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In this paper, two Stokes space (SS) analysis schemes for modulation format identification (MFI) are proposed.
These schemes are based on singular value decomposition (SVD) and Radon transform (RT) for feature extraction.
The singular values (SVs) are extracted from the SS projections for different modulation formats to discriminate
between them. The SS projections are obtained at different optical signal-to-noise ratios (OSNRs) ranging from 11
to 30 dB for seven dual-polarized modulation formats. The first scheme depends on the SVDs of the SS projections
on three planes, while the second scheme depends on the SVDs of the RTs of the SS projections. Different classifiers
including support vector machine (SVM), decision tree (DT), and K-nearest neighbor (KNN) for MFI based on the
obtained features are used. Both simulation and experimental setups are arranged and tested for proof of concept
of the proposed schemes for the MFI task. Complexity reduction is studied for the SVD scheme by applying the
decimation of the projections by two and four to achieve an acceptable classification rate, while reducing the com-
putation time. Also, the effect of the variation of phase noise (PN) and state of polarization (SoP) on the accuracy
of the MFI is considered at all OSNRs. The two proposed schemes are capable of identifying the polarization mul-
tiplexed modulation formats blindly with high accuracy levels up to 98%, even at low OSNR values of 12 dB, high
PN levels up to 10 MHz, and SoP up to 45◦. ©2020Optical Society of America

https://doi.org/10.1364/AO.388890

1. INTRODUCTION

Changing the data rate of transmission in wireless communi-
cation systems is important, as fading and multiple paths are
instrumental factors. However, in optical communications
we receive different data rates because future networks will be
heterogeneous. That is, each network has its own data rate, as
the rate is required for proper demodulation or routing [1].
The upcoming optical communication systems are required
to provide intelligent coherent receivers that are equipped
with machine learning tools. Several researchers have applied

machine learning to optical communication systems for deter-
mining the optical signal-to-noise ratio (OSNR), bit rate,
modulation format, and other optical performance monitoring
parameters [2–6].

The adaptivity represented in changing the modulation
format and data rate of optical communication systems is
required to cope with variations in channel states and user
requirements [7]. There is a need to save the available band-
width for data transmission only. Hence, a reduction of the
amount of side information is very necessary. This can be guar-
anteed through blind modulation format identification (MFI)
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schemes. Therefore, blindly identifying the modulation format
at the receiver side allows the elimination of handshaking infor-
mation between the transmitter and the receiver. Additionally,
the optical fiber effects such as phase noise (PN), state of polari-
zation (SoP), and OSNRs are challenging effects for the MFI
task. Intelligent receivers for addressing the MFI task with
different challenging issues are addressed in [8].

The MFI task can be determined with and without side infor-
mation. In the information-aided scenario, side information
such as pilot tone and frequency offset difference have been used
[9,10]. On the other hand, in the absence of side information,
the MFI is blind.

The literature on blind MFI can be divided into two main
categories based on the space of representation of optical signals.
Both Jones space and Stokes space (SS) have been used for blind
MFI. The first trend depends on the processing of optical signals
directly or the images extracted from the signals such as eye
diagrams and constellation diagrams [11–14]. The second trend
depends on either the optical signals or the projections of these
signals on definite planes of the Poincare sphere [15–18].

Adles et al. [11] provided an approach for MFI based on
the histogram of the electric field distribution. This approach
achieved high recognition rates, but its computation process is
complex. Bilal et al. [12] used the peak-to-average power ratio

(a)

(b)

Fig. 1. Block diagram of the proposed MFI scheme based on SVDs
of SS planes.

determined from the samples of the received data for modula-
tion format classification. The OSNR information is required
prior to the classification process. Liu et al. [13] introduced a
nonlinear power transformation and peak detection algorithm
to perform MFI. The Fourier transform is calculated for the
modulated data. This method has provided high accuracy of
identification, but it requires a large number of samples in the
identification process. Eltaieb et. al. [14] provided a study of
the MFI based on Jones space representation, singular value
decomposition (SVD), and radon transform (RT). The SVD
and RT are used with the constellation diagrams of different
single- and dual-polarized (DP) modulation formats. This
method provides a high level of accuracy for MFI even with high
PN and SoP levels. The SS has captured the interest of several
researchers as in [15–18] due to its immunity to the carrier PN
and the polarization mixing [17]. All these methods that utilized
the SS for MFI achieved high accuracy levels, but with high
complexity due to the multiple classification steps.

