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A Comparison between the Performance
of Number-State and Coherent-State
Optical CDMA in Lossy Photon Channels

Hossam M. H. Shalaby, Member, IEEE

Abstract— The performance of optical code-division multiple-
access (CDMA) communication systems utilizing number-state
light field is evaluated. Lossy direct-detection optical channels
are assumed. Both on-off keying (OOK) and pulse-position mod-
ulation (PPM) schemes are investigated. For OOK, the exact
bit error rate is evaluated taking into account the effect of
both muitiple-user interference and transmission loss. Upper
and lower bounds on the bit error probability for PPM-CDMA
systems are derived under the above considerations. The ef-
fect of both background and thermal noise is neglected in our
analysis. Performance comparison between the number-state and
coherent-state OOK/PPM-CDMA networks is also presented.
Our results demonstrate that the number-state system requires
less than half the energy consumed by the coherent-state one in
order to attain the same performance. Lower bounds on the maxi-
mum number of simultaneous users are derived for both number-
and coherent-state PPM-CDMA systems with asymptetically zero
error rate.

[. INTRODUCTION

HE quantum fluctuations of light photons generated by a
Tcoherent state laser lead to an uncertainty in estimating
the number of photons contained in a coherent light pulse.
This number can be modeled as a Poisson random variable
with parameter (or mean) equals the average photon count per
pulse [22]. A cohgrent state is a minimum uncertainty state
that satisfies the Heisenberg uncertainty principle between two
canonical physical quantities of light. The uncertainty relation
between the photon number n and the phase ¢ is

An? - A¢? > %

where Azr denotes the fluctuation (uncertainty or noise) of
quantity . It is not possible, in the coherent state, to reduce ei-
ther of the above fluctuations below certain threshold. In other
words, coherent state exhibits uncontrolled sources of noise.
On the other hand, new quantum states of light (squeezed
state and sub-Poisson state) whose two quantum noises can
be controlled have been studied [1]-[7]. In these quantum
states one source of noise can be reduced at the expense of
increasing the other so as to maintain the uncertainty relation
unchanged. In the sub-Poisson state it is possible to reduce
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the photon number fluctuation below that of the coherent state
by increasing the uncertainty of the phase. In the limit where
we have no (or zero) photon fluctuation, we get what is called
photon number state. Thus the photon count contained in a
light pulse generated by a number state laser is a nonrandom
unique value. That is, every transmitted photon, in a lossless
channel, will appear as is at the receiving end. This property
is useful in optical communication systems utilizing direct
detection. If the optical channel is lossy, however, some
of the transmitted photons may disappear before reaching
the photodetector. Assuming that » € [0,1] denotes the
transmittance coefficient of the lossy channel, the probability
of detecting exactly n photons given that rn photons have
been transmitted can be written as

Pr{n|m} = (7:)7/"'(1 -, ne{0,1,---,m}.

The above equation demonstrates that number state optical
pulses also yield random photon counting processes at the
receiving end if the channel is lossy. Therefore performance
degradation is expected as 7 decreases even in the absence of
the background noise. ]

Recently, an increasing interest has been given to optical
code-division multiple-access (CDMA) techniques because
of their ultrafast signal-processing speeds [8]-[18]. Several
models for optical CDMA communication networks have been
suggested in literature. In a typical system model there are N
simultaneous sources of information (users) which produce
continuous and asynchronous data. The data of each user
modulates a laser scurce using either on-off keying (OOK)
or M-ary pulse-position modulation (PPM) schemes. Each
modulated signal is then multiplied by a periodic signature
(code) sequence of length L and weight w. Denoting the bit
rate by Ry bfs, the chip time 7. of the sequence can be shown
to be given by

1
. for OOK
T.={ ;o) 5
, for PPM
MLR, ©orFF

where M denotes the number of possible pulse positions (slots)
within a PPM time frame. Instead of the above multiplication
process, we can equivalently use an optical encoder which
is composed of an optical splitter, tapped optical delay lines,
and an optical combiner [8], {21]. The output optical pulses
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of each multiplier (or optical encoder) undergo transmission
loss in the channel before reaching the receiver. The received
waveform is composed of the sum of N delayed and attenuated
signals from each user in addition to the background noise.
Each user performs its own decoding technique by multiplying
the received waveform by the same underlying code sequence
and integrating over the desired interval. Also instead of the
multiplication operation we can use an optical matched filter
(or correlator) characterized by the specific code sequence of
the desired user [11], [12], [15], [18]. Finally the output of the
correlator is forwarded to an OOK/PPM demodulator which
decides on the true data.

