2.5, and 3, respectively. Using CI
of 2D or 3D nature enhances the model performance by
nearly 3 dB. The LDPC code has the optimum values of
PSNR, MSE, NK, NAE, SC, MD, and AD for all differ-
ent values of propagation distance, while BCH code has
the lowermost quality metrics compared to those of other
codes.

After that, a comparison is introduced between the differ-
ent image quality metrics under different propagation dis-
tances and turbulence strengths. From Tables 3 and 4, it is
shown that:

1) LDPC code is the optimum used code with the
highest PSNR and the lowest MSE for all turbu-
lence strengths and propagation distances with and
without CI.

2) LDPC code has the least values of MD, SC, NAE,
NX and AD, which means that it achieves only small
error values and the reconstructed and the reference
video frames are nearly the same, which means high
similarity.

3) The RS and Turbo codes are very close to LDPC code
in performance, but they do not reach the same level of
its performance.

4) The BCH and convolution codes achieve the least
image quality metrics for all turbulence strengths and
propagation distances.

The explanations of the above points are as follows [37]:

• LDPC codes have superior error-correction capabili-
ties and low error floor. They also benefit from the
simple implementation of encoders/decoders. They per-
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FIGURE 9. BER using 4 video frames at 16 OAM-SK for different SNR values. (T: Turbo code, L: LDPC code, R: RS code, B: BCH code, and C: Convolution
code).

form much better in correcting random errors than other
codes.

• For Turbo codes, despite their excellent decoding effi-
ciency, they are hard to implement for parallel decod-
ing. They suffer from relatively high decoding latency
and complexity of decoding as they follow interlacing
structures and iterative algorithms of decoding.

• RS codes are not good for correcting random errors
compared to Turbo and LDPC codes, while RS codes do
well with non-binary algebraic structures to correct burst
errors. Using RS codes with more parity check symbols
typically leads to better burst-error-correcting efficiency,
but with more complexity.

• The efficiency of convolution codes is less than those
of Turbo and LDPC codes in terms of correction
of burst errors. In addition, they puncture bits to
achieve high code speeds, which results in losing
some useful information. The encoding process of
Turbo codes is simple, whereas the decoding process is
complicated.

• In BCH codes, the major characteristic is the precise
control over the number of correctable symbol errors
during the design process. Another property of them is
the ease of the decoding process and the simple design
of the decoder using a slight little-power hardware.

To enhance the RS and Turbo codes for the proposed design:

• We use a simple circuit and small datasets to improve
the performance of these codes.

• We employ a small number of OAM states as 2, 4, and 8,
which means low complexity of the model.

• We increase the number of iterations and the interleaver
size.

V. ADAPTIVE DETECTION MECHANISM OF
OAM-SK USING TWO DL METHODS
The conventional OAM-SK demodulation techniques are
unreliable and highly prone to angular fluctuations incorpo-
rating effects of variations in both random beam misalign-
ment and angle-of-arrival (AOA) [50]. In addition to the beam
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TABLE 3. Comparison between a variety of image quality metrics using different codes at different turbulence strengths.

misalignment caused by transmitter vibrations, the receiver
vibrations also affect the performance of the FSO link by
deteriorating AOA fluctuations. Although the larger field of
view (FOV) receiver has a greater ability to reduce the deteri-
oration caused by AOA fluctuations, a limited FOV receiver
is desirable to achieve higher data rate transmission, but the
system performance is degraded by AOA fluctuations [50].
For OAM-SK direct detection, narrower FOV can be used
to minimize the accumulated background noise, but it also
decreases the amount of detected signal power, when consid-
ering AOA fluctuations. To demodulate OAM-SK, the most
popular approach is to use SLM, and SPPS which are compli-
cated and costly physical devices. For this reason, an efficient
adaptive demodulator is suggested, based on DL. In addition,
an improved interleaved coding technique is exploited, and
an advanced mapping scheme is proposed to provide better
communication performance under different AT conditions
with DL techniques [11]. In this section, we employ adap-
tive demodulation using two DL techniques to classify and
predict distinct videos using different datasets of encrypted
coded N -OAM-SK states. Several studies have recently been
performed on using DL to perform adaptive demodulation of
OAM modes. CNN, as a model of DL, has been successfully
implemented in the OAM-FSO communication framework,
using a multi-layer representation learning technique with

local relation and shared weights to retrieve and recognize
the intrinsic features of the raw input images.