In this paper, due to the importance of choosing the right
modulation format for data transmission in optical communi-
cation systems, blind MFI is studied. The MFI is performed in
the SS based on both SVD and RT concepts. Utilization of the
SS is attributed to its main advantages of immunity to PN and
signal rotations [19,20]. The projections of data on three planes

(a)

(b)

Fig. 2. Block diagram of the proposed MFI scheme based on SVDs
of RTs of SS planes.
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(a)

(b)

Fig. 3. Examples of the used images for seven modulation formats. The OSNR is 30 dB, and the number of samples is 1024. (a) SS images on the
three used planes, (s 1, s 2), (s 1, s 3), and (s 2, s 3). (b) RTs of all images shown in (a).

in SS representation are obtained, namely, (s 1, s 2) plane, (s 1, s 3)
plane, and (s 2, s 3) plane. These projections are dealt with as
images. The singular values (SVs) of these images are extracted
and used for MFI. Different classifiers are trained and tested
for the MFI task. Furthermore, complexity reduction through
decimation is performed on the images of the three planes prior
to MFI to reduce complexity. The rest of this paper is organized
as follows. The SS analysis is presented in Section 2. Section 3 is
devoted to the proposed SVD-based MFI from the three used
planes and the mathematical representation of the RT for optical
MFI. In Section 4, a complexity reduction approach for the clas-
sification process based on the decimation of projected images

prior to estimation of the SVs is presented. In Section 5, both
simulation and experimental setups are presented. Section 6
provides the numerical results, including simulation results
with 1024 and 2048 samples (Section 6.A) and simulation and
experimental results with 1024 samples (Section 6.B). Finally,
the conclusion is given in Section 7.

2. STOKES SPACE ANALYSIS

The Jones vectors of the optical signal are complex, and they can
be transformed to another representative space, i.e., SS. The SS
representation gives four parameters that lead to the recovery
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Fig. 4. Simulation system setup for the proposed MFI schemes. DP, dual-polarized; EDFA, erbium-doped fiber amplifier; LO, local oscillator;
MZM, Mach–Zehnder modulator; OC, optical coupler; SSMF, standard single-mode fiber; SVD, singular value decomposition; RT, radon trans-
form; DT, decision tree; KNN, K-nearest neighbor; SVM, support vector machine.

Fig. 5. Experimental setup of the demonstrated optical MFI using the proposed schemes. LS, laser source; AWG, arbitrary waveform generator;
XI, XQ, YI, and YQ, Mach–Zehnder sub-modulators of x and y polarizations; XP and YP, phase modulators; EDFA, erbium-doped fiber amplifier;
VOA, variable optical attenuator; OC, optical coupler; OBPF, optical band-pass filter; LO, local oscillator; PBS, polarization beam splitter; ADC,
analog-to-digital converter.

of the existing SoP in the optical signal. These four parameters
are s o , s 1, s 2, and s 3. The s o represents the total power of the
incoming optical signal, while s 1, s 2, and s 3 represent the 0◦

linear, 45◦ linear, and circularly polarized light, respectively. The
combination of s 1, s 2, and s 3 gives the Poincare sphere repre-
sentation. The Jones vectors to Stokes vectors, S, conversion is
performed as follows [19]:

S =
1

2

s o

s 1

s 2

s 3

= 1

2


e x e ∗x + e y e ∗y
e x e ∗x − e y e ∗y
e ∗x e y + e x e ∗y
− j e ∗x e y + j e x e ∗y

= 1

2


a2

x + a2
y

a2
x − a2

y
2ax a y cos1φ
2ax a y sin1φ

,
(1)

where e x and e y are the horizontal and vertical optical waves,
respectively. ax and a y are the amplitudes, andφx andφy are the
phases of the Jones vector components, e x and e y , respectively.
1φ = φx − φy is the phase difference between e x and e y .

