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Optimality of the Users Strength
in Optical PPM-CDMA Channels

Hossam M. H. Shalaby, Senior Member, IEEE

Abstract—An upper bound on the users strength in direct-detec-
tion optical code-division multiple-access communication systems,
which employ pulse-position modulation techniques, is developed.
This upper bound is consistent with the lower bound derived pre-
viously, as long as the transmitted information per photon is less
than some positive threshold. The concept of users strength was
introduced by the author in a previous paper, where it provides a
measure to the maximum number of simultaneous users that can
communicate simultaneously with arbitrary small probability of
error.

Index Terms—Code-division multiple access (CDMA), di-
rect-detection optical channel, optical code-division multiple
access (OCDMA), pulse-position modulation (PPM).

I. INTRODUCTION

OPTICAL code-division multiple-access (OCDMA) com-
munication systems have been given much interest in re-

cent years [1]–[11]. In code-division multiple access (CDMA),
multiplexing is achieved by assigning every user (in the same
channel) a unique code sequence of length and weight .
These codes, called optical orthogonal codes (OOCs), must have
good auto- and cross-correlation properties [2], [4]. Each user
modulates a laser source before incorporating its signature code
sequence. Both on–off keying (OOK) and pulse-position modu-
lation (PPM) schemes can be used for source modulation. PPM
has several advantages over OOK, where no threshold compar-
ison is required at the receiver side, and its use of the laser en-
ergy is more efficient.

In optical PPM-CDMA systems, each user produces
equiprobable -ary data symbols. Each symbol , which
takes values from the finite set , modulates
the position of a laser pulse of width within a time frame
of duration . That is, the laser pulse is signaled in position

if the data symbol , . The
modulated laser pulse is then spread within a time slot of dura-
tion to generate the optical PPM-CDMA waveform.
The spreading encoder is controlled by the signature code of
the desired user. Optical pulses of duration each, represent
the mark positions in the signature code. The time-slot duration
must, in turn, satisfy the condition .
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In [9], we have introduced the concept of the users strength.
It provides a measure to the maximum number of users
that can be accommodated simultaneously by the optical PPM-
CDMA system, while maintaining the error rate arbitrary small
for any given positive value of the transmitted information per
photon ( nats/photon). Indeed, we have shown that the depen-
dence of on pulse-position multiplicity is not linear, and
can be represented as

where denotes the users strength (to be defined rigorously in
the next section). Our aim is to provide a complete characteri-
zation of so as to keep the error rate below a certain threshold
. In [9], we have only been able to provide lower bounds to the

users strength. The tightness of these bounds has not been ex-
amined in [9].

The main objective in this paper is to develop an upper bound
on the users strength, as defined in [9], to determine the tight-
ness and optimality of the previous lower bound. The optimality
of this lower bound is demonstrated by showing that any trial to
increase the number of users above that estimated by the users
strength’s lower bound would lead to an error rate approaching
one as . We are able to provide a complete characteriza-
tion on the users strength as long as is less than some positive
threshold. Above this threshold, however, we are unable to pro-
vide a good tight upper bound.

The statement of the problem is introduced in Section II,
which is also devoted to some propositions and lemmas. The
main results along with some discussions are given in Sec-
tion III. Section IV provides the proof of the main theorem.
Our conclusion is finally given in Section V.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Definitions

Since we assume equiprobable data symbols in our study, the
transmitted information in nats per channel use (nats per PPM
symbol) is thus equal to . This piece of information is
denoted by

nats/channel use

The maximum number of simultaneous users and the proba-
bility of error are denoted by and , respectively. The
subscript in both of them indicates that they depend on . It
might be omitted whenever there is no ambiguity in the sequel.

Given an OOC with length , weight , and auto- and cross-
correlation constraint , we have the fol-
lowing definitions.
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1) The Users Rate: We define the rate of the maximum
number of simultaneous users (or simply the users rate)
as .