Due to the temporal nature of video frames, the usage
of CNN only is not effectual. Hence, we use two other
classification and prediction models as shown in Fig. 10
to classify different encrypted coded video frames and
get a better classification and prediction performance than
that of the traditional CNN model. The first model is
CNN + RNN and the second model is 3D CNN as illustrated
below.

A. CRNN MODEL
This model contains a group of layers: sequence input layer,
sequence folding layer, convolution layer, average pooling
layer, sequence unfolding layer, flattening layer, 2 dropout
layers, 2 bidirectional LSTM (BiLSTM) layers, a batch nor-
malization layer, a single fully-connected layer, and an output
layer. The existence of the sequence input layer is to introduce
image sequences and permit the convolutional operations to
be applied on each VF, autonomously [12]. In the convo-
lutional layer, a group of filter collections are trained and
the convolution operation of these filters with the input VFs
with size 12 × 12 gives several convolution outputs, based
on the size and number of the kernels, stride, and padding.
The convolutional layer is implemented using 10 kernels each
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TABLE 4. Comparison between a variety of image quality measures for different codes using different values of propagation distance.

FIGURE 10. Models for 3D video classification and prediction.

of size 5 × 5 to attain the feature maps of the image. In the
average pooling layer, we adopt a pooling size of 2× 2, and
a stride of 2 to diminish the computational requirements. The
nonlinear Rectified Linear Unit (ReLU) activation function is
employedwith the convolutional layers to permit contribution
of other layers to the learning task, and the dropout layer
is utilized to diminish the network overfitting probability.
The batch normalization layer is used to accelerate the CNN
training. The sequence unfolding layer and the flattening
layer are used to restore the sequence structure and restructure
the output to vector sequences, respectively. The BiLSTM

layer is used to learn bidirectional long-term dependencies
between time steps of the sequence data and allow classi-
fication. Consequently, different numbers of nodes in the
fully-connected layer according to the number of classes
are correlated with the nodes in the average pooling layer
[12], [13]. Finally, the detection of OAM states is performed
through the SoftMax classifier.

B. 3D-CNN MODEL
This model consists of 9 layers: image 3D input layer, convo-
lution 3D layer, max pooling 3D layer, ReLU layer, dropout
layer, batch normalization layer, single fully-connected layer,
and output layer. In 3D input layer, we input 3D images to the
network, and after that, we apply the 3D convolution layer.
This layer slips cubic shape convolution filters to the 3D input
and then convolves the input with the filters by moving the
filters along the input horizontally, vertically, and alongside
the depth. The down-sampling process is performed using a
3D max pooling layer by splitting three-dimensional input
into cuboidal pooling sections and computing the maximum
of each region [11], [12].

VI. SIMULATION RESULTS FOR THE TWO
USED DL DETECTION TECHNIQUES
A. CLASSIFICATION OF DIFFERENT 3D VIDEO FRAMES
After construction of the twoDLmodels, we use them to clas-
sify and predict the different OAM-SK images, the different
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codes and OAM-SK states. Now, to get the best model with
an optimum response, the minimization of the training bias is
required tomake the training and validation loss values nearly
the same or the difference between them small. After using
different bias reduction techniques in the training process,
the optimal values and the best datasets can be selected and
used after that for the training process. A sample of the
obtained results using datasets of 3 classes with LDPC code
is shown in Table 5. According to the values in this table,
it is confirmed that the training loss is very close to the
validation loss for the two deep learning techniques at 10−4

regularization factor, dropout of 0.5, and 3 dataset classes.
The cross-validation method shows that the utilization of far
classes gives better results than those with near classes.