3. PROPOSED MFI SCHEMES

Figure 1 shows the block diagram of the proposed SVD-based
scheme for optical MFI from SS. As shown in Fig. 1(a), there is
a need for both training and testing phases. The number of the
used samples is determined first. It is taken as 1024 and 2048
samples in this study. The channel impairments—OSNR, PN,
and SoP—are considered in the processing. Then, the incoming
signal is converted from the Jones space to the SS by implement-
ing the projection on three planes, namely, (s 1, s 2), (s 1, s 3),
and (s 2, s 3). These projections are treated as images and used
for feature extraction. The SVs are extracted from these images
with the SVD algorithm. These SVs are used to train the used
machine learning classifiers, namely, a support vector machine
(SVM), K-nearest neighbor (KNN), and decision tree (DT) [8].
The same steps are followed for the testing phase to measure the
model accuracy of identification, as shown in Fig. 1(b).
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(e) with SVM classifier
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(h) with SVM classifier
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(i) with KNN classifier
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Fig. 6. Accuracy versus OSNR for four modulation formats with 1024 samples for SVD and SVD with RT schemes in the absence of PN with:
(a)–(c) (s 1, s 2) plane; (d)–(f ) ( s 1, s 3) plane; and (g)–(i) (s 2, s 3) plane.

Specifically, each projection is captured as a color image and
stored in a bmp format. A gray-scale image is obtained from this
color image to reduce the computational load. The SVD of the
gray-scale image produces three matrices, namely, U, S, and V,
as follows [21]:

I=USVT , (2)

where U and V are the left and right singular vectors of the
matrix I representing the projected image matrix, respectively,
and T denotes the transpose. The diagonal elements of the
matrix S constitute the feature vector.

Other types of images can be generated from these projection
planes to obtain more discriminative features by evaluating the
RTs of the projected images. The main steps followed to get
the RTs are shown in Fig. 2. The training and testing phases are
applied for the MFI task using the RTs. In the training phase

in Fig. 2(a), a similar manner is followed as in Fig. 1 to get the
projected images. The RTs of these images are constructed and
used as images also, and they can be calculated using Eq. (3). The
SVD is applied to these new RTs, and their SVs are extracted
as the dominant features. These features are used for the train-
ing of the classifiers. The testing phase is shown in Fig. 2(b).
It has the same sequence as in the training except that after
determination of the SVs, the test of the trained classifiers is
performed. The sequence of training and testing is performed
on the three planes, and the best plane for MFI is selected. The
RT is calculated by [22,23]

R(t, θ)=
∫
∞

−∞

∫
∞

−∞

I (x , y )δ [t − x cos(θ)− y sin(θ)] dxdy ,

(3)
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where I (x , y ) is the projected image, x and y represent the

coordinate positions, R(t, θ) is the RT image, t is the normal

from the origin to the line of projection, θ is the projection

angle, which is the angle between the normal and the horizontal

axis of the image, and δ(·) is the Dirac delta function. The RT

is evaluated by the summation of all values in the matrix, taking

into consideration the angle of projection. In this paper, the

projection angle is taken from 0◦ to 90◦ due to the similarity

property of the RT.

Examples of the projected images on the three planes and
their RTs are shown in Fig. 3 for seven types of modulation for-
mats with 1024 samples: 4-quadrature amplitude modulation
(4-QAM), 16-QAM, 32-QAM, 64-QAM, binary phase-shift
keying (BPSK), 8-PSK, and 16-PSK at 30 dB. It is clear that
each modulation format has its own signature even in the pro-
jected image or in its RT. In the RT, each point is transformed to
a curved line, and the number of lines produced gives the same
number of existing groups of points in the planes of projection.
The higher-order modulation formats are hard to identify in the
SS due to their large numbers of point groups.
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(l) with KNN classifier
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Fig. 7. Accuracy versus OSNR for four modulation formats with 1024 samples for SVD and SVD with RT schemes with (s 2, s 3) plane at PNs of:
(a)–(c) 1 kHz; (d)–(f ) 10 kHz; (g)–(i) 100 kHz; and (j)–(l) 1 MHz.
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Fig. 8. Accuracy versus OSNR for six modulation formats with 2048 samples for SVD and SVD with RT schemes with the three planes in the
absence of PNs of: (a)–(c) (s 1, s 2); (d)–(f ) (s 1, s 3); and (g)–(i) (s 2, s 3) planes.

4. DECIMATION FOR COMPLEXITY REDUCTION

The complexity of the SVD is dependent on the computation
cost, which is high owing to the number of computed SVs. The
complexity reduction can be performed in different ways, one
of them is reducing the sizes of the used images to reduce the
number of required SVs in the computation process.

