JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 13, NO. 11, NOVEMBER 1995

2121

Maximum Achievable Throughputs for
Uncoded OPPM and MPPM in Optical
Direct-Detection Channels

Hossam M. H. Shalaby, Member, IEEE

Abstract— Tight upper and lower bounds on the maximum
throughputs for both overlapping and multipulse pulse position
modulation (OPPM and MPPM) in optical direct-detection chan-
nels are derived. The corresponding pulse-position multiplicities
are estimated. Simple lower bounds for the maximum achievable
throughput (with the error rate not exceeding a certain threshold)
are obtained for OPPM. A comparison between the maximum
achievable throughputs for both OPPM and MPPM is also
considered. Our results suggest using MPPM for high efficient
transmission and OPPM for low efficient transmission. Namely,
MPPM should be used when the transmission efficiency exceeds
0.027 nats/photon. )

I. INTRODUCTION

ECAUSE of its tremendous prosperity in direct-detection
Boptical channels, the pulse-position modulation (PPM)
signaling format has been the modulation remedy for many
low-rate direct-detection applications. PPM, however, is not
convenient for high data rate applications because in this
case the laser pulsewidth should be decreased in order to
achieve the required throughput. Recently, it has been shown
that new modulation schemes, such as optical overlapping
pulse-position modulation (OPPM) [1]-[6] and multipulse
pulse-position modulation (MPPM) [7]-[9], can offer large
throughput without the need to decrease the laser pulsewidth.
Of course this advantage is acquired at the expense of a large
cost in the error rate performance of both OPPM and MPPM.
Moreover, a tough synchronization requirement is imperative
for OPPM with large overlapping index. Fortunately, an im-
provement in OPPM or MPPM performance can be fulfilled by
employing error correcting codes and sacrificing some of the
throughput gain [3], [6]. In a recent paper by Georghiades
[6], the above modulation schemes have been investigated
and compared in terms of the capacity, cutoff rate, and error-
probability performance of uncoded and trellis-coded systems.
Our main goal in the following is to distinguish between the
regions of preference of OPPM and MPPM under a constraint
on the bit error rate.

This paper can principally be divided into two main parts. In
the first part we aim at obtaining simple and tight lower bounds
on the achievable throughputs for both uncoded OPPM and
MPPM. Our second aim is to determine the best throughputs
that can be achieved for both OPPM and MPPM under an up-
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per bound on the probability of error. To have more insight on
the results obtained, we restrict our study to quantum-limited
direct-detection optical channels only. Our results suggest
using MPPM for high efficient transmission. (exceeding 0.027
nats/photon) and using OPPM for low efficient transmission.

The paper is organized as follows: In Section IT we give
a description of an OPPM channel model. We also provide
tight upper and lower bounds on the maximum throughput
for OPPM. Simple lower bounds for the maximum achievable
throughput of OPPM (with the error rate not exceeding a
certain threshold) are obtained in Section III. In Section
IV we describe the channel model of MPPM and provide
some bounds on the throughputs. A comparison between the
maximum achievable throughputs for both OPPM and MPPM
is also included in this section. Finally some remarks and
conclusions are given in Section V.

II. OVERLAPPING PULSE-POSITION MODULATION

A. OPPM Channel Model

The channel model for direct-detection optical OPPM with
overlapping index N € {1,2,.--} was introduced in [2].
In OPPM the information is conveyed by the position of a
laser pulse of duration 7 within a time frame of width 7.
An overlap with depth (1 — £)7 is allowed between any
two adjacent positions. We assume that there are M possible
positions within the time frame. The transmitted pulse is said
to be in position z, z € {1,2,---, M}, if it extends over the
subinterval starting at time (z — 1)% and ending 7 s later.
This subinterval will be called a slot. It is obvious that each
slot is subdivided into N smaller subintervals of width /N,
each will be called a chip. The relation between T', N, M,
and 7 is thus

T:(M—I-N—l)%.

Let the channel input (transmitted pulse position) be de-
noted by the random variable X and the channel output be
denoted by Y. The possible channel outputs and the transition
probabilities Py-|x can be found in [2]. We denote by s the
probability that the OPPM pulse is not erased. Thus

s - exp[-@Q] , n
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where () represents the average photon count per pulse. If p
denotes the transmitted information in nats/photon, then

log M
.