In this paper we aim at comparing between the bit error
rate performance of coherent and number state optical CDMA
systems utilizing either OOK or PPM modulation techniques
in a direct-detection optical channel. In our theoretical analysis
we consider the effect of the transmission loss due to the
attenuation in the optical channel. We neglect, however, the
effect of both the background and thermal noise. In order
to have some insight on the results obtained we assume
chip-synchronous uniformly-distributed relative delays among
the transmitters and perfect photon counting processes at the
receivers.

In the numerical analysis, we employ optical orthogonal
codes (OOC’s) [19], [20] as the signature code sequences. To
have minimal interference between the users we adopt OOC’s
with periodic cross-correlations and out-of-phase periodic au-
tocorrelations that are bounded only by 1 [19].

The remaining of our paper is organized as follows. Section
IL is devoted for the derivation of the bit error rate for optical
OOK-CDMA through Both coherent and number state lossy
channels. Upper and lower bounds on the bit error probability
for PPM-CDMA systems are derived in Section III. Perfor-
mance comparisons between the coherent and number state
channels are illustrated at the end of the above two sections.
In Section IV we derive asymptotically (M — oc) achievable
expressions for the maximum number of simultaneous users
that can be accommodated by both number- and coherent-
state PPM-CDMA systems. Finally extensions and concluding
remarks are given in Section V.

II. BiT ERROR RATE FOR OOK-CDMA

In OOK a signature sequence is transmitted (of w laser
pulses) to represent data bit “1”. Data bit “0” is represented,
however, by zero pulses. We denote by « the number of pulses
(from the other users) that cause interference to the desired
user. In OOC’s with cross-correlations bounded by one, each
undesired user may contribute only one pulse to this number or
contribute no pulses at all (since we assume chip synchronous).
Hence & is a binomial random variable with parameters w? /2L
and N — 1 [17]

an 2N N-1-1
N —1)/[w? w?
=t =) G) (-52)

le{0,1,---.N—1}. )

593

The Decision Rule: As usual, a threshold § is set. If the
collected photon count in one bit time is less than this
threshold, “0” is declared, otherwise “I” is declared to be
sent. The probability of bit error is thus given by

Py(8) = S(PIEI0) + P[EN])
N-1

=1 S (PIEI0,k =]
=0

+ PE|L,s =1])Pr{x =1} (3)

where PlEJi, x =[] is the probability of error given that
i € {0, 1} was sent and there are ! interfering pulses with the
desired user. To evaluate this probability of error we consider
the following two cases (A and B).

A. Number State

We assume that exactly rn photons are contained in each
transmitted pulse. i.e., a total of m photons are transmitted
during the bit time of data bit “1”. A decoding error can thus
occur (given that “0” has been sent and [ pulses have interfered
with the desired user) if the number of collected photons is
at least equal to #

ml
4
Z("’Unﬂ(l T s
n m

P[E ()’ K= l] = n==0
0. otherwise.
(4a)
Similarly
PE|l,k =1
61
’ , f—1
Z (m(w +1) )nn(l _ ,,’)m(wH)*”, ifl > —w
= n=0 n A "
1 otherwise.
(4b)

B. Coherent State

Assuming that the average transmitted photons per pulse
equals m, then the average received photons per pulse (due
to channel loss) becomes nm. Hence for a PIN photodetector
which output is a Poisson random variable [22]

R (mmd)"
P[E0,rx =] = Zexp[-nml]T

n==0
0—1
PE|L,k=1]= Z exp [—nm(w + )]
n=0
' (nm(w + l))" )

n!