In Table 6, we introduce a comparison between the two
used classification techniques: CRNN and 3D CNN, using
different numbers of iterations and coded datasets. The com-
parison is performed using 3D chaotic interleaver, and the
encryption process is performed on every used 3D video
frame. From the table, we notice that LDPC code has the
best performance, lowest validation loss, and least compu-
tation time compared to other codes. RS and Turbo codes
have nearly the same accuracy, but Turbo code takes less
time than RS code. BCH and convolution codes have the
least validation and mini-batch accuracy compared to other
codes, but the BCH code takes longer running time than
that of the convolution code. Accordingly, convolution code
is preferred to BCH code. When using the 6 classes in the
training process, the accuracy of the two proposed models
is diminished, but it increases when reducing the number of

classes. Moreover, the accuracy has the best value when using
classes far from each other such as classes 2, and 64 or classes
4, and 64. This is due to the common OAM states, when
the classes are close to each other. As long as the classes
are far away from each other, the accuracy has better values.
This is illustrated in Table 6 for different codes (L:LDPC,
T:Turbo, R:RS, B:BCH, C:Convolution) and different classes
(C). It is clear from the table that the accuracy is the best
for the two-class case. When the number classes increases,
the classification accuracy decreases.

B. CLASSIFICATION MODEL PERFORMANCE
After evaluating the accuracy of proposedmodels on different
datasets, we measure other performance metrics of the deep
network to demonstrate the model performance. The results
are shown in Table 7. They are calculated according to the
equations used in [14]. This table gives a comparison between
the different performance metrics of the deep network using
different codes and datasets from 3D chaotic interleaved
coded OAM-SK. It is clear from the table that LDPC code
is more efficient than other codes, and it has the best values
of precision, Recall, SP, AUC, and FScore. BCH and con-
volution codes have nearly the same worst measurements of
precision, Recall, specificity (SP), AUC, and FScore.

Furthermore, in Table 7, we study the DL performance
metrics for the two used classification techniques. From
the table, we find that the utilization of 2 classes makes
both techniques for different codes have nearly the same
deep learning performance. Increasing the number of classes

TABLE 5. Comparison between the training and validation losses using different bias reduction techniques.

TABLE 6. Comparison between the accuracy of different classes of OAM-SK using different codes.
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TABLE 7. Comparison between a variety of performance metrics of deep learning for different classes of OAM and different codes.

TABLE 8. Comparative study between the classification performances (%) of 2D-CNN and 3D-CNN using different codes.

allows the performance with different codes to differ.
With 3 and 6 classes, we find that LDPC code has the greatest
values of accuracy, AUC, FScore, SP, Precision, and Recall
compared to other codes.

One of the drawbacks of 2D CNN is handling the extrac-
tion of motion information that is performed outside the
CNNs and consuming comparatively large time on GPUs.
So, end-to-end methods for learning the representation of
motion, such as 3D-CNN, can achieve faster and more accu-
rate results. We present a 3D architecture for modeling the
behavior and depicting motion in an easy way to be precise
and to overcome real-time challenges. So, 3D-CNN tech-
nique is used to compute features instead of the 2D form
in both spatial and temporal dimensions. The introduced
model achieves a balance between the number of used frames
and the number of operating parameters to achieve the best
classification efficiency.

FromTable 8, it is observed that the 2D-CNN and 3D-CNN
techniques have nearly the same classification performance
using only a two-class dataset. Increasing the number of
classes in the dataset makes the 3D-CNN technique better
than the 2D-CNN technique by nearly 0.74% to 10% accord-
ing to the used code as obtained in [44].

C. PREDICTION MODEL PERFORMANCE
Here, different datasets are used to compute the prediction
efficiency and attain the best dataset that is used to enhance
the system performance.