Q=

@

B. Error Probability for Uncoded OPPM

The average symbol error probability Pg(N) for uncoded
OPPM was derived in [3]. We provide here tight bounds on
this error rate. Pg(V), for equally likely input data symbols,
can be written as

M
Po(N) = Y 2 Pr{E|X =3} .

z=1

3

Let X = 1. If chip 1 is erased, an event that occurs with
probability e’%, then there is an ambiguity between at least
two symbols. Thus we have a chance of at least 1/2 to choose
the wrong symbol

1
Pr{E|X =1} > 56_% :
Pr{E|X = M} can be bounded in a similar way. If X €

{2,3,---, M — 1}, then the ambiguity occurs when at least
one chip out of the two chips 1 and NV is erased. Hence

1
Pr{E|X:x}2§e_%(2—e“%>,w€{2,3,---,M—-1}.
Substituting in (3) yields

M-1 @ M—2 22 1 _o 1 1
Pg(N) > - 2R >N =M
5(N) 2 —5r—e M 2 " T2 “

On the other hand an upper bound on Pg(N) can be
obtained as follows. Assume that X = 1(M), then we have
a correct event if at least the received count in chip 1(M) is
positive. Thus for z € {1, M}, Pr{C|X =z} > 1 — e~ % or

Pr{E|X =z} Se_'l(%, z e {l,M}.

Similarly if X € {2,3,---,M — 1}, then the correct event
occurs when at least the received photon counts in both chips
1 and N are not erased. Thus

Pr{E|X =2} < 2% — 2% < 26*%,

w€{2,3, -, M—1}.

Substituting in (3) yields

M-1 _q

Pg(N) <2 W§2—%:2M_Tf1—p,

)

The throughput of OPPM (in nats/slot) is given by

log M

def
RN, M) = LM+N-1)"

(©)
The maximum throughput for every N is given by

R (N) max R(N, M) .
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We are interested in estimating the optimum value of the pulse-
position multiplicity M™* so as to have a maximum throughput
Define

def N —

It is obvious that M™ is the solution of the equation

R(NM)_O or f(M)=0.

oM

The following lemma gives an estimate of M*.

Lemma I1: The optimum pulse-position multiplicity of the
uncoded optical direct-detection OPPM channel with overlap-
ping index N € {1,2,---} is upper bounded by

2N
* < [
M < log(N + 1),

and lower bounded by

. N
M Z\/NJrlog(Nﬂ-l) ’

Proof: 1t is easy to check that f(M) is a decreasing
function of M. Thus it suffices to show that

2N )go and f(x/ﬁ+

f(log(N +1) 20.

Og [NV+ I )
( )
USing Appenle A we can Wlite

a—1

1
—a+

N -1 N —
M) = - - _ M <
fM)y=1+ logM <1+

The last expression is nonpositive if

N —14e*7!
a—1

2N

M > =
log(N + 1)’

where the last equality holds if we choose g = 1 +16g(N +1).
. * 2N
Whence M* < W‘F—l)
The proof of the lower bound can be found in Appendix
B. 0
Theorem I: In an uncoded optical‘ direct-detection OPPM
channel with overlapping index N € {1,2,---} the maximum
throughput can be lower bounded as

g{@(%ﬂTﬂ
Rmax(N) 2
+ N[log(l\hl-l)-‘

and upper bounded as

log[ ozt

1N+\Flog(N+1) 1]
1+ log(N+1) - N

Rmax(N) <

where [z] denotes the smallest integer not less than z.
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Fig. 1. Maximum OPPM throughput versus the index of overlap.