Numerical Results: The optimum threshold which mini-
mizes the bit error rate in (3) has been evaluated numerically
for w = 5, L = 500, and different values of n, N, and m. The
minimum bit error rate P, = ming P;(#) is plotted in Figs. 1
and 2 for both number state and coherent state. The superiority
of the number state network is obvious from the figures. For
example if N = 5, n = 0.7, and P, < 107° we need (at
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Fig. 1. Bit error probability as a function of the number of users and

phatons/pulse for OOK-CDMA with 5 = 0.7, w = 5, and L = 500.

least) m. = 15 for the number state whereas m = 40 for
the coherent state. This indicates that more than 60% save in
energy is gained when usiﬁg the number state OOK. It is also
noticed that for n = 0.7 the performance of the number state
system with ten simultaneous users is almost similar to the
coherent state system with only five simultaneous users. Also
for n = 0.4 or 0.7, the performance of the number state system
with 15 users is competitive to the coherent one with ten users.

III. BIT ERROR RATE FOR PPM-CDMA
In M-ary PPM a time frame of duration T is divided into
M disjoint slots each having a width 7 = T/M. Symbol
i € {0.1.---, M — 1} is represented by transmitting a
signature sequence within slot number :. We denote by x;,
i € {0,1,---, M — 1} the number of pulses (from other
users) that cause interference to slot « of the desired user.
As in the case of OOK, k; is a binomial random variable but
with parameters N — 1 and w?/M L. The joint distribution of
any two random variables «; and #;, i # j is given by
Priwi =li,k; =1}
1AL
r=0v{,+1, —(N-1)
(N =1)!
NG =W =) (N =1-1; =1 +7)!
roge o ST s Li—r . .
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Fig. 2. Bit error probability as a function of the number of users and

photons/pulse for OOK-CDMA with 7 = 0.4, w = 3, and L = 500.

where & Ay 4f nin {r,y}, zVvy 4l hax {z,y}, and
=l w?
M2 ML

Y N e AN

Pll)(l’5.]) - <1 J\’[z ML 3

Por(4, 7} = Pio(4,5)

Poo(é,j) =1 — Pra(i, §) — Pro(é,4) — P (é,5). ()

Pri(i, ) =

The derivation of this distribution can be found in Appendix A.

1) The Decision Rule: We denote the photon count col-
lected in slot ¢ € {0,1,---, M — 1} by Y;. Symbol “” is
declared to be transmitted if Y; >Y; for every j # i; an
incorrect decision is made if the photon counts for two or
more slots are the same. We now provide a union bound on
the probability of word error Pg. The bit error rate P, is related
to Pg by the well-known formula P, = (M/2/(M — 1))Pg

M-1

Pg =Y P[B|i]Pr{i}

=0
where Pr{i} = 1/M in the case of equally likely data and
P[E|i] = Pr{Y; > Y,. some j # i|i}

M-1

< 3 Pr{y; 2Vl

i=0g#i

Denoting the union bound by P§ and noticing that Pr {Y; >
Y:|i} depends only on the absolute value of the difference
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, we get 3) Upper Bound on P¥: This bound is provided by notic-
ing that
M-1 M-1
Z Y Pr{y;2Yili} Pr{Yy > Yol0, k0 = lo, g = la}
=0 =007 SPr{Yq 2 Y3l0,hg = 0, kg = 13}

AM~-1
Z M = d)Pr{Y; > Yili, |i — j| = d}

M = - Hence by substitution in (9)
g M-
= (M —d)Pr{Y; > Yol0}. (®) Pty
M PriYo>Yolo}< > >
v 1o=0 14=0
The probability under the summation can be evaluated as “PriYs 2 Yo|0, k0 = 0,54 = L4}
follows -Pri{ro =lo, 50 = lq}
N-1N-1 Py
L e e = Z Pr{Yy > 5|0, k0 = 0. 54 = lq}
Pr{Yy; > Yol0} = Z Z Li=0
15=0 {4=0 Prin, =1
Pr{Yy > Yol0, k0 = lo, i = L) Priwa=la}.
“Pr{no =lo, ka = 140} Using (8), we obtain
N-1N-1
1y=013=0 -
v
PI‘{Yd ZY()IO,HQ :lg,fcd=ld} PE SM Z
L=
“Prio =lo.ra = la}. @ Pr{Ys > Yol0, ro = 0. k4 = lu}
M—1 2 \ b
This union bound is still too complex, however. We thus Z (M ~ d)( 1) (L)
provide tight upper and lower bounds on the above union ML
bound w? N-1-l4
2) Lower Bound on PY: Wi it 1=
) Lower Bound on Py € can write < ML)
. N-1 1q
N-1 N-1 2
Pr{Y; > ¥;/0} > Z Pr{Yy > Y5|0,60 = 0,ka = la} =(M—1) IZU ( lg )(NIL)
14=0 =
. ‘Pri{ro = 0,64 = lg}. N _ﬁ'i Nl
ML
Using (6) and (7), we obtain -Pr{Y; > Y5[0, 50 = 0,54 = la}.