The sizes of the images are reduced by decimation of each
one. The new decimated images are used with the proposed
SVD scheme to extract their SV features and train the different
classifiers for the MFI task. If the lexicographic ordering of a pro-
jected image is performed to yield a 1D vector f, the decimated
images can be estimated as follows:

g=Df, (4)

where D is the decimation operator defined as D=D1 ~ D1.
Here, ~ is the Kronecker product, and D1 is a 1D filtering and
down-sampling operator for decimation by two [24]:

D1 =
1

2


1 1 0 0 · · · 0 0
0 0 1 1 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 1 1

 . (5)

If the original images in any of the three projection planes
are of size m × n, then the size of the new produced images
from decimation by two and four will be m/2× n/2 and
m/4× n/4, respectively. As seen in [25], the complexity of the
SVD is considered to be of O(m2n + n3). Here, the complex-
ity will be reduced after decimation by two and four to be of
O((m

2 )
2
( n

2 )+ (
n
2 )

3
) and O((m

4 )
2
( n

4 )+ (
n
4 )

3
), respectively.

5. SIMULATION AND EXPERIMENTAL SETUPS

Figures 4 and 5 show the simulation and experimental setups
for the SS schemes, respectively. The simulation setup is used
to generate eight DP modulation formats, namely, 4-QAM,
16-QAM, 32-QAM, 64-QAM, BPSK, QPSK, 8-PSK, and
16-PSK, at 10 GBaud. For each modulation format, 1024
and 2048 samples are taken, and 40 images are collected at
each OSNR value for each plane of projection. The OSNR is
taken to be in the range of 11 dB to 30 dB with a 2 dB step. The
transmission losses are compensated with an erbium-doped
fiber amplifier (EDFA). At the receiver side, the signal is passed
through an optical filter. A coherent detector, with balanced
photo-detection (BPD), is used with a local oscillator (LO).



5996 Vol. 59, No. 20 / 10 July 2020 / Applied Optics Research Article

10 12 14 16 18 20 22 24 26 28 30

OSNR (dB)

0

10

20

30

40

50

60

70

80

90

100
A

cc
ur

ac
y 

(%
)

(a) with DT classifier

 32-QAM SVD
 32-QAM RT
BPSK SVD
BPSK RT
8-PSK SVD
8-PSK RT

16-PSK SVD
16-PSK RT
4-QAM SVD
4-QAM RT
16-QAM SVD
16-QAM RT

10 12 14 16 18 20 22 24 26 28 30

OSNR (dB)

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

(b) with SVM classifier

 32-QAM SVD
 32-QAM RT
BPSK SVD
BPSK RT
8-PSK SVD
8-PSK RT

16-PSK SVD
16-PSK RT
4-QAM SVD
4-QAM RT
16-QAM SVD
16-QAM RT

10 12 14 16 18 20 22 24 26 28 30

OSNR (dB)

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

(c) with KNN classifier

 32-QAM SVD
 32-QAM RT
BPSK SVD
BPSK RT
8-PSK SVD
8-PSK RT

16-PSK SVD
16-PSK RT
4-QAM SVD
4-QAM RT
16-QAM SVD
16-QAM RT

10 12 14 16 18 20 22 24 26 28 30

OSNR (dB)

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

(d) with DT classifier

 32-QAM SVD
 32-QAM RT
BPSK SVD
BPSK RT
8-PSK SVD
8-PSK RT

16-PSK SVD
16-PSK RT
4-QAM SVD
4-QAM RT
16-QAM SVD
16-QAM RT

10 12 14 16 18 20 22 24 26 28 30

OSNR (dB)

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

(e) with SVM classifier

 32-QAM SVD
 32-QAM RT
BPSK SVD
BPSK RT
8-PSK SVD
8-PSK RT

16-PSK SVD
16-PSK RT
4-QAM SVD
4-QAM RT
16-QAM SVD
16-QAM RT

10 12 14 16 18 20 22 24 26 28 30

OSNR (dB)

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

(f) with KNN classifier

 32-QAM SVD
 32-QAM RT
BPSK SVD
BPSK RT

8-PSK SVD
8-PSK RT
16-PSK SVD
16-PSK RT

10 12 14 16 18 20 22 24 26 28 30

OSNR (dB)

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

(g) with DT classifier

 32-QAM SVD
 32-QAM RT
BPSK SVD
BPSK RT
8-PSK SVD
8-PSK RT

16-PSK SVD
16-PSK RT
4-QAM SVD
4-QAM RT
16-QAM SVD
16-QAM RT

10 12 14 16 18 20 22 24 26 28 30

OSNR (dB)

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

(h) with SVM classifier
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(i) with KNN classifier
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Fig. 9. Accuracy versus OSNR for six modulation formats with 2048 samples for SVD and SVD with RT schemes with (s 2, s 3) plane at PNs of:
(a)–(c) 1 kHz; (d)–(f ) 10 kHz; (g)–(i) 100 kHz; and (j)–(l) 1 MHz.

