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Performance Analysis of Optical Synchronous CDMA
Communication Systems with PPM Signaling

Hossam M. H. Shalaby, Member, IEEE

Abstract—Direct-detection optical synchronous
code-division multiple-access (CDMA) systems with
M-ary pulse-position modulation (PPM) signaling are
investigated. Optical orthogonal codes are used as the
signature sequences of our system. A union upper
bound on the bit error rate is derived taking into ac-
count the effect of the background noise, multiple-user
interference, and receiver shot noise. The performance
characteristics are then discussed for a variety of sys-
tem parameters. Another upper bound on the proba-
bility of error is also obtained (based on Chernoff in-
equality). This bound is utilized to derive achievable
expressions for both the maximum number of users
that can communicate simultaneously with asymptot-
ically zero error rate and the channel capacity. Our
results show that under average power and bit error
rate constraints, there always exists a pulse position
multiplicity that permit all the subscribers to commu-
nicate simultaneously.

I. INTRODUCTION

Optical code-division multiple-access (CDMA)
systems have been given an increasing interest in the re-
cent years [1-11]. This is due to the vast bandwidth of-
fered by the optical links and the extra-high optical signal
processing speed offered by the optical components. As a
result, Optical CDMA can accommodate a larger number
of simultaneous users than the radio-frequency techniques.

Most work done on optical CDMA has concentrated
on the binary transmission of data, e.g., on-off keying
(OOK). Very few suggested using M-ary transmission of
data [6,7). Lam and Hussain [6], for example, suggested an
M-ary system in which each symbol is represented by one
of M mutually orthogonal sequences (signatures). Thus
a total of MN code sequences are required, where N is
the number of users. In [7], Dale and Gagliardi suggested
encoding the symbols using M-ary pulse-position modu-
lation (PPM) format and then transmitting an aperiodic
signature in place of the PPM pulse. In their analysis, Dale
and Gagliardi assumed that the photodetector shot noise,
dark current, and thermal noise can be modeled as Gaus-
sian random processes. They showed that under fixed bit
rate and chip time, there is no advantage in using PPM.
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Fig. 1. (a) Optical CDMA system with PPM signaling. (b) An
example of optical CDMA encoder for one of the sources.

On the other hand, they showed that PPM is superior to
OOK if the average power rather than the chip time is the
constraining factor.

We have two main objectives in this paper. Qur first
aim is to investigate the performance of direct-detection
optical M-ary PPM-CDMA communication systems un-
der the assumption of Poisson shot noise model for the
receiver photodetector and synchronization between the
users’ symbols. Our second aim is to derive an asymp-
totic relation between the optimum number of simultane-
ous users and the pulse position multiplicity.

In PPM signaling format, each symbol is represented
by a single laser pulse positioned in one of M (disjoint)
possible time slots. The width of each slot is 7 seconds.
The entire symbol thus extends over a time frame of T' =
M seconds. This signaling format is attractive in optical
communications because of its simple implementation and
efficient use of the available source energy [13-15).

The model for an optical PPM-CDMA communication
system is shown in Figs. 1 and 2. The transmitter in Fig.
1 is composed of N simultaneous users. Each user trans-
mits M-ary continuous data symbols. The output symbol
of the kth information source modulates the position of a
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Fig. 2. Direct-detection optical PPM-CDMA system model: (a)
Using an optical correlator. (b) Using an optical matched filter.