In Fig. 11, it is claimed that the optimal expected responses
for the different DL techniques are almost 100% for the
different codes used employing only datasets of 2 class. We
used the trial-and-error method to decide the best approach
for dataset creation, as seen in the results obtained for the two
deep learning techniques. It is shown that the farther the OAM
states are moved from each other, the greater the effectiveness
of prediction. When increasing the number of classes, it is
shown that LDPC code has the best predictive performance
due to its easy encoding and decoding processes. Next comes
RS and Turbo codes, but Turbo code has a slightly worse
predictive performance due to its high decoding complexity.
Due to the complicated decoding performance of convolution
and BCH codes, they have the worst predictive performance.
Also, it is shown from the figure that OAM-SK states with
N = 2, 16, and 64 states have the best expected performance
compared to the other states.

In Fig. 12, it is shown that when using datasets of different
classes represented in codes, the performance of 3D CNN
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FIGURE 11. The optimum predicted responses of the two DL models for 3D chaotic interleaved video frames using datasets of different OAM state
classes: (a), (f) and (k) LDPC code; (b), (g) and (l) Turbo code; (c), (h) and (m) RS code; (d), (i) and (n) Convolution code; (e), (j) and (o) BCH code.

model is more efficient than RNN + CNN model for the
different classes. Also, LDPC code has the best predictive
performance followed byRS and Turbo codes, and this occurs
for the two used models.

Utilization of datasets of two classes makes the 3D
CNN model more efficient compared to the RNN + CNN
model. On the other hand, increasing the number of video
frames makes the 3D CNN performance worse compared
to that of the RNN + CNN as the final feature represen-
tation is obtained by combining information from all chan-
nels. In addition, increasing the time step values makes the
RNN + CNN worse as shown in Fig. 13. Applying 4 video
frames makes the prediction accuracy of the two used mod-
els the same. Due to the low speed of Newspaperfin video
frames, it has the best predictive performance compared
to the other used video frames. The Sharkfin comes after
with moderate speed, and finally the fast-moving Dancerfin
and Poznanstreetfin video frames with nearly the same
performance.

From Table 9, it is shown that the prediction accuracy
after using different datasets of different class number reaches
100%, when using datasets of 2 classes for the two used
models. Increasing the number of classes reduces the pre-
diction accuracy for the two models from 8% to 30%. After
applying datasets of 3 classes, it is concluded that using

LDPC code makes the 3D CNN model more efficient than
the CRNN model. For a dataset of 6 classes, the perfor-
mance of the two models gets comparatively worse, but the
CRNN model is a little superior to other models, when using
LDPC code. For different VFs, it is clear that the predic-
tion accuracy of the two used models is greatly affected
by changing the used number of VFs. The utilization of
two VFs makes the 3D CNN model more effective than the
RNN + CNN model by about 5%. Increasing the number
of VFs reduce the prediction accuracy of the two models,
but makes the performance of them worse until reaching the
same performance achieved when using 4 video frames. In
the case of different codes, it is realized that the performance
of 3D CNN model is superior to the RNN + CNN model
for the different used datasets. Also, the prediction accuracy
of the 3D CNN model reaches 100% using datasets of 2 and
3 classes.

To explain the usage of the RNN, a comparison has been
performed between CNN and RNN using different datasets
and different codes. From Table 10, it is shown that the pres-
ence of RNN with CNN enhances the system performance
for different datasets. The classification performance for the
different datasets using RNN + CNN is better than that
using only CNN by nearly 2 : 12% according to the used
code.
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FIGURE 12. The predicted responses of 3D chaotic interleaved video frames using datasets of different codes: (a), (b), (c) and (d) 3D CNN model; (e), (f),
(g), and (h) CRNN model.

FIGURE 13. The predicted responses of 3D coded chaotic interleaved for N-OAM-SK model using datasets of different video frames: (a), (b), and (c) 3D
CNN model; (d), (e), and (f) RNN + CNN model.