The collected signals are converted form the Jones vectors
to the SS representation. The three planes of projection are
utilized. The decimation of these images is considered, and also
their RTs are evaluated. Finally, the classifiers are trained and
tested with the features extracted from all types of produced
images to measure the accuracy of the identification process.

To ensure the feasibility of the two proposed (SVD and
SVD with RT) schemes for MFI in optical transmission sys-
tems, a proof-of-concept experiment is conducted using
the setup shown in Fig. 5. A continuous-wave laser source

(NKTPhotonics) of 1550 nm and 15 dBm output power is used
to drive a DP IQ (Fujitsu FTM7977HQA) Mach–Zehnder
modulator (MZM). A Keysight M9185A arbitrary waveform
generator (AWG) is used to provide pseudo-random binary
sequences (PRBS) of a word pattern (211-1) to generate four
multi-level electrical signals of 64 GSa/s. The transmitted opti-
cal modulation formats include DP-4-QAM, DP-16-QAM,
and DP-64-QAM.

To vary the OSNR of a received optical signal, the amplified
spontaneous emission (ASE) output of an EDFA (Amonics
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Fig. 10. Average SVs versus SV index for four modulation formats with 1024 samples at 30 dB. The first row is for the SVDs of RTS of the images,
and the second row is for the SVD of the SS images in the three planes: (s 1, s 2); (s 1, s 3); and (s 2, s 3).
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(i) with KNN classifier
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Fig. 11. Accuracy versus OSNR for two modulation formats for SVD and SVD with RT schemes with the three planes in the absence of PN effect
of: (a)–(c) (s 1, s 2) plane; (d)–(f ) (s 1, s 3) plane; and (g)–(i) (s 2, s 3) plane.

AEDFA-C-18B-R) is added to the optical signal using a
50:50 optical coupler. An optical attenuator (AO) is used
to adjust the OSNR value. At the receiver side, a coherent
receiver is employed and a Keysight digital storage oscilloscope

(DSOX93294A) is used as a signal digitizer. The stored received
samples are processed offline, where SS representation, feature
extraction, machine learning algorithms, and modulation iden-
tification are performed sequentially. The modulation formats
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(i) with KNN classifier
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(j) with DT classifier
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(k) with SVM classifier
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(l) with KNN classifier
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Fig. 12. Accuracy versus OSNR for two modulation formats for SVD and SVD with RT schemes with the (s 2, s 3) plane at PNs of: (a)–(c) 1 kHz;
(d)–(f ) 10 kHz; (g)–(i) 100 kHz; and (j)–(l) 1 MHz.

are identified using the KNN, DT, or SVM classifiers. The
same images are collected, and their features (SVs) are used for
training and testing of the classifiers. It is worth noting that the
effect of channel impairments is taken into consideration, where
the PN and SoP are utilized for MFI to determine the limits for
the required accuracy levels.

6. RESULTS WITH 1024 AND 2048 SAMPLES

In Figs. 6–16, we present the results of MFI based on SS repre-
sentation. The three planes are considered for the MFI based

on the SVs as the dominant features from the projected images
and their RTs as shown in Figs. 6–12. The effect of decimation
on these images is presented in Figs. 13 and 14. The variations
in accuracy with the PN and SoP for six modulation formats are
shown in Figs. 15 and 16, respectively.

A. Simulation Results with 1024 and 2048 Samples

Figure 6 reveals the accuracy versus the OSNR on the obtained
optical signals with 1024 samples for four modulation formats,
neglecting the effects of PN and SoP. For the three planes, the
DT and KNN classifiers provide higher accuracy levels than
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(c) with KNN classifier
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(d) with DT classifier
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(e) with SVM classifier
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(f) with KNN classifier
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(g) with DT classifier
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(h) with SVM classifier
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(i) with KNN classifier
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Fig. 13. Accuracy versus OSNR for two modulation formats with decimation by two and four for SVD scheme applied on the three planes in the
absence of PNs of: (a)–(c) (s 1, s 2); (d)–(f ) (s 1, s 3); and (g)–(i) (s 2, s 3).

those of the SVM classifier. High-order modulation formats
require very high OSNRs to be identified, as a large number of
ordered points is required. The RTs provide higher accuracy
levels than those achieved with the projected images themselves,
especially with the DT and KNN classifiers.