Proof The lower bound is immediate by setting M =
[mg( 5 +1)'| in R(N, M). Applying Lemma 1, the upper bound
can be estimated as follows:

log M*
#(M*+N-1)
log | tn T |

= 1 N+VN log(N+1)
1+ N log(I\(;i—l '

Rmax(N) =

1
N

The upper and lower bounds are plotted in Fig. 1 along with
the exact values of Ry,.x(IV). The tightness of the bounds is
obvious from the figure. It is hard to find a gap between the
lower bound and the exact values of the maximum throughput.
This indicates that the optimum value of M is so close to
(gD |-

The above theorem demonstrates that we can increase the
throughput as we wish, but this will be accompanied by an
increase in the error rate. In the remaining of this section
we would like to examine the behavior of the throughput
when setting a constraint on the error rate. We will require
that Pg(N) < e From (5) this requirement is assured
whenever M > (2/¢)V?. For sake of convenience we define

the parameter ¢ s (2/€)?. Thus we consider the following
optimization problem:

R (N)Y max R(N,M). %

M:M>tN

The following theorem provides a tight lower bound to the
above problem.

Theorem 2: In an uncoded optical direct-detection OPPM
channel with overlapping index N € {1,2,---} the maximum
throughput defined in (7) can be lower bounded as

R(N, [tN7) ;
(N |-10g(N+1)-|) i

if £V > I_log(N+1)-I
else.

e { ]
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Proof: IftV < [1 (N+1)] the optimum value of M* is
almost (W] TN > [ sgixry |» the optimum value of
M* lies on the boundary of the feasible region (which is [t])
since R(N, M) is decreasing in M as long as M > M*. O

The constraint throughput (given by Theorem 2) is plotted
in Fig. 2 versus the overlapping index N and p for ¢ = 107°.
It is seen from the figure that for fixed p, the throughput
increases with N until a certain value, after which it begins
to decrease. This value is the maximum throughput that can
be achieved given an efficiency (nats/photon) and an etror rate
constraint. It is obvious from the figure that this value increases
as p decreases. In the following section we are interested in
estimating the behavior of the maximum throughput that can
be achieved for every p given an error rate constraint.

III. MAXIMUM ACHIEVABLE THROUGHPUT FOR OPPM
As mentioned previously, in this section we are interested
in solving the optimization problem

max R(N,M) .
M,N:

M>tN

Ry

®

The next theorem provides a good approximate solution to the
above problem.
Theorem 3: In an uncoded optical direct-detection OPPM

channel with overlapping index N € {1,2,---} the maximum
achievable throughput defined in (8) can be bounded as

R(N*,[tN"]) < R% < R(n*,t"") ,

where N* = max{[n],1}, n* = max{n,1}, and n is the
solution of the equation

t"(2~nlogt)+n—-2=0.
Proof:

A. The Lower Bound
Ry = max R(N,M) =

M>tN

> max R(N, [tV]) 2 R(N*, [tV .

max max R(N, M)
N M:

M>N

Indeed, the first inequality is true since we have chosen
= [tN] >t and the last inequality is true since N* > 1.

B. The Upper Bound
We start by noticing that
R} < max{R',R?},
where

R max R(n,my) ,

< mp

R*Z max R(n,t"), ©9)

> may,

and m,, is the solution of f(m,) = 0 or

14272 logm, =0. 10)

n
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Fig. 2. Lower bounds on the maximum OPPM throughput (subject to
P < 1079) versus both the index of overlap and the information efficiency
in nats/photon.

m,, increases with n. Indeed, the last equation can be written
as my log ™= = n—1. But z log £ is a nonnegative increasing
function in x only if z > e. Whence m,, > e and increases
with n. This in turn implies that R(n,m,,) is an increasing
function in n. Indeed it is obvious from (10) that

My, +n—1 n M, 1

= logm, and — =log e + —

Mn My, Mn

which yield

R(n,m,) = _nlogmn__ n log 2 + x
n+m, —1 My, e Mo,
But log £ + % is an increasing function in z for any z > 1.
Thus we have shown that R(n,m,,) increases with m,,. Since
m,, increases with n, we obtain that R(n,m,,) is an increasing
function in n. Now from (9)

ift<e,

L _
R' = max B(n,m,) = ift>e,

e Smn

R(ni,mn,) ;
0;

where n; > 1 is the solution of the equation ™ = my,,. If
t > e a solution does not exist for n; > 1. This interprets the
zero value of R'. R' can thus be upper bounded as follows:

R < max R(n,t™) .
n>1

But R? has the same upper bound as above. Hence

nlogt™
Ry < R(n,t") = —_—

N < max R(n, ") = max oo
To solve the last optimization problem we Differentiate the
last function and equate the result to zero

"(2—nlogt)+n—-2=0.