(1D

Pr{ko = 0, xg = lg} = (de )Pé;’(o d)PN-17l4(0, )
What remains to complete the evaluation of the error bounds is
to get expressions on Pr {Y; > Y5[0, ko = 0, kg = l4} under

where both number state (A) and coherent state (B) assumptions.
d \ w?
P =(1- L)
’ ] M
’;4 L A. Number State
Poo(0,d) =1 - i Po1(0,d). Assuming that exactly m photons are transmitted per pulse,
we can write
Hence
Pr{Y,; >Y, = lq}
2 N-1 mlg [
PUZ— Pr{Yy > Y5[0.60 = 0,64 =l miq R (1 = mlg—nq4
E 277 l;) { I } = ZO g 7)
M-1 -1 dnd/\mw
M-~d mw ngo _ o ymuw—nyg
DY (") . Z_U(m R

- Pot (0, d) Py~ 14 (0, d). (10) (12)



596 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 13, NO. 3, APRIL 1995

T

Lower bound Upper bound

0.001

T T

0.0001

T

1E-05

T

1E-06

T

1E-07

Bit error probability, Pb

T

1E-08

T

1E-08

R

1E-10 L ' L
(1] 10 20 30 40 50

Number of photons/pulse, m
Fig. 3. Upper and lower bounds on the bit error rate union bound as a

function of the pulse position multiplicity and photons/pulse for number-state
PPM-CDMA with 5 = 0.7, 1 = 5, L = 500, and N = 20.

B. Coherent State

Assuming that the average transmitted photons per pulse is
equal to m, we have

Pr {);[ > Y})|U Ko =0,kq = ld}

feo]
. mlg)™
= Z exp [mnld]%

ng=0
nd

1 v no
- E exp {rmauw] m— . (13)
7

(MM
7y =0 0

Numerical Results: Upper and lower bounds on Pg have
been evaluated numerically for the case of number state with
w =05, L = 500, N = 20, and different values of n, M, m.
These bounds (scaled to the bit error probability) are shown
in Figs. 3 and 4. It is clear that the upper bound on P¥ is
so close (same order of magnitude) to the true union bound
especially for large M. Because of its simplicity we use the
upper bound on Y in the following numerical analysis. A
comparison between number- and coherent-state bit error rate
is shown in Figs. 5 and 6 under the above parameter values.
The superiority of the number state system over the coherent
state one is clear from the figures. As an example, if N = 20,
7 = 0.7 and P, < 1077, at least m = 9 photons/pulse are
required for the number state whereas m = 28 for the coherent
state if M = 32. When M = 16, m becomes 16 in the case
of the number state and becomes 48 for the coherent state.
The above numbers indicate that energy is saved by more than

0.1

Lower bound Upper bound

0.01

T

0.001

Ty
X

0.0001

*
*

2
I

L]

1E-05

Bit error probability, Pb

T Ty

1E-06

T T
-

1E-07

ARERALL

1E-08 L L ' L
0 10 20 30 40 50

Number of photons/pulse, m

Fig. 4. Upper and lower bounds on the bit error rate union bound as a
function of the pulse position multiplicity and photons/pulse for number-state
PPM-CDMA with 7 = 0.4, «w = 5, L = 500, and N = 20.