TABLE 9. The prediction accuracy (%) of the two applied DL models using different methodologies to construct different datasets via the turbulence
N-OAM-SK model.

As shown from Table 11, a comparison is introduced
between the two presented DL models with a variety of tra-
ditional image and video classification models. Our models
are performed on datasets that come from chaotic interleaved
N-OAM-SK in different scenarios. In [51], the 3D CSN
model is used to factorize 3D convolutions by separating
channel interactions and spatio-temporal interactions, result-

ing in greater accuracy of nearly 80% and lower computa-
tional costs compared to those of 3D convolutions. In [52],
an efficient video classification technique with recurrent
models was used to reduce the computation time for video
classification using the idea of distillation. It is accom-
plished by firstly training the whole network, which gives
a representation of all video frames and then training a
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TABLE 10. The classification accuracy (%) comparison between CNN and CNN + RNN models.

TABLE 11. Comparison between the classification accuracy (%) of the introduced models and other traditional models.

network with some video frames only. It can reduce the
computation time by nearly 30% compared to those of the
two presented models that enhance the classification perfor-
mance by almost 67.64% and 36.93% for CNN + RNN and
3D CNN models, respectively. From [53], it is clear that
FDNN classification accuracy ranges from 77% to 98% by
selected hyperparameters, and it is superior to DNN and RF
classification accuracy. Due to the difficulty in collecting
and clarifying large-scale video data in most DL models,
a method called OTAM was used in this case as shown
in [54]. It dynamically aligns two video sequences, while
preserving the temporal ordering, and it is directly optimized
for the few-shot learning objective in an end-to-end fashion.
It achieves a classification accuracy of nearly 73 : 85.8%
compared to 53 : 74% for the matching network that uses
a Bi-LSTM. In [55], the classification accuracy obtained by
various methods indicates that the DL-based methods out-
perform non-DL methods. The DFFN, which incorporates
residual learning and feature fusion, achieves the best results
in classification. The SVM and CNN-PPF depend only on
spectral features during the classification. The rest of meth-
ods, including the 3D-CNN,Gabor-CNN, S-CNN, andDFFN
belong to classification methods based on spectral-spatial
features. In [56], the UrbanSound8K dataset was used to train
and analyze the CNN classification performance. The train-
ing is performed using spectrogram images in an end-to-end
fashion and the experimental results show that the proposed
CNN model achieves a classification accuracy of 86.70%.
Deeper networks can be trained with a novel architecture
known as the convolutional highway unit [57]. The unit
architecture is formed by modified convolutional highway
layers, a max pool layer, and a dropout layer. According to
the experimental results, it can achieve a 94% classification
accuracy, when the training data is reduced to 30% of its
original size.

The introduced DLmodels outperform all previous ones as
indicated in Table 11.

The reasons can be summarized as follows:

1) In DFFN, the best feature fusion mechanism requires
a hand-crafted framework with a lot of experiments.
Therefore, the performance is worse, when the model
complexity and size of the dataset increase [55].

2) Both CNN-PPF and S-CNN concentrate on analyzing
the correlation between samples rather than pixel-wise
semantic information [55].

3) CNN-PPF uses a CNN to retrieve the pixel-pair fea-
tures. However, because the convolution operation is
primarily performed in the spectral domain, spatial
information is not taken into account for the CNN-PPF
[55].

4) S-CNN, on the other hand, uses a two-branch CNN
to extract spectral-spatial features at the same time.
However, the computational cost of such method may
be prohibitively high due to the high-dimension vector
in Euclidean space [55].

5) In G-CNN, Gabor filtering is used as a preprocessing
technique to extract spatial features of hyperspectral
images (HSIs).

6) The great spatial variation of spectral signatures,
as well as the limited available training samples versus
the high dimensionality of hyperspectral data, present
two major challenges in HSI classification tasks [55].