For the (s 1, s 2) plane with the DT classifier, 20 dB are
required to get a 100% accuracy for the RTs of the BPSK and
32-QAM modulation formats. With the KNN classifier, 20 dB
are required for BPSK and 32-QAM to reach a 98% accu-
racy level with both schemes. With the SVM classifier, BPSK
and 32-QAM require 16 dB to reach a 98% accuracy level.
The 8-PSK and 16-PSK modulation formats need OSNR
levels larger than 30 dB to get a 90% accuracy level with all
classifiers.

For the (s 1, s 3) plane, the three classifiers provide unaccept-
able accuracy levels with some modulation formats. For the
(s 2, s 3) plane, the three classifiers provide high accuracy with
the four modulation formats. For the DT and KNN classifiers,
20 dB and 22 dB are required for all modulation formats to reach
a 90% accuracy level with the SVD and SVD with RT schemes,

respectively. For 32-QAM, 24 dB and 26 dB are required to get
an accuracy level above 90% with the DT and KNN classifiers,
respectively. For the SVM classifier, all modulation formats need
24 dB to reach a 98% accuracy level.

Figure 7 shows the accuracy versus OSNR for the (s 2, s 3)
plane taking the PN effect into consideration. It is apparent that
there are no significant changes in the accuracy of identification
at the same OSNR for all PN values, because the PN effect
on the images or their RTs does not produce large differences
between them. The DT and KNN classifiers provide higher
accuracies of identification than those obtained with the SVM
classifier.

Figure 8 gives the accuracy versus OSNR from the three
planes for six modulation formats with 2048 samples. The
(s 2, s 3) plane provides the best accuracy levels with the three
classifiers. Moreover, the DT and KNN classifiers provide better
and more stable accuracy levels than those obtained with the
SVM classifiers.
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(c) with KNN classifier
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(d) with DT classifier
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(e) with SVM classifier
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(f) with KNN classifier
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(g) with DT classifier
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(h) with SVM classifier
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(i) with KNN classifier
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(j) with DT classifier
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(k) with SVM classifier
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(l) with KNN classifier

 16-QAM D2 simulation
 16-QAM D2 experiment
16-QAM D4 simulation
16-QAM D4 experiment
4QAM D2 simulation
4QAM D2 experiment
4QAM D4 simulation
4QAM D4 experiment

Fig. 14. Accuracy versus OSNR for two modulation formats with decimation by two and by four using SVD scheme with (s 2, s 3) plane at PNs of:
(a)–(c) 1 kHz; (d)–(f ) 10 kHz; (g)–(i) 100 kHz; and (j)–(l) 1 MHz.

Figure 9 shows the accuracy versus OSNR from the (s 2, s 3)
plane taking the PN effect into consideration with 2048 sam-
ples. The three classifiers provide high and stable accuracy levels
with all used modulation formats.

Figure 10 shows the average SV amplitude versus the SV
index for better understanding of the results shown in Figs. 6–9.
It is clear that the SVs are different for the four represented
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Fig. 15. Accuracy versus PN levels for all used modulation formats for SVD and SVD with RT schemes with: (a)–(c) (s 1, s 2) plane; (d)–(f ) (s 1, s 3)
plane; and (g)–(i) (s 2, s 3) plane.

modulation formats for both images and their RTs. The RT pro-
vides more distinguishable SVs for all formats, which is reflected
in the results obtained with 1024 samples.

B. Simulation and Experimental Results with 1024
Samples

Figure 11 reveals the accuracy versus the OSNR for the obtained
optical signals with 1024 samples in the simulation and exper-
imental scenarios, neglecting the effects of PN and SoP. For
the three planes, the DT and KNN classifiers provide higher
accuracy levels than those of the SVM classifier. High-order
modulation formats require very high OSNRs to be identified,
as a large number of ordered points is required. The RTs provide
higher accuracy levels than those achieved with the projected
images themselves.

For the (s 1, s 2) plane with the DT classifier, 20 dB are
required to get a 100% accuracy level for the RTs of the 4-QAM
modulation. The 16-QAM modulation needs 20 dB to get a
98% accuracy level. With the KNN classifier, 20 dB are required
with 4-QAM and 16-QAM to reach a 98% accuracy level with
both schemes. With the SVM classifier, 4-QAM is not well iden-
tified with the RT, while the SVDs of the images require 24 dB
to reach a 96% accuracy level. The 16-QAM requires 24 dB to
reach a 98% accuracy level.