66% when using the number state PPM. Another remark on the
curves is that the performance improves as M increases. From
Fig. 5 with P, < 10~ 7 there is about 44% save in energy per
pulse when switching the number state system from M = 16
to M = 32. This percentage is, however, misleading; a fair
comparison should be based on the transmitted photons per bit
not per pulse. Hence for M = 32, mxw/logy M = 9+5/5 =9
photons/b is consumed versus 16 * 5/4 = 20 photons/b for
M = 16 to attain the above bit error rate. That is, the true
save in energy is about 55% (not 44%). A serious problem in
system realization may arise as M increases above 32 because
the chip time must be decreased in order to hold the bit rate
fixed. The resulting laser pulsewidth will in turn be too difficult
to generate with the current optical technology. A quick look at
the curves suggests a crucial solution to the above problem by
using number state systems instead of the coherent state. The
performance of the number state with M = 16(8) is almost
competitive to the coherent state system with A = 32(16) for
m exceeding 30.

IV. LOWER BOUNDS TO THE MAXIMUM
NUMBER OF SIMULTANEOUS USERS

PPM is one of the most efficient techniques that can be used
over ideal optical direct-detection channels [23]-[25]. In [26]
we have derived an achievable expression for the maximum
number of users (Nas max) that can communicate simultane-
ously with asymptotically zero error rate in a synchronous
coherent optical PPM-CDMA system with lossless channels.
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Fig. 5. Bit error probability upper bound as a function of the pulse position
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Namely, we have shown that

. Nagmax — 1 _
lim inf ~—ebmax =~ = (14p)
M—o00 M(l+pul~e”)/pw

In other words, for any § > 0 arbitrary small if N <1+ (1 —
Sywe= P ArLirow=c")/pw then limps_,.o Pg = 0. Here p
denotes the transmitted information in nats/photon

def log M

mauw

In the case of number state, n denotes the exact number
of photons transmitted per pulse, hence m is an integer. In
the case of coherent state m denotes the average photons per
transmitted pulse.

In this section we aim at deriving similar expressions
for both chip-synchronous number- and coherent-state opti-
cal PPM-CDMA systems with lossy channels. The intended
expressions are provided in the following two theorems.

Theorem 1: For optical orthogonal code sequences with
length L, weight w, and cross-correlations bounded by one,
the maximum number of simultaneous users, in an optical
number-state chip-synchronous PPM-CDMA system, is lower
bounded by

P Nv]w,max -1
lim inf -
M—oo Mlpw—log(1—y+nec/n)/pw]

z 5(7’ + (1 = p)e=P/M)e= 1/ I+ L=n)e /7]
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Fig. 6. Bit error probability upper bound as a function of the pulse position

multiplicity and photons/pulse for PPM-CDMA with = 0.4, w = 3,
L = 500, and N = 20.

or

l{?ffwéiﬁ%—l) >1- ;%log(l -n+ T)c"/")
where p, 7, and M denote the transmitted information in nats
per photon, the transmittance coefficient, and the pulse position
multiplicity, respectively.

Proof: An upper bound on Pg (based on Chernoff in-
equality) is given in Appendix B. We start by estimating
suitable values of s € [0, 1] and z > 1 for this upper bound
so as to have asymptotically zero error rate. It suffices to show
that the expression in the right-hand side of (B1) is positive.
We denote this expression by sh(s)

def 1 . N -1
h(b’):—ﬂ—glog(l—’r]—i-nz )7m
w? w? .
log |1 — WL + —Aé;_L(l —n+ ,,]z)log[u/pu )

From the continuity of h(s) for every s € [0, 1], we have

h(s) = liII(l)h(S) —o(s)

where o(s) — 0 as s — 0. Whence it suffices to show
that lim,_,g h(s) > 0. Indeed, this implies that for s > 0 small
enough A(s) > 6, where § >0 arbitrary small which in tumn
leads to Pp < exp[—sélog M/p]. Hence Pg decreases to
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zero as M — oc. It is easy to check that