laser pulse to form the PPM signal. This signal is then
multiplied by a spreading sequence a*(t), which character-
izes the kth user. The output waveform is finally trans-
mitted over the optical channel. In asynchronous CDMA
each optical signal is time delayed by A with respect to a
reference instant ¢ = 0. In synchronous CDMA, however,
there are no time delays among the signals, Ay = 0. An
equivalent all-optical multiplier [3,6] is shown in Fig. 1(b)
which is just a tapped optical delay line [12]. At the re-
ceiving end, the received optical signal (composed of the
sum of the N delayed users’ optical signals in addition to
the background noise) is multiplied by the same sequence
a*(t) and, Fig. 2 (a), then converted using the photode-
tector into an electric signal which is passed to the PPM
decoder to obtain the data. The PPM decoder is just a
comparison between the photon counts over the M time
slots: the number of the slot with the greatest count is
declared to be the transmitted symbol. To make full use
of the vast bandwidth available to the optical network, an
equivalent all-optical receiver is shown in Fig. 2(b), where
the received optical signal is passed to a matched filter
with impulse response

h(t) = a*(r = )P, (1) ,

where P;(-) is a rectangular pulse of duration 7:

def [ 1;
P (t) = {0;

The output of the matched filter is then photodetected and
finally sampled at M different instants {r,27,..., M7} to
provide the photon counts over the M time slots.

fo<t<r,
otherwise.

The rest of the paper is organized as follows: Sec-
tion II is devoted for the derivation of the bit error prob-
abilities. In Section III we present some numerical results
where we investigate the effect of some parameters (the
background noise, the number of users, the pulse-position
multiplicity, etc.) on the performance of the optical PPM-
CDMA system. In Section IV we obtain an asymptotically
(M - o) achievable expression of the maximum number
of users that can be accommodated by the system so that
the bit error rate is asymptotically zero. Finally, we give
our conclusion in Section V.

II. Bit ERROR RATE oF THE OpTicaAL PPM-CDMA
SYSTEMS

We assume that each user is assigned an optical code
sequence (or signature sequence) of length L and weight
v. That is the kth user is assigned the code sequence
(ak,...,a%_,), where af € {0,1} and the number of i’s
with af = 1 equals v. The spreading signature wave-
form, a*(t), is assumed to be periodic of period 7 (the
slot width), hence it can be written as

[e o}
af(ty= ) afPr(t-iTy),
1=—00

where af+L = af for all integers i, T, = 7/L is the chip
time, and Pr,(-) was defined previously. The kth informa-
tion source generates the data sequence {bf}j“;_w, where
b¥ € {0,...,M —1}. This sequence modulates the posi-
tion of a laser pulse so that the output of the optical PPM
encoder can be written as

o0
()= D APt -bir—iT),

J=—0o0
where ), is the signal photon rate (which is assumed to
be constant for all the transmitters) and T' is the PPM
time frame defined previously. This PPM signal is then
multiplied by a*(t) to give the baseband signal of the kth
user:

d¥(t) = b¥(t)a*(2) .
We assume that the kth signal is associated with a delay
Ap (which is zero in the case of synchronous transmitters).
Hence the total signal waveform can be written as

N
sty = d*(t—Ap),
k=1
where N is the number of simultaneous users. The received
waveform at the front end of each receiver is thus

r(t) = s(t) + n(t) ,

where n(t) is the optical background noise. The input to
the photodetector of user 1, Fig. 2(a), is thus given by

y(t) = r(t)a’ (t — Ay)
= [al(t - Al)]zbl(t - Al) + al(t - Al)n(t)

N
+ Yot — Ar)af(t — AR)bF(t - Ax) .
k=2
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The first term in the last equation is the desired signal, the
second term is due to the background noise, and the last
term is due to the interference from other users. Since we
are dealing with direct (noncoherent) detection, the opti-
cal signals and the optical noise are additive in intensity.
The photon count over the ith slot of the kth user can be
modeled as a conditional Poisson random variable Y;¥ [13].
Thus for the first user:

-1}

where we have assumed for simplicity that Y;! = Y;. Here
W; is a Poisson photon count due to the background noise.
Z; and I; are conditionally independent Poisson photon
counts given {b¥} and {Az} due to the desired signal and
the multiple-user interference, respectively. To obtain the
conditional mean of Y;, we evaluate the conditional expec-
tation of each of the three photon counts composing it.
Denoting the background noise photon rate by A, it is
easy to see that

(Vie{0,...,.M Yi=Zi+ Wi+ 1I; ,

E[W;] = vAoT. .