7) The SVM was implemented in the LIB-SVM library
as a spectral feature-based tool, with a Gaussian kernel
and fivefold cross validation. The performance is bad
in the presence of noise or turbulence [55].

8) In CSN [51], when there are sufficient channel interac-
tions in the network, the CSN-based factorization not
only helps to reduce the computational cost, but it also
increases the accuracy.

9) When signals are sparse and correlated, the FDNN clas-
sifier outperforms ordinary random forests or DNNs
alone in classification. Furthermore, for random forests
and DNNs, an improved performance could not be
achieved by simply increasing model complexity [53].

10) Furthermore, OTAM is completely differentiable,
allowing an end-to-end training model to optimize the
few-shot learning target. As a result, the model has
better ability to use long-term temporal information.
It automatically aligns two video sequences, while
maintaining temporal ordering [54].

The ability to generalize is an essential metric for assessing
the quality of a CNN model, and it is a hot and difficult
research subject. The perfect classification results show that
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the well-trained CNN generalization ability is very good.
When we train a CNN model using images created by known
computer graphics rendering techniques, and then evaluate
the model on images generated by unknown rendering tech-
niques, the generalization ability is tested [58]. In this work,
the different datasets come from applying different atmo-
spheric turbulence conditions, and then the optimum datasets
are chosen. These optimum datasets are used to study the
classification and prediction performance of the two proposed
models. The classification performance of the two proposed
models is evaluated and compared with those of other tra-
ditional ones as shown in Table 11. From this table, it is
indicated that the two proposed models outperform the other
traditional ones. The efficient classification results show that
the generalization of the two proposed models is possible.

VII. CONCLUSION AND FUTURE WORK
We have investigated encrypted coded VF transmission
through 16-OAM-SK-FSO model with different AT parame-
ters. It has been proved that the LDPC coded Newspaper VFs
have the lowest BER compared to those of other coded VFs
with the aid of 2D and 3D chaotic interleavers. Employing
3D CI for VF transmission throughN - OAM-SK-FSOmodel
improves the PSNR by nearly 3 dB compared to that of
the 2D CI scenario. Applying a 2-class datasets for video
classification and prediction makes the two DL models have
nearly the same accuracy, but the situation is altered, when
using datasets of larger classes. The implementation of the
twomodels indicates that they have the sameAccuracy, AUC,
FScore, and other performance metrics of deep networks for
different datasets of different OAM states. Diminishing the
number of classes makes LDPC and Turbo codes with the
3D CNN model better than those with the CRNN model.
The utilization of GPU in classification enhances the clas-
sification performance by nearly 52.285% for CRNN and 3D
CNN models. It has been proved from the obtained results
that 3D CNN and CRNN models have superior performance
compared to those of the 2D CNN and the other traditional
deep learning models by nearly 10 : 18%.

As a future work, to further improve the model efficiency
and resolve the defects of the OAM-SK optical system,
it would be important to consider OAM performance with
other different and effectual DL techniques. Although our
research was limited to the use of SISO OAM, all the devel-
oped techniques are applicable to the more efficient MIMO
OAM. We can merge higher order modulation techniques
with OAM in addition to further theoretical analysis. More-
over, OAM-based orthogonal and non-orthogonal multiple
access (OAM/NOMA) system can be studied. Furthermore,
we are interested in studying various DL techniques with
other distinct security algorithms. With OAM-DL systems,
we can also study different encryption/decryption schemes
to enhance the efficiency and reliability of the systems.
Recently, there have been many works that study the per-
formance of OAM mode recognition using LG beams. As a
future work, we are going to use Bessel Gaussian beams, and

hyper-geometric Gaussian beams to study the performance
of OAM mode recognition. The performance of OAM under
different parameters such as amplified spontaneous emission
noise, pointing error, multiplicative slow fading, and geomet-
ric spreading will be studied and analyzed to further improve
the efficiency of the model.
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