2 2
w" u=

lim A(s) =] N—ll o N
M SR E T oM T T ML T ML
{1 —-n+ 712)1"5 M/pw}

N—-1 w?
 log A/[/pm
(N - 1)pu?
"~ LlogM
. Mllog(l=n+nz)—pw]/pw

>nlogz ~p (1-n+ ,,’Z)log M/ pw

=nlogz —p—

The last term is positive if

nlog z —
N-1< nNOeETP 2> 1
M[log(1—n+n:)—pw]/pwL
Llog M
Hence
[Vi\f,max -1 2 lll;lx noes L 2
721 g pllog(1—ntns)—pwl/pw _PU__
Llog M

To obtain the maximum of the expression in the right-hand
side we differentiate it with respect to z and equate the result
with zero. Hence the optimizing 2* must satisfy

M/ pr
L (ylog 5" — p) log M/ pw _

(27) 1—n+n*

From Appendix C we conclude that

p * p 'u/'
) - Lz <e =11 .
o[ <= <o (14 5057

Whence

jv}\[,ma.\' -1

N nlogz* —p

pw?
Llog M
Lo+ -nC)!

w ’ Mlog(1-n+nz*)—pw]/pw

P w
n+ (1 —-n)exp [-5(1
n+( 71)Pxp[ 7}( +10gM>]

Mllog(1=n+nz*)—pul]/pw

L
2 ‘w M Uog G=n+nexpl(p/n)(1+[w/log MD])—pw}/pw
(14)
Taking the limit as M — oo, we obtain
lim inf Nt max — 1
M—oc Mlpw—log(1—ntner/ )]/ pu
> £("I +(1- TI)C—P/W)6—1/[n+(1*"1)r"“"”]'
w
O

Theorem 2: For optical orthogonal code sequences with
length L, weight w, and cross-correlations bounded by one,
the maximum number of simultaneous users, in an optical
coherent-state chip-synchronous PPM-CDMA system, is lower
bounded by

J)V_M,max -1 > E(,—(H‘ﬂ/?lj

li’fﬁf#f Mpwn=nerim)/pw) = 4y
or
.. log(NM ax 1) 1 .,
1 o\ T Mmax - ) — (p — ne/
it = s 21T (e

where p, 77, and M denote the transmitted information in nats
per photon, the transmittance coefficient, and the pulse position
multiplicity, respectively.
Proof: The proof is similar to that of Theorem 1 with

slight modifications. O

It is obvious from the previous two theorems that the
estimate of the lower bound on the maximum number of users
in a number state is greater than that of a coherent state. These
estimates become close to each other when p — 0.

In the case of lossless channel, = 1, the lower bounds
given by the above two theorems reduce to (cf. (14) above)

L
14+ Ze tpw—1/w
w
for r%lmber state
1+ (1 - (5‘”)_(3‘(1+P)]\,[(PU’+1"FP)/P“"
for c%herent state

Arl\[mnx Z

where 8;; — 0 as M — oo. The last expression for the
number state does not depend on p, which is an expected result
if the channel is lossless where every transmitted photon will
appear at the receiving end. It can also be noticed that the lower
bound for the number state users increases with M. Since the
maximum number of subscribers cannot exceed N < (L —
1)/w(w — 1) [19], there always exists an M* > 0 such that if
M > M™, all the subscribers can communicate simultaneously
with acceptable performance. The last conclusion can also be
withdrawn for the case of coherent sate but under the condition

pw+1>e’.

If this condition is not satisfied then the lower bound decreases
as M increases.

V. EXTENSIONS AND CONCLUDING REMARKS

Bit error rates for optical chip-synchronous CDMA com-
munication systems utilizing both number- and coherent-state
light fields have been derived for lossy direct-detection photon
channels. Exact expressions have been obtained for the case
of an OOK modulation scheme. Tight upper and lower bounds
on the union bound have been provided when PPM is used.
The effect of the multiple-user interference and transmission
loss has been considered in the numerical analysis. Our results
suggest using the number state system instead of the coherent
state one in optical CDMA because of its superiority over
the latter. Namely, the number state system requires less
than half the energy consumed by the coherent state one to
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Fig. 7. Upper and lower bounds on the bit error probability as a func-
tion of the pulse position multiplicity and photons/pulse for number-state
PPM-CDMA with 5 = 0.7, w = 5, L = 500, and N = 20.

attain the same performance. That is the maximum number of
simultaneous users is larger in the case of number state.