The Poisson random variable Z; depends only on b} and
A;. Hence its conditional mean value is given by

Ar+(GE+1)7
sz = [T e
Ay+iT

ADPPb(t— Ay)de

Ay+(i+1)T
= [ Ala(t - AP
A +ir
X Y Pr(t—Ay—br—jT)dt .

j=—o0
Whence
. 1 JvAT.; b =,
E[Zi|A1,b) = { 0: otherwise.

The condltlonal mean of the random varlable I; given de-

lays A =7 {A;}) and data symbols b & <f ok 1,06 }iz, can
be written as

E[LiAY)

N o a3+
=/ at
k=27 81+iT

N A+(i+1)7
Z/ al(t - Al)ak
At

k=2 1T

(t — Ar)a®(t — AR)OF(t — Ay)dt

= A (t—Ak)
0
X Y Pr(t—Ap—bir—jT)dt .
j=-1

At this point we assume synchronous CDMA (at both data
and chip levels). Hence the delays A; are equal to zero.
The random variable I; now depends only on the symbols
{b§}2_,. Substituting into the last equation, yields

E[LI{8}Y,] = A, Z/

(+1)7
al(t)a* () Pr (t—bEr—5T)dt .

Let
It’ ';i_ff lek ) (1)

where IF is the interference in ith interval due to the kth
user. This is a conditional Poisson random variable (given
b%) with expectation:

E[IF|pE] = A, / a'(t)a* ()P, (t — bET — §T)dt

— Clk/\sTc ) if bo = i)
“\0; otherwise
= Clk’\sTc‘sb";,i ’

where ébk is the Kronecker delta and C;; denotes the
cross‘correlatlon between the first and kth codes. In the
remaining analysis we employ the optical orthogonal codes
(O0C’s) [10,11] as our typical signature code sequences.
OO0CQC’s with periodic cross-correlations and out-of-phase
periodic auto-correlations bounded by one have been ex-
tensively studied in [10]. It has been shown that the max-
imum number of codes (subscribers) is at most uﬁ _11)
OO0C’s with cross-correlations la.rger than one can be found
in [8,11]. In this case the maximum number of codes can
reach {(E-L(I-2

viv—1)(v—-2
bounded by two. Thus for OOC’s with cross-correlations
bounded by one, we have

N} k#1D)

Assume, for simplicity, Ci; = 1 for every k € {2,...,N}
(worst case conditions). Hence

if the auto- and cross-correlations are

(Vk,IE{l,... Cu<l.

E[IF|bg) = A Teby ;

Substituting in (1) yields

E[L{b§}i5a] = A T2 Zf%k-

Define the following set of random variables

N
def
Ki = E :6133,:"
k=2

The random variable &; represents the number of optical
pulses that cause interference to slot i of the desired user.
We notice that each «; is a binomial random variable, i.e.,

(1 €{o,...,N-1})

a0 (7)) 0- 2

Moreover, denote the vector (kg,...,kar~1) by . It is
easy to check that « is a multinominal random vector with
probability

ie{0,...,M-1}.

1 (N - 1)

Pr{x = (lo, ... N A

m-1)} =

» ()

.IM_1!
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where Z?ﬁall; = N — 1. Assuming equally likely data
symbols, we employ the following decision rule: Symbol
i is chosen if ¥; > Y; for every j # i. If ¥; = Y;, some
j’s# i, a random choice between these symbols is made.
The probability of a correct decision can thus be lower
bounded by:

M-1
Pc> Y Pr{Yi>Yo,...,Yio1,Yig1, ..., Yaroa by = i}
i=0
x Pr{b} = i}
=Pr{Yo > Y1,...,Yar_1 b} = 0}
N~1N-1-lg N-l-lg—=lp-3
lg=0 I,=0 Ipr-1=0
Pr{Yo>Y,...,Yu-1lbd = 0,6 =} Pr{c =1} ,
(3)
where | &* (Yoy---,Ip-1) and
Pl‘{)/o >Y,... )YM—llb(l) =0,k= I}
- i e~ (Kot Ky +2, Telo) (Ks + Ky + /\sTclo)k
k=0 k!
M-1 k-1 ;
— (Kot Tely) (o + A Tel;)?
X H [ e (Kot J)__.—T.J_] ,
j=1 i=0 °
4

where we have defined

K, £ E[Zo)b} = 0,k = 1] = E[Zo]b} = 0] = v\, T, ,
Ky EE[Wilbk =0,k = 1] = EWi] = vAT. , (5)

and we have used the identity
ELby =0,k =) = E[Li]|ki = k] = ATel; . (6)

Here K, and K} denote the average photon counts per
symbol due to the signal and noise, respectively. Using
the relation Pgp = 1 — P, we can obtain an upper bound
on the word error probability, Pg. Finally, the equivalent
bit error probability Py can be found from the fact that
Py = M2 pg 13, Chap. 8].

III. NUMERICAL RESULTS

It is too expensive to perform numerical calculations
using the expressions derived in the previous section es-
pecially for large values of M. We thus employ a union
bound on the error rate to simplify the calculations. Using
(3) we can write

Pp <1-Pr{Yo>Y1,...,Yar_1lbg = 0}
M-1
< ) Pr{Yi 2 Yolb; = 0}

i=1

= (M - 1)Pr{Y; > Y, b} = 0}
=(M-1)
N-1N-1-l,
x 3 3T Pr{¥i > Yol = 0,60 = lo,k1 = L}

lo=0 ;=0
x Pr{rg = lo,k1 = I},

where

PI{NQ = lg, K1 = 11}

def Z Pr{c = (lo,-.-,Ipr-1)}

[EYRIN ) VoY

N

(70 ) ()

_ (N = 1)! (M 2Nk
TN -1=1 - §)! MN-1 '

PI{Y] 2 Yolb}) = O,Ko = Io,K.l = Il}

_ 3 ey ot ATL)E
B k!
k=0

Ll

(Kot Kyt rTolo) (Ks + Kb + A Telo)
x [Joem(rsiinTy) ] E
=0
and K,, K, are as given in (5).

In our numerical evaluations we assume that the rate
of data bits (throughput) is fixed at Ry. Normalizing the
slot-width with each different value of M is thus manda-
tory. Hence

log M
= 7
"= MR, @

where the natural number e is taken as the basis of the
“log” function. K} in (5) can now be written as

do\vlogM

K= (70) 3

where the ratio A\g/Ro denotes the average background
noise photons per nat time. We consider two different
types of energy constraints on the laser source. The first
type is average energy per pulse constraint, which is equiv-
alent to K;/v = constant. The second type is average
power constraint. This is equivalent to K, /T = constant
or, using (7), K,/log M = constant, i.e., fixed energy per
information nat.

A. Fixed Energy per Pulse

In this part we study the effect of some system param-
eters on the performance (bit error rate) of optical PPM-
CDMA systems under a constraint on the transmitted en-
ergy per pulse. This constraint is equivalent to fixed pho-
ton count per symbol (K,). The product A, T in (6) is thus
equal to —"f}, which denotes the average signal photon count
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Fig. 3. Bit error probability versus average photons/symbol with-
out background noise.