If the solution of the above function n > 1, then n* = n.
Otherwise n* = 1. O

Our last result in this section is to provide an estimate of
N* given in the previous theorem.
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1llogt
1

2/log t

K n
N t

K (n-2)/(n log t-2)

n

n—

Flg 3. nlogi 2°

Typical shapes of the functions t™ and where logt < 1.

Proposition 1: If logt < 1, then N* glven in Theorem 3
can be lower bounded by

max{2,log l—olg—t}
P [ logt ] '

Remark: 'The motivation behind this proposition is that we
seek the intersection of the two functions ¢™ and m As
seen in Fig. 3, the two extremes of the second functlon are the
vertical asymptote T%E and the horizontal asymptote 1olg - The
intersection of ¢ with the vertical asymptote yields n ~ Io?g <.
However, the intersection of t” with the honzontal asymptote
yields t* &~ 1/logt or n ~ 7 log Iogt

Proof: From Theorem 3 N * = max{[n],1}, where n
is the solution of the equation

—2
P S (11
nlogt — 2

It is easy to check that if logt < 1, then (cf. Fig. 3)

n—2 |[<1; :
nlogt—2| > =

ifn<io§t,
1fn210gt‘

— logt )

Since t™ > 1, it follows that the solution of (11) must satisfy

nlogt>2. (12)
Now (11) can be written as
n—2 1 nlogt — 2logt
logt =log ——— =log— + log——————
o8 OgnlogtﬂZ Oglogt+0g nlogt — 2
> log ——
- glogt>

where we have used (12) and the fact that logt < 1 to justify
the last inequality. Combining our results we obtain

14!
nlogt > max{2,log @} .
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But (12) implies that n > 2. Hence

max{Z,log ﬁ;}] . -

N : [n] 2 ( logt

Proposition 2: If logt > 1, then N* given in Theorem 3
can be lower bounded by

N* > [%1 .

Proof: In this case

n—2

>1; ifn<1—o‘,—t,
nlogt —2 ng‘;s

if n >

2

Togt Now

Since #"* > 1 and logt > 1, it follows that n <
we can write' (11) as

n—2 1 2logt — nlogt
o8 Ognlogt—2 Oglogt+ © 2—nlogt
<10g2logt—nlogt < 2logt — 2 ’
2 —nlogt 2—-nlogt

where we have used the fact that logz < x - 1 to justify the
last inequality. Noticing that 2 — nlogt > 0, we can rewrite
the above inequality as follows:

(nlogt)? — 2(nlogt) +2logt —2>0

or

nlogt >1++/3—2logt.

Noticing that nlogt > n, implies that the minus sign solution
is refused. Hence

14++/3— 210gt'1

NT 2 [n] 2 [ logt

At this moment two cases may arise.

Case 1: 1 < logt < 1.3

Here 1+ /3 — 2logt > 1.6. Thus
1. . .
vz [l = [l
logt logt

Case 2: logt > 1.3

In this case, we have

N*=max{fn1,1}312[13 O

log't] ‘
Using the estimates on N* given above, we have -the
following immediate lower bound on R},.
Theorem 4: In an uncoded optical direct-detection OPPM
channel with overlapping index N € {1,2, -} the maximum
achievable throughput defined in (8) can be lower bounded as

Ry > R(N,[t"])
where N = [2-], and

def [ max{2,log ==} ; iflogt <1,
a = g logt
1.3; else.
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Fig. 4. Maximum achievable OPPM throughput (subject to Pp < 1079)
versus the information efficiency in nats/photon.

Proof: Immediate from Theorem 3, and Propositions 1
and 2. a
The lower bounds (1) and (2) given by Theorems 3 and
4, respectively, are plotted in Fig. 4 along with the exact
solution versus the information efficiency p for e = 107°.
The tightness of the bounds are obvious from the figure. It is
hard to distinguish between the first lower bound and the exact
analysis except for a small range of p. The second lower bound
(2) coincides with the exact curve especially for the extreme
values of p.