For the (s 1, s 3) plane, the three classifiers provide high accu-
racy of identification compared to those with the (s 1, s 2) plane.
The DT and KNN classifiers achieve higher accuracy levels than
those of the SVM classifier. For 4-QAM with the DT classifier,
20 dB are required to reach a 98% accuracy level with the SVD
scheme, 28 dB are required with the 16-QAM to reach a 96%
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(f) with SVM classifier
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(i) with SVM classifier
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Fig. 16. Accuracy versus SoP levels for all used modulation formats for SVD and SVD with RT schemes with: (a)–(c) (s 1, s 2) plane;
(d)–(f ) (s 1, s 3) plane; and (g)–(i) (s 2, s 3) plane.

accuracy level. The SVM classifier is not appropriate for the
identification in this case.

For the (s 2, s 3) plane, the three classifiers provide high
accuracy levels with the two modulation formats. For the DT
classifier, 14 dB are required with 4-QAM to reach a 98% accu-
racy level with the SVD with RT scheme, 12 dB are required to
reach a 100% accuracy level with the SVD scheme, and 28 dB
are required for 16-QAM to reach a 98% accuracy level. With
the KNN classifier, 18 dB are required for 4-QAM to give a
98% accuracy level, and 24 dB are required for 16-QAM to
reach a 100% accuracy level. For the SVM classifier, 4-QAM
and 16-QAM show stable accuracy levels, and a 16 dB OSNR is
required for both to reach a 98% accuracy level.

Figure 12 shows the accuracy versus OSNR from the (s 2, s 3)
plane taking the PN effect into consideration. The three clas-
sifiers provide high and stable accuracy levels with 4-QAM

and 16-QAM. The results of these classifiers are not good
with 64-QAM, as their images are not ordered well in their
SS distributions. The distribution image representing each
modulation format is distinguishable, especially for the (s 2, s 3)
plane images. Also, the RTs of these images are of distinguish-
able shape, leading to the applicability of MFI at different
PN levels.

Figure 13 shows the accuracy versus OSNR from the (s 2, s 3)
plane taking the decimation effect of the projected images into
consideration without any impairments. Both decimation by
two and decimation by four are studied here. It is clear that the
accuracy is still stable and of high level with the three classifiers
for 4-QAM and 16-QAM for the three planes of projection. The
decimation reduces the sizes of the images leading to less SVs.

Figure 14 shows the accuracy versus OSNR with the (s 2, s 3)
plane for the decimated images with different PN levels. The
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Table 1. Required OSNR with 1024 Samples for an Accuracy Level Above 98% with the Proposed Schemes in Both
Jones Space and SS

4-QAM 16-QAM

Used Scheme SVD SVD with RT SVD SVD with RT

Used Classifier DT KNN DT KNN DT KNN DT KNN

Jones space [14] 1 kHz 11 dB 11 dB 11 dB 11 dB 11 dB 11 dB 11 dB 11 dB
10 kHz 11 dB 11 dB 11 dB 11 dB 11 dB 11 dB 11 dB 11 dB

100 kHz 11 dB 14 dB 11 dB 11 dB 11 dB 14 dB 11 dB 11 dB
1 MHz 23 dB 21 dB 11 dB 11 dB 23 dB 22 dB 11 dB 11 dB

(s 1, s 2) plane 1 kHz 26 dB 27 dB 20 dB 19 dB 28 dB 27 dB 27 dB 27 dB
10 kHz 27 dB 27 dB 21 dB 20 dB 28 dB 27 dB 28 dB 27 dB

100 kHz 25 dB 28 dB 19 dB 20 dB >30 dB 30 dB 28 dB 27 dB
1 MHz 14 dB 24 dB 13 dB 15 dB 23 dB >30 dB 28 dB 28 dB

(s 1, s 3) plane 1 kHz 25 dB 26 dB 19 dB 20 dB 22 dB >30 dB 28 dB 25 dB
10 kHz 25 dB 27 dB 19 dB 19 dB >30 dB 30 dB 29 dB 28 dB

100 kHz 26 dB 26 dB 19 dB 19 dB 19 dB 24 dB 22 dB 23 dB
1 MHz 12 dB 24 dB 15 dB 16 dB >30 dB 26 dB 24 dB 26 dB