per pulse. The bit error probability with N = 10, v = 5,
and L = 500 has been evaluated and plotted in Figs. 3-5
for different values of K,, M, and Ao. In Fig. 3, the bit
error rate is plotted under the assumption of zero back-
ground noise. In Fig. 4 and 5, however, the background
noise has been assumed to be Ag/Ry = 100 and 500 pho-
tons/nat time, respectively. These figures display that the
effect of the background noise on the performance is negli-
gible. This indicates that the degradation in performance
under same signal energy is mainly due to the multiple-
user interference. Since the spreading code length (L) af-
fects only the received background noise power, it has also
a negligible effect on the performance. On the other hand,
the effect of the pulse position multiplicity (M) and the
code weight (v) on the performance is remarkable. It is
seen from Figs. 3-5 that the performance gets better as
M increases. Moreover, this improvement is associated
with a save in energy because the transmitted photons per
nat (K,/log M) decreases as M increases. Fig. 6 demon-
strates the effect of the code weight. It is seen from this
figure that the performance gets worse when decreasing v.
Indeed, lowering v will decrease the average signal energy
with respect to the interference energy which leads to a
more frequent wrong decisions and hence worse bit error
rate.

B. Average Power Constraint

In this part we examine the performance of the above
system under a constraint on the average power (or en-
ergy per information nat). Let yu denote the number of
the transmitted photons per nat, K, in (5) is now equal
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Fig. 4. Bit error probability versus average photons/symbol with
background noise, /\Q/Ro = 100.

04k

(=
o
-

0.001

probability, Pb

0.0001

Bit error

1E-05 [

AORO=500... N=10, e

1E-06 bl o Neta, 56

1E-07 ) 1 1 ] ] 1 I
0 20 40 60 80 100 120 140

Average photons/symbol, Ks

Fig. 5. Bit error probability versus average photons/symbol with
background noise, /\Q/R() = 500.

to K, = plog M. Figs. 7 and 8 show the bit error rate
versus the average photons per nat for a fixed number of
users, weight, and chip size, and different values of M. As
expected, when M increases, the system performance im-
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proves significantly. As an example, for a system with 10
users, weight/chip size of 5/500, background noise count
of 100 photons/nat time, and signal energy of 50 pho-
tons/nat, the bit error rate equals 6.99 x 10=2 if M = 2,
6.7 x 10~*if M = 16, and 3.21 x 103 if M = 256. The
improve in this case is better than in case A because here
the energy per pulse (ulog M/v) increases with M, how-
ever in case A the same energy per pulse (which is fixed)
is used to transmit more information as M increases.

The effect of the maximum number of simultaneous
users is explored in Figs. 9 and 10 under average energy
per pulse and power constraints, respectively. Since we
employ OOC’s with auto- and cross-correlations that are
bounded by one, the maximum number of subscribers is at
most RLT—ZLH As an example, consider a system with en-
ergy constraint of 30 photons/nat employing OOC’s with
L = 500 and v = 5. This system can accommodate at
most 24 subscribers. Let the bit error rate be required to
be less than 107%. From Fig. 9 (with Ag/Rg = 100) we see
that systems with small values of M can not accommo-
date much simultaneous users. For example the number
of users is at most 1, 2, or 4, when M equals 2, 4, or
16, respectively. If, on the other hand, M = 64, at most
9 users can communicate simultaneously and achieve the
above error rate constraint. When M = 256, however, all
the 24 subscribers can communicate reliably. The above
example demonstrates that energy and bit error rate con-
straints may limit the maximum number of simultaneous
users. However, increasing the value of the pulse position
multiplicity may permit all the subscribers to communicate

L ~.'" N
o \ N
a [ N,
2 0.001 b\
E F .\
©0.0001 E —i
[ 3 SN I
o - N "~
= * ~.._ 64
5 1605 | o e
= - S ~—
o r
1E-06 £ B S
[ AQRO=100 N=10
1E-07 PRI J0 256
1E-08 1 L | I
0 10 20 30 40 50

Average photons/nat, B

Fig. 7. Bit error probability versus average photons/nat with
background noise, Ag/Rg = 100.
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Fig. 8. Bit error probability versus average photons/nat with
background noise, )\o/RQ = 500.

simultaneously. We explore in detail the relation between
the number of simultaneous users and the pulse position
multiplicity in the next section.
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IV. LiMITS To THE MAXIMUM NUMBER OF USERS
(AsympTOTIC RESULTS)