The motivation behind this definition is to introduce a
normalized measure that is somehow robust for different
CDMA systems. Indeed, the factor (number of
users/chip) makes the definition robust against different
CDMA-coding methods. In addition, to make it robust
against different block-coding methods, we normalize
the last quantity to a per-bit (or per-nat) basis. Since there
are bits/symbol in an -ary PPM block code, a
useful and robust measure to the number of users is

2) An -Achievable Users Rate: Given , a non-
negative number is said to be -achievable users rate
for the PPM-CDMA optical channel, if for every
and every sufficiently large , we have

with

3) An Achievable Users Rate: We say that is an
achievable users rate if it is -achievable for all

.
4) The -Users Strength: The supremum of -achievable

users rates is called the -users strength .
5) The Users Strength: The supremum of achievable users

rates is called the users strength .
In Appendix A, we show that the users strength is related to

the -users strength by

(1)
From the above definitions, the importance of the users

strength is obvious. It gives an estimate to the maximum
number of users that can be accommodated in an optical
PPM-CDMA network and still have an arbitrary small error
rate. This estimate is given by

where as . Further, it was shown in [9] that
as , which means that for large values of

, an estimate of the number of users can be given by
.

In [9], we have developed simple lower bounds to the users
strength defined above for any given . In the subsequent
sections, we show (by deriving an upper bound) that this lower
bound is tight within a finite interval of .

B. The Decision Rule

The desired user collects the photons received within the
mark positions of its signature code. This is done for every slot
within the time frame. The number of slot with the largest count
is declared to be the transmitted symbol. We denote the photon
count collected in slot by . Symbol

is thus declared to be the true one, if for every .
Hence, the probability of correct decision can be written as

where

every

In view of the symmetry of the channel, we can write

every (2)

C. The Interference Probability

We denote by , , ,
the number of other users that cause interference at pulse posi-
tions in slot of the desired user. Moreover, we denote the vector

by , . The proofs of
the following proposition and lemmas appear in Appendix A.

Proposition 1: In a chip-synchronous optical PPM-CDMA
channel employing OOCs with weight , length ,
and auto- and cross-correlation constraint , if ,

, denotes the probability that a single user inter-
feres with the desired user at pulse positions of one slot, then

where denotes the pulse-position multiplicity. Moreover,
assuming that is uniform among different codeword pairs
(which can be set as a restriction on the code construction), then

The equality is true when .
Lemma 1: If there are simultaneous users, and ,

, is assumed to be uniform among different
codeword pairs, then the random vector , ,
admits a multinomial distribution with parameters ,

where is a realization vector for , i.e.,
with

and . Further

Lemma 2: For any , the random
variables have a multinomial joint distribution
with parameters
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Corollary 1: For any ,
, the random variable admits a binomial

distribution with parameters ,

Lemma 3: For any two integers

Lemma 4: For any and

III. MAIN RESULTS

A. Statements of the Results

We demonstrate, in Theorem 1 and Corollary 2 below, the
main results on the characterization of the users strength for the
aforementioned system. The proof of the theorem is given in
Section IV.

Theorem 1: In a chip-synchronous optical PPM-CDMA
channel employing OOCs with weight , length ,
and auto- and cross-correlation constraint , the -users
strength is upper bounded by

where and denotes the smallest integer not less
than .

Corollary 2: In a chip-synchronous optical PPM-CDMA
channel employing OOCs with weight , length ,
and auto- and cross-correlation constraint , if the pho-
todetector statistics are Poisson, then the users strength is given
by

where (the transmitted information in nats per photon) is con-
strained by

(3)

Proof: Immediate from Theorem 1 above, the lower bound
from [9], and (1).

B. Discussion of the Result

Remark 1: The complete characterization for the users
strength is given in Corollary 2. The characteriza-
tion of the -users strength is independent of ,

, and must be equal to . As we have men-
tioned earlier, our result holds for the Poisson system only when

.
Outside this interval, however, our characterization is incom-
plete where we are unable to provide a tight upper bound and
only a lower bound on the -users strength was shown in [9].
This problem is still open and more rigorous research is needed
to come around it.

Fig. 1. Bounds on the users strength versus the transmitted information (nats
per photon) for the Poisson system.