IV. MULTIPULSE PULSE-POSITIONMODULATION

A. MPPM Channel Model

The optical direct-detection MPPM channel model can be
found in [7]. In MPPM, P optical pulses, P € {1,2,--}, are
transmitted within a time frame (of width 7°) which is divided
into M disjoint slots. Each laser pulse is signaled within one of
these slots and thus has a duration 7 = T'/M. The information
is conveyed by the positions of the optical pulses per frame.
Since there are (37) pulse patterns, the throughput of MPPM
(in nats/slot) is given by

acs log (p)

R(P, M) 2 (13)

B. MPPM Maximum Throughput
The maximum throughput for every P is given by

Rpax(P) def max R(P,M) .

As we did in OPPM we would like to find an estimate of
the optimum value of the pulse-position multiplicity M™ that
gives a maximum throughput. Define

P-1
def M _ M
fM) = ;ZO i log(P> .

It is easy to check that M™* is the solution of the equation
f(M) = 0. The following lemma gives an estimate of M™.
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Lemma 2: The optimum pulse-position multiplicity of the
uncoded optical direct-detection MPPM channel with P op-
tical pulses per frame, P € {1,2,---}, is lower bounded
by

M* > 2P .

Proof: Tt is easy to check that f(M) is a decreasing
function of M. Thus it suffices to show that f(2P) > 0.
We use the induction method: First, the assertion is true for
P = 1. Indeed f(2) =1 — log2 > 0. Second, assume that it
is true for P = [, i.e.,

-1

21 2
f(2l):;m—log<l>
21
= Z 2—l—l <2lZ>>0.
7=l+1

Third, we will show that it should be true for P = { + 1.

Indeed we can write

2042
2+ 2 o +2
F2+1) = e
A 1
J=l+2 .
2020+ 1)
= f(20) + +Z——1
2z+1 2 I+1
A+1 . 22A+1)
-1
g tAlee T Tlee Ty
1 o +1 1 20 +2
- ] > _2A+2
Tl %30+ S a1 I ES

where we have used the assumption of the induction and
Appendix C to justify the first inequality, and the fact that
logy > 1 — 1/y to justify the last inequality. The induction
method is thus complete. O

A good lower bound on the maximum MPPM throughput
follows as an immediate result of the above lemma:

Runax(P) > R(P,2P +1) .

This bound is plotted in Fig. 5 along with the exact values of
maximum throughput. The tightness of this bound is obvious
from the figure; it is very hard to distinguish between the exact
and the lower bound values of Rax(P).

C. Maximum Achievable Throughput for MPPM
The error probability for MPPM is given by [7]
Pp(P)=1-(1-e 9",

where () is the photon count per pulse and is related to the
information efficiency by

def log (]\zf) )

Q oD

The error rate can be upper bounded as Pg(P) < Pe™@
Thus the maximum throughput that can be achieved so as
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Fig. 5. Maximum MPPM throughput (exact and lower bound) versus the
number of optical pulses.

Pg(P) < e is given by

def
Ry = max
M,P:

(%)=(£e

R(P,M) .

We provide a lower bound on this throughput by noticing that
(M) S (M-P+1)F
p)Z

P!
and making use of Lemma 2. Thus

maxp R(P,2P +1) ;
if P+2> (2)e(P)7

e = maxPR(P P—1+4(2 )(Pv)%1);

else.
(14)

D. A Comparison between OPPM and MPPM
Maximum Achievable Throughputs

The exact maximum achievable throughput for OPPM (R%;)
is compared to the lower bound on R}, given by (14), under
a constraint on the error rate of 10~°. The results are plotted
in Fig. 6. 1t is seen from the figure that MPPM provides a
better throughput than OPPM if the information efficiency
is greater than a certain threshold (about 0.027 nats/photon).
Below this threshold, the throughput of MPPM saturates at
log 2. However, the throughput of OPPM can be increased
as we wish at the expense of both system complexity and
large power consumption (small efficiency). To figure out the
system complexity, we provide in Table I‘the corresponding
optimum values of N, P, and M. It is obvious that below the
threshold OPPM requires a great deal of both synchronization
and system complexity in order to achieve larger improvement
in throughput than MPPM.