In this section we obtain an expression for the max-
Imum number of users (Nasmax) that can communicate

simultaneously with asymptotically zero error rate. The
asymptotic evaluation is for M — oo with u, v, and L
being fixed. We are able to show the following assertion:

o o Nammax—1 (1+
m pebLC T L S ~(1+»p)
llltl—.lgj Ml T 2 Ve s

v

where p gef 1/p denotes the transmitted information in
nats/photon. This indicates that, for p fixed, the max-
imum number of users can be increased as we wish by
increasing the value of M as long as 1+ pv > ¢” or

ef -1
e

The main advantages of M-ary PPM-CDMA over OOK-
CDMA are now obvious, where in the latter the maximum
number of simultaneous users can not be increased without
decreasing p (or increasing the average power) [2,6,7] to
preserve a suitable bit error rate. Another advantage is
that even if we increased the average power we still may
not be able to accommodate all the subscribers in the case
of OOK without degrading the performance. However for
PPM we can accommodate reliably any number of users by
increasing M. Of course the increase in system complexity
is the new price that should be paid to gain the above
advantages.

The proof of the above assertion is provided in Theo-
rem 1 below. Before the proof of the theorem we develop
(in Proposition 1) another upper bound on the probability
of error. This bound is actually based on Chernoff inequal-
ity. In Appendix A we have introduced two lemmas that
are essential to our derivations of both the proposition and
the theorem.

V>

Proposition 1: For any two real numbers s € [0,1] and
z > 1, the probability of a word error, Pg, in the optical
synchronous PPM-CDMA channel can be upper bounded
as

log Pe _ vig |, 1—27¢
i - S 2N I S L -1
logM/p 21-sp—z sML/\,l (z 1 s )
(N - l)p 1-s
(N = 1)p— o log [(ar-1)

x (M-2+ M%) + M5, 3)

def .
where A\, = 57—.'- = ]‘{—}f denotes the average signal power.

Proof: We start by rewriting (3) as

Pe> ) Pr{Yo>Y1,...,Yayoa|bh =0,k =} Pr{k =1},
!

where [ was defined previously as the vector (lo,...,Im—1)
and Pr{Yy > Y1,...,Yp1|b§ = 0, = 1} is given by (4).
Hence

Pg=1-Pc <Y PlEk=10Pr{x=1},
i
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where
PlE|k =)
E P {Yo>Yi,..., Yar1bh = 0,6 =1}
= i o~ (Kot Kok n, Tolo) (s + Kbk'*" AsTelo)*
k=0 ’

!
1
i=k

Notice that for any s € [0,1] and z; € [0,1], j € {0,...,
M -1},

M-1 M-1 s - s
1-JIa-2)< (1— H(l—fj)) < (Z x,-) :
j=1 i=1 i=1

where we have used Lemma 1, Appendix A, to justify the
last inequality. Hence

PlElk =1 <

i o~ (Kt Kot A, Telo) (s + Ko + A Telo)®
k!
k=0

M-1 o0 ;
—(ra,To;) (B + A Tel; ) e
% {Z Y et ,)%J .9)
j=1 i=k
Making use of Chernoff inequality, we obtain, for any z >
1,

ie-(mﬂ.m,) (Ko + A Tel)

i=k it

< i i~k o= (Ko +2,Tel;) (Ks + ?\aTclj)i

i=k it
[e ) .

< ok Z e (Kot A Tely) (Ko + ATl )
- ryre 7!
=27 %exp[(Ky + A\ Tol;)(z - 1)] .