Remark 2: Both the upper bound from Theorem 1 and the
lower bound from [9] are plotted in Fig. 1 for given system pa-
rameters. It can be seen that for smaller than some threshold,
the users strength is constant and maximum. This means that
the number of users cannot be increased above a certain limit.
Otherwise, the multiple-user interference forces the error rate
to be bounded away from zero. This observation indicates that
the users strength is a sort of system-capacity measure. Indeed,
given a CDMA code and a data rate in the optical PPM-CDMA
channel, one cannot accommodate more users than that esti-
mated by the maximum users strength, even if one is using un-
limited, huge average power. Further, it can be seen from Fig. 1
that the region of maximum users strength shrinks as the code
weight increases. This is because increasing the code weight
will increase the rate of occurrence of mark hits among the users,
and hence, more possible interference and more error rate. Thus,
the number of users should be decreased to keep the error proba-
bility below the constraint. For convenience, we show in Table I
how these regions scale with varying and .

Remark 3: Our complete characterization over some interval
of , as given in (3), is a little bit surprising. Indeed, its inde-
pendence of over this interval implies that there is no tradeoff
between the number of simultaneous users and the
average single-user power,

where is the data rate in nats/s, J.s is
Planck’s constant, m/s is the speed of light, and

is the operating wavelength. That is, for fixed data rate and
fixed error-rate constraint, we can decrease the average power
(by increasing ) without disturbing the number of simultane-
ously communicating users (since is a constant here). This
gives a great advantage in practice, e.g., we can have a very
long optical-fiber link and allow the average power to decrease
(because of loss, scattering, etc.), and still are able to accom-
modate the full number of users. Outside this interval, however,
increasing (with fixed data rate and fixed error-rate constraint)
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TABLE I
REGION OF MAXIMUM USERS’ STRENGTH

would decrease the number of simultaneous users (since de-
creases and ), and the above advantage will be
lost. The reason is that for large values of , the average power
becomes too small to tolerate the shot-noise effect at the re-
ceiver. We wish to emphasize here that the region of constant
users strength given in (3) corresponds to a practical range of
average power. For example, let Gb/s, , ,
and m. From Fig. 1 or (3), this region is given by

nats/photon, and the corresponding region of average
power is thus nW. Further, this restricted range
on gives an acceptable probability of error. Indeed, the cor-
responding region of average photons/nat (for the last example)
is photons/nat, which is wide enough. By
consulting [7] and Table I, it can be seen that good error rate
can be achieved with suitable choices of both and .

Remark 4: The result of the theorem indicates that for given
code parameters, the numbers of simultaneous users can be in-
creased freely by increasing the pulse-position multiplicity .
Indeed, this is obvious from the positivity of the users strength.
Although the number of available codewords will be limited by
code parameters, it has been proposed in [11] that it is possible
to assign a given codeword to more than one user, provided that
a suitable protocol is adopted by users. Of course, there is a
tradeoff between and both the data rate and peak power

nats/s

Indeed, the price to be paid when increasing is an increase
in the peak power and a decrease in the data rate. Alternatively,
in order to keep the data rate unchanged, there should be an in-
crease in the bandwidth required for optical pulses [7]. In prac-
tice, this increase in bandwidth in addition to both fiber disper-
sion and photodetector’s rise time set a physical limitation that
restricts the actual number of users sharing the channel.

IV. PROOF OF THEOREM 1

Remark 5: Since the system with ideal photodiodes provides
an upper bound to the number of users of systems with Poisson
photodiodes, it suffices to prove the above theorem for the ideal
case. We show that increasing the -users strength beyond

leads to an error probability which converges to one
as goes to .

Remark 6: In our derivation of this theorem, we will show
that if , , then the correct
probability goes to zero with . The proof will
be done under the assumption that ,
which is true for , satisfying

any , and . In-
creasing above the aforementioned interval should lead to a
worse correct probability because the multiple-access interfer-
ence would increase. Hence, even if , we will
get as . This argument justifies that our
assumption can be removed without disturbing the theorem.

Remark 7: Our proof of this theorem is based on chip-syn-
chronous assumption. This assumption is valid for synchronous
OCDMA systems [5], [7]. For asynchronous systems, however,
this assumption can be considered as an approximation to the
strong chip-asynchronous interference pattern (which is a spe-
cial case of the generalized interference pattern) [3].