V. CONCLUSION

Tight upper and lower bounds on the maximum OPPM
throughput have been derived under the assumption of
quantum-limited direct-detection channels. Simple lower
bounds for the maximum achievable throughput of OPPM
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Fig. 6. Maximum achievable throughputs for both OPPM and MPPM (with
Pg < 10~9) versus the information efficiency.

TABLE 1
PERFORMANCE AND COMPLEXITY COMPAR(SONS
oF OPPM AND MPPM WITH ¢ = 1079

P OPPM MPPM

nats/ph N M R P M R
0.001 209.0 88.0 3.161363 1000.0 2001.0 0.691135
0.005 30.0 25.0 | 1.788264 1000.0 2001.0 0.691135
0.02 5.0 9.0 0.845086 1000.0 2001.0 0.691135
0.04 2.0 6.0 0.511931 1000.0 - 2115.0 0.689752
0.06 2.0 14.0 0.351874 165.0 4156.0 0.647348
0.08 1.0 6.0 0.298627 59.0 224.0 0.564047
0.10 1.0 9.0 0.244136 34.0 186.0 0.461715 .
0.12 1.0 14.0 0.188504 30.0 2470 0.359464
0.14 1.0 21.0 0.144977 19.0 236.0 0.270037
0.16 1.0 31.0 0.110774 15.0 287.0 0.197285
0.18 1.0 48.0 0.080650 120 356.0 0.141361
0.20 1.0 73.0 0.058773 -| 10.0 452.0 0.099899.

(with error probability not exceeding a certain threshold) have
been obtained as well. The tightness of these bounds has been
examined and compared to the exact values. Lower bounds on
the maximum throughput for MPPM have also been included.
A comparison between the maximum achievable throughputs
for both OPPM and MPPM (under an upper bound on the
error probability) has been performed in the last part of the
paper. Our results suggest using MPPM for high efficient
transmission (exceeding 0.027 nats/photon) and using OPPM
for low efficient transmission. The advantage of OPPM (with
small p) is acquired, however, at the expense of large cost of
both system synchronization and complexity.

APPENDIX A

We show that for any two real numbers a and z,

a—1

logz > a—

z
Proof: Define the function

a—1

g(z) s logz —a+ pat
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It suffices to show that g(z) > 0. The first derivative of this
function is given by

, _]; 3 ea-l
g(@) ==~ —3
It is easy to check that this function has a global minimum at
z = e® 1. Hence g(z) > g(e*~1) = 0. O
APPENDIX B
. . _ N
We 3how that (in Lemma 1) if My = v N+ Ta(NFD)* then
g(N) of f(My) > 0. We can see that the first derivative of

g(N) is given by

(V) = 3 hCN) B1)
where
WN) Y My — (N = )M}y — My My
and
e 1 1 N

NToUN g1 (N +1)log* (N +1)

Thus
N? 1
N) = i
hN) (N+Dlog3(N+1) 2 (N+1)log’(N +1)
N VN LoL 1 3N
2 2/N log(N+1) 2log(N+1)"
(B2)

N(VN - 2)

The first term is greater than 0.65 and the third term is
nonnegative as long as N > 4. Hence for any N > 4

T 7 2v N 3N
h(N)> — |1+ N — .
(N) 2~/N[ + +log(N+1) 10g(N+1)}
From Appendix A we have log(N +1) >3 — N—EiT Thus
1 2vN — 3N
h(N) > —[1+N+‘—eg—
2/ N 3 22y

B N+1
~ 2V/N(3N + 3 —¢?)

[2x/JV —(e? - 3)] .

The last expression is positive if N > 5. On the other
hand, simple calculations to (B2) lead to h(N) > 0 for
N € {1,2,3,4}. Hence h(N) > O for any N € {1,2,---}.
Substituting in (B1) yields that g(N) is an increasing function
in N. Whence g(N) > g(1) > 0. O

APPENDIX C

We show that for any two positive integers a and b,

b
b+1 1
! < — < .
08 a _;i_Oga—
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Proof: It is obvious that

"1 g b1 b dx
— < - < —_— .
/a z_;i_/lz_lx

The proof can be completed by performing the two integra-

tions.
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