Substituting in (9), yields

P[Elﬁ: = I] S exP[(I{S + I{b + /\,Tclo)(z_’ - 1)]
M-1

x [ 32 expl(s + A Tely) (2 - 1)]]’ .

i=1

Thus we can write
Pg <Y PlE|x =1]Pr{x =1}
1
< ZPT{KO =1y}
lo

x exp[(Ks + Kp + A Telo)(z7° — 1))
X Z Pr{e¥-1 = M1k = Iy}

M—1
11

M-1 R
X [Z_:l exp((Kp + A Tel; ) (= — 1)]] ,

where fcf"l gef (K1,.-.,kpm—-1) and
Ipr—1). Using the concavity of the function z*, any s €

[0,1], we obtain

M-t et g

Pg <) Pr{ro = lo} exp[(K, + Ko + A Telo)(27* = 1)]

lo
M-1
X [E ZPr{an = IjIKO = 10}
j=1 I

x exp[(Ks + ATy )(z = D]

N-1
S (M - 1)" Z PI'{K,(] = lo}
lo=0
x exp[(Ks + Kp + A Telo)(z7° = 1)]
N-1-1,
X [ Z Pr{x; = li|ko = lo}
1, =0

x exp[(Ky + M To)(z = 1)]]

The last summation can be evaluated as follows

N-1-lg

z Pr{x; = li|xo = lo}

=0
x exp[(Kp + AsTel1)(z — 1))

NI /N—1-1, 1 \h /M =2\N-1~lo-1;
= r; ( I )(M—l) (M—l)
x exp[(K} + A, Tely)(z — 1)]

e Te(z-1) _ 11N-1-1o
e

— Ku(z-1) [1 +

Thus
Pg < (M — 1)’ exp[sKp(z — 1)]

N-1
N—=1\/1\h 1\N-1-h
x§<h>hﬂ0-ﬁ
x exp[(Ks + Ky + AsTelo)(z7° = 1)]
ereTe(2=1) _ 17s(N-1-1o)
x 1 ]
=(M - 1)’ exp{K,(z7° - 1)
+ Kiy(27° = 1) + sKy(z — 1)]
PTG (M -2+ e»\.Tc(z-l))“ N-1
| I
M (M -1)»-1M
Taking the logarithm with base e and arranging the terms,
yields

—logPg >
~slog(M -1)- K,(z7° = 1) - Ku(27° - 1)
—sKy(z—1)+ (N —1)log M
~ (N =1)log [(M — D) (M — 2 ATl
+6A,Tc(z"—l)] )
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log M _vhg and A\, T, =

By substituting K, = ——5— Ky = BB e

log M pUM and rearranging the terms we get
log Pp -5 125 1—-2"¢
IogM/p—l sp—z sML/\a(z 1 - )
(N_ 1)P 1—s
+ (N = Dp = S log [ -1)
-1, ¢ =% -1
x(M-24M%) + M= ] O
Theorem 1: For optical orthogonal code sequences

with weight v and cross-correlations bounded by one, the
maximum number of simultaneous users, in the optical
synchronous PPM-CDMA system, is lower bounded by

liming YMomax — 1
M—oo M_-tu

> ve (1H40)
where p and M denote the transmitted information in nats
per photon and the pulse position multiplicity, respectively.

Remark 1: If 1+ pv > e, then Npfmax can be in-
creased without limit by increasing M. The maximum
number of the available OOC’s and/or system synchro-
nization problems, however, will limit Nas max.

Remark 2: One can easily see that the inequality in
the above remark remains true by setting p = logv. This
means that the channel capacity, Cpn (in nats per photon),
of the optical PPM-CDMA channel can be lower bounded
by

Con 2 logv .

Remark 3: In the following proof we will ignore the
effect of the background noise, (Ao = 0). With minor mod-
ifications in the proof, however, it is easy to check that the
above assertion remains unchanged if we take the back-
ground noise into account.