(s 2, s 3) plane 1 kHz 13 dB 21 dB 14 dB 16 dB 27 dB >30 dB 27 dB 25 dB
10 kHz 13 dB 17 dB 13 dB 17 dB >30 dB 28 dB >30 dB 28 dB

100 kHz 16 dB 19 dB 14 dB 16 dB 13 dB >30 dB 13 dB 22 dB
1 MHz 12 dB 21 dB 13 dB 18 dB 22 dB 27 dB >30 dB 27 dB

accuracy is better than those with the (s 1, s 2) and (s 1, s 3) planes
for all cases with 4-QAM and 16-QAM.

Figure 15 presents the accuracy versus the PN level from the
(s 1, s 2), (s 1, s 3), and (s 2, s 3) planes with the three classifiers
for six modulation formats. The PN takes the values of 1 kHz,
10 kHz, 100 kHz, 1 MHz, and 10 MHz, and the OSNR is
constant at 30 dB for all modulation formats.

Figure 16 presents the SoP effect on the accuracy level for
the identification of six modulation formats. The DT and
KNN classifiers provide better accuracy levels for all six modu-
lation formats from the three planes with SoP and PN effects,
especially from the (s 2, s 3) plane.

The SVM classifier requires the features to be separated from
each other with nearly a line separating each class from the other.
The SVs for each modulation format are not able to provide a
line separating each cluster of points, but with the DT or KNN,
the feature points can be separated from each other for each
modulation format. The SVs of the SS images or their RTs are
distinctive. This leads to high accuracy levels with the DT and
KNN classifiers compared to the SVM classifier, due to the fact
that the DT and KNN classifiers can provide high accuracy
levels for this type of distinctive digital data. The SVM can also
provide high accuracy for this type of data but less than those of
the DT or KNN classifiers. The average SVs for four modula-
tion formats versus the SV index are presented in Fig. 10, which
provides an explanation of why the SVs can be represented by a
tree of distributions to be distinguished with the DT or KNN
classifiers. The SVD with RT scheme with the DT and KNN
classifiers provides better accuracy levels than those with the
SVD only. The SVM classifier does not provide the required
results with the SVD or the SVD with RT scheme. Also, the
SVD with RT is better and more stable with the high PN effect
compared to the SVD scheme.

In [14], both schemes are applied on constellation diagrams
of different types of modulation formats in Jones space repre-
sentation. Table 1 summarizes this comparison using the DT
and KNN classifiers with 1024 samples for the schemes in Jones
space and SS.

A comparison between MFI with SVD and SVD with RT
schemes on the constellation diagrams in Jones space in [14] and
of the projected images in the SS is presented here. This com-
parison is performed for two types of modulation only, namely,
4-QAM and 16-QAM, as they are DP modulation formats.
It is clear from the numerical results that at different levels of
PN and SoP, the projected images in the SS are approximately
of high similarity to the original ones. The slight variations
provide approximately constant accuracy levels. In Jones space,
the accuracy is of high levels even at low levels of OSNR and
high levels of PN and SoP. Both 4-QAM and 16-QAM achieve
good accuracy levels with the Jones space at lower OSNRs. The
(s 2, s 3) plane of the SS provides the same accuracy levels as those
of the Jones space for the two modulation formats at higher
OSNR values. The 64-QAM achieves good accuracy levels from
Jones space, but with the SS the accuracy levels are not good, as a
high level of OSNR is required for the same number of samples.
Both (s 1, s 2) and (s 1, s 3) planes achieve good accuracy levels for
both 4-QAM and 16-QAM. It is clear that the SVD with RT
scheme provides good accuracy levels with both SS and Jones
space. For the decimation process, the Jones space provides
similar accuracy levels to those of the SS for both 4-QAM and
16-QAM.

7. CONCLUSION

Stokes space analysis schemes have been proposed and inves-
tigated for MFI. This space originates from the projection of
the optical data on three planes. These projections are treated
as images, from which signatures of the type of modulation



6004 Vol. 59, No. 20 / 10 July 2020 / Applied Optics Research Article

format are extracted. Two schemes, SVD and SVD with RT,
have been investigated for signature extraction of modulation
formats. Simulation and experimental results have proved that
SS is preferred to Jones space for MFI in the case of high SoP and
high levels of PN with low-order modulation formats.
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