In our analysis of PPM-CDMA we have used an upper
bound on the bit error rate. In order to figure out the uncertainty
on the exact P, we provide the following lower bound

M-1

Y PIEli] Pr{i}

=0

AM-1

= 3" Pr{i} Pr{Y; > Yi. somej # ili}

=0

M-2

> Pr{i} Pr{¥is1 > Yili}

=0

+ PI{J\/[ — 1}Pl‘{yi;\1_2 Z K’v[—llﬂ/j — 1}
N-1N=-1

= Z Z Pr{Y1 > ¥u|0. 50 = lo. k1 = I }

ly=01,=0

-PI’{HU = [(),H,l = ll}

N-1

> Pr{Yy > Yol0.m0 = 0,51 =1}

=0

'PI'{H.[) = (].N] = ,1}

Pg =

Y

v

The upper and lower bounds on Fj have been evaluated
numerically for the case of number state with w = 5, L = 500,
N =20, 7 = 0.7, and different values of M, m. These bounds
are shown in Fig. 7. It is clear that the upper bound determines
the exact bit error rate within 1.5 orders of magnitude.

Theorems 1 and 2 are incomplete in the sense that they pro-
vide only lower bounds on the maximum achievable number
of users. In the meantime we are trying to find converse results
by providing tight upper bounds.

APPENDIX A

First we assume that we have only one interfering user. The
probability that this single user causes exactly one interference
pulse (hit) in slot ¢ of the desired user is given by P,(1) =
w?/ML [16]. It is easy see that the probability of exactly one
interference pulse (hit) in slot 7 given that a hit has occurred
in slot 4, j # 4, is given by

li —Jl
M2

Pm(1|l) =

The probability of exactly one hit in slot j given that no hits
have occurred in slot 4, j # 1, is thus given by

- P ;(1,1)
P;(0)
P;(1)P;:(1{1)

Pi(0)
i - jl
)

_ w?/ML

T 1-w?/ML (
Now we assume that there are NV — 1 interfering users. Hence
the probability of /; hits in slot j given I; hits have occurred in
slot 4, j # i, is calculated as follows. Out of the /; hits in slot
4 there are r hits due to those users who contribute hits in both
slots ¢ and j. The remaining I; — r hits are due to those users
who contribute hits in only slot j and not in i. The number r,
thus, can not exceed /; and [;. On’the other hand, the value
I; —rcannotexceed N — 1 —l;,ie,r>1; — (N -1-1;).
Whence

Pyp(ajo) = ) - )
_ B~

P]'{Hj = lj|fii = lL}

1AL

- > (H)mama-

=0V —(N—1-1;)

N——l—li -7 \
( - )Pj1i (10)

. (1 _ PI“(HO))N_l_Z’_(ZJ_T). 0

Pj|i(1|1))l’_T

APPENDIX B

We show that for any two real numbers s € [0,1] and z > 1,
the probability of a word error, Pg, in the optical number-state
chip-synchronous PPM-CDMA channel can be upper bounded
as

_ log Pg S
logM/p —
N-1 w? w?

JE P —— - - 1 — log M/ pw .
Rl Ll vo ol AN

—sp—log(l—n+mnz"")

(B
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Proof: The probability of correct decision can be written  as follows. For any 2z > 1

as
ml, I
i n ml;—n
S (Y-
M-1 W Ty
Pe =Y PlCli]Pr{i} i,
i=0 _n, [l v _
e < Z s ( n]] )nn,(l _ n)mlj n;
M-1 _ jM~1 ny=n; :
= Z Pr{i} Z Cli, Ky =1y ] ’ m
i=0 [P < ml')
S L 27 ( 7 "n] (1 _ 77)mI]—n_.,
. Pr {N(J']\J 1 ’(f;ll 1}. nJZ:O ny
=z""(1—n+nz)mb.
where l‘”’1 and n;}’ ~! denote the vectors (ly, -+, [a;—1) and Substituting in (B2) yields
(Ko, -+ Kar—1), respectively, and
PlE|i, &)1 =131
M—1 _ jM-1 ’
P[C)i. 5y -_/ ] M1 s
=g,y Lo, 00 ligr o lar ] <{1=n4nz"%)™" Z (1—=n+nz)™
= P[Y,,- > Y,v FEX] 9=0,j7#1
I NPT P |1 PR PREENY YRy