Let . Assume by contradiction that
, with . We will show that this

leads to a correct probability that converges to zero. We denote
by , , the number of interfering pulses
in slot . The correct probability in (2) can now be estimated as

every

But using the Markov inequality, Corollary 1, and Proposition
1, we get
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where denotes the expectation value. Thus,
converges to 0 as . Hence, it suffices to show that

diminishes to zero as . Notice that

Define the set

Denoting the vector by , the last
probability can be rewritten as

Here [12] denotes the set of sequences of type
in , where, for any

, denotes the number of elements in
equal to , and denotes the set of all types of se-
quences in [12]. The last probability can further be upper
bounded as

(4)

where denotes the size of . Next, we de-
velop an estimate to the last probability as follows. For any

, define

where

Using Lemma 3 and the fact that [12]

where is the usual informational entropy function, we can
upper bound as

Taking the logarithm of yields

(5)

Now we maximize subject to the constraints and
. It is not a difficult task to check that these constraints

are inactive. Thus, the necessary conditions for optimization are

This yields

Or for any

(6)

where

(7)

Substituting in (5) yields

(8)

Notice that

(9)
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where the last equality follows from (6) and the last inequality
from Lemma 4. Next we develop estimates for both and .
From (7), we may write

Substituting back to (7) and solving for

(10)

Using from (10) in (7) yields

(11)

Substituting (9) and (10) in (8), we get

After some algebraic manipulation involving (10) and (11), we
obtain

For large values of , the last two terms can further be bounded
as follows:

Substituting back would yield

(12)
Now we bound the ratio as follows. Since and ,
then . Hence

(13a)

(13b)

Thus, as . Using (10), (11), and (12) in (4) gives

where we have invoked the type-counting lemma [12] to justify
the inequality . For large enough,

converges to one, since . Thus,
including the lower bound in (13a), we conclude

where as . Finally, we notice that

yields

The last inequality is justified by invoking Proposition 1.

V. CONCLUSION

In this paper, we have been able to find an upper bound to
the users strength, introduced in [9], for direct-detection optical
PPM-CDMA channels. Combining this upper bound with the
lower bound of [9] provides a complete characterization of the
users strength whenever the transmitted information per photon
is below a certain threshold. Above this threshold, however, our
characterization is only partial (the upper bound is not tight
enough.) It has also been shown that within the aforementioned
interval, the users strength is independent of , and the number
of users do not increase by reducing .

APPENDIX A
PROOFS OF PROPOSITIONS AND LEMMAS

A. Proof of Equation (1)

To prove this assertion, we proceed as follows. Given
, we define

such that

with
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Thus from Definition 4, we have

Furthermore, let

Thus from Definition 5, we have

For any , since , we get
, or

On the other hand, it is easy to check that for any
, (which also implies that decreases

as decreases). Hence, and , ,
such that

From the above discussion, we conclude that

Since decreases as decreases, the last infimum
is achieved when , and this completes the proof of (1).

B. Proof of Proposition 1

The proof of the first assertion appears in [9]. The upper
bound in the second assertion is immediate from the first one,
since

The equality is true when . As for the lower bound, we
notice that

exactly hits occur in one slot under

shifts

number of times hits may occur under shifts

The above inequality is true, since the cross-correlation con-
straint equals , which ensures the occurrence of at least one
mark hit under shifts. The equality is true when .
Since we use the assumption , this equality cannot
hold, and we have .

C. Proof of Lemma 1

Fix . Let , , be
the event that a single user interferes with the desired user at
pulse positions within slot . Each of these disjoint events oc-
curs with probability . Further, let be the event that a
single user interferes with the desired user at pulse positions,

. Obviously, occurs with
probability . Thus, , cor-
responds to the number of times that occurs, and cor-
responds to the number of times that occurs. Moreover,

. Hence, this formulation leads to the
well-known multinomial distribution.

D. Proof of Lemma 2

Similar to that of Lemma 1.

E. Proof of Corollary 1

Immediate from any of Lemmas 1 or 2.

F. Proof of Lemma 3

The Robbins’ sharpening of Stirling’s formula is given by

For any , the last inequality can further be increased as

Moreover, this inequality remains true for as well. Indeed,
in this case, . Now
consider

where is the binary
informational entropy function. Substituting for would
conclude the required upper bound.
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G. Proof of Lemma 4

Right-hand side

Left-hand side

The last inequality is true, because we can write
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