- Hence the probability of decoding error given i can be obtained
Z ey . (1= p)mem by the second equation at the bottom of this page. The
=\ convexity of the function x*® is utilized in the last inequality.
M-1 (n,—1)Aml; Using the relation Py = LM 71 P[EJi] Pr {3} yields

ml;
H Z ( 71,_,-.1 ) l()g PE

j=0#i =0 B . ) .
/ n / mi,—n l()g AI/[) - Sp— Af/ Og( - n+nz )
7l J(l _.,I) 5 £ N I .
log |1 L+w—(1“7]+7]2)m
log M/p ML " ML

For any 5 € [0, 1] the probability of decoding error given i
and ky M-1 l(")w_l can thus be bounded as (B2), shown at the

bottom of this page, where we have made use of Appendix D. Substituting for m = log M/pw in the last expression com-

The second summation in the brackets can further be bounded ~ Pietes the proof. .
e A—1 ml; !
Mg M- HYES mw n; nw—mn; me; i mlj—n;
R TS o (O RIS IR Vol (R ol ( ERT R
n,=0 " =0, j5#i nj=n, 7

8
mw

M-—1 ml;
mw\ . mu—n ml; -n
< Z ( T )Tl I(I B n) l Z Z ( ) 1 - [1) o (BZ)

;=0 J=0,j#in;=n;

PIEli} = Z P[E|’I:,K31ﬁl _l’\[ I]Pr{hM 1’]0[ 1}
l.’W*l
M-1 )
<(L=n+nz")mv ZPI {&)-1 =131 E (1= n-+nz)™s
e =0,

8

M-1 N-1

S(U=n4m)™ | > Pris =L - n+n2)"h
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=(M -1l —n+nz"%)m" [1 -



SHALABY: COMPARISON—NUMBER-STATE AND COHERENT-STATE OPTICAL CDMA 601

APPENDIX C

Consider the function

de log M
g(2) En+ (1 —n)z"" — (nlogz ~ p) ij , z>1

where M and w are positive integers. p >0, and 7) € [0, 1]. We
show that the solution of the equation g(z) = 0 must satisfy
the inequalities

P 4 w
xp 12 <z<exp [E(1 .
P M =f=e [W( * logM)]

Proof: This function is monotonically decreasing in z
as long as z > 1. Indeed since the first derivative of g(-) is
negative

dg
dz

_qlog M

(V= >1) (2)=—(1-n)z"% =9z W<O.

Hence it suffices to show that

(o)
ooz oo

Indeed, we have
S|P - —p/n
g(CXp [ED =7n+{1-ne >0

and .

p w
o(o 50 m))

p w
1- > —=11 -1
ntil ")OXP{ n( +logM)}

S 5

and

1

APPENDIX D
Let z; € [0,1].7 € {1,2,---. M}, where M > 1 is any
integer. We show that
M M 8
1—H(1—.’L‘i)§ Z.Lz
i=1 i=1

for any s € [0,1].
Proof: First we show that

M M
1= =2) <> (D)
i=1 i=1
Define the function
M M
N ET[a-2)+ Y o
i=1 i=1

It suffices to show that f(M) > 1 for any integer M > 1. We
use the induction method in our proof.

1) True for M = 1:
M =1-z1)+z1=1.

2) Assume True for M = 1:

{ !
foy=JJa-2)+> w>1 (D2)
i=1 :

i=1
3) We Show That it is Also True for M =1+ 1:

i+1 41

fu+n=JJa-z)+>
i=1

i=1

l l

=(1- .’El+1)H(l —zi)+x41 + Z”Ll

i=1 i=1
1
=) + 241 — B H(l —ua) > 1
i=1

where we have made use of (D2) and the fact that z; < 1.
Now the left-hand side of (D1) is less than one. Whence for
any s € [0,1]

M M s M b
1—H(1—.q:i)g 1—-H(1—;171;) < ZT . O
i=1 i=1 i=1
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