Proof: We start by estimating suitable values of s €
[0,1) and z > 1 for the upper bound given in Proposition
1 so as to have asymptotically zero error rate. In fact if we
show that the right hand side of (8) is positive g‘i/!‘e., greater
than some § > 0) then we get Pp < exp[-—lﬁgp—é] — 0 as

M — co. Let h(s,z) %' the right hand side of (8). From
the continuity of the function h(s, z), we notice that

h(s,z) = Lh_rg %h(s,z) - o(s)]s

where o(s) — 0 as s — 0. Hence for s arbitrary small
h(s,z) > 0if lim,_o $h(s,2) > 0. It is easy to check that

.1 _ vho z—1-logz (N-1)p
}%sh(s,z)—logz—p—ﬁ- 7 ~ Yo it
(M - l)logM—ziM LM g 2
i .
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Assuming zero background noise, Ag = 0, the last equation
simplifies to

1 _ (N-1)p
al%;h(s,z)_logz—p~ log M
(M_l)]ogw —‘gwy-logz
M

We provide a lower bound on the above function limit:

N-1 M-1
]ixré%h(s,z)zlogz_p_(_)ﬁ._

log M M
. M-2+M%
-1
=1
(N=1)p M-1 M% -1
> - p - . .
2logz—p— o T Mo
(N—]_)p Z=lepv
e L TP g i
2logz—p— o7 :

where we have made use of the facts that z > 1 and log(1+
z) < z in the first and second inequalities, respectively.
The last term is positive if

logz —p
N-1<
5—1—2!’
oy log M
for every z > 1. Hence
Npfmax — 1 > max }Of_z:
z21 M ToH
Define the function
def logz—p
@S —(—— (10)
M=o logM

Thus Nas,max —1 > max;»1 f(2). To obtain the maximum
of f(z) we differentiate this function with respect to z and
equate the result with zero. Hence the optimizing z* must
satisfy

log M
()7 = (log 2" = p)=22= =0 (1)
or using Lemma 2, Appendix A,
pv
P *<ef . 12
e <2 <ef + Tog 1T (12)
From (10) and (11), we obtain
v
Nymax =12 W—_l_ R

Making use of (12), we get further the lower bound
v

( + 1ogM)M
-1

f-'Mmax 1> eP = 1=puv
) 1
__L+W

ve

ef=1—-pv °

(e + bgM)M =
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Whence
Nafmax — 1 ve ! 0
l14pu—cP = pv N
M~ e + log M

V. EXTENSIONS AND CONCLUDING REMARKS

Direct-detection optical synchronous CDMA systems
with PPM signaling has been studied in details. We con-
sidered optical orthogonal codes, with cross-correlations
bounded by one, as the signature code sequences in our
system. The Poisson shot noise model has been assumed
for the receiver photodetector. The background noise and
multiple-user interference have been accounted for in esti-
mating the bit error rate. In our numerical evaluation we
derived a union upper bound on the probability of error to
simplify the calculations. We have evaluated the perfor-
mance under the restriction of fixed throughput rate. We
can thus extract the following concluding remarks.

i) Under fixed photon energy per symbol, the perfor-
mance (bit error rate) of the system improves as M
increases. Furthermore, the average power and the to-
tal energy are reduced by a factor log2/log M times
that required in binary PPM-CDMA.

ii) Under fixed photon energy per information nat, the

performance improves significantly (as expected) as
M increases. The improve in this case is better than
in (i) because here the energy per pulse increases with
M, however in case (i) the same energy per pulse
is used to transmit more information as M increases
with bit rate held fixed.
Under average power and bit error rate constraints,
a pulse position multiplicity M; > 0 always exists so
that if M > M, all the subscribers can communicate
simultaneously.

iii)

In the last part of the paper, another upper bound on
the probability of error has also been obtained with the
aid of Chernoff inequality. This bound has been used to
derive an expression for the maximum number of simul-
taneous users that can communicate with asymptotically
zero error rate. It has been shown that this number in-
creases asymptotically with M as long as v > e’;l, This
fact supports our conclusion (iii) because we can increase
M as we wish and in turn Njs. However, Njsr can not
increase without limit because it is bounded by the maxi-
mum number of codes which is at most #:15

Two main advantages of PPM-CDMA over OOK-
CDMA are remarked:

i) Under bit error rate constraint, the maximum num-
ber of simultaneous users can not be increased, in the
case of OOK-CDMA, without increasing the average
power. In the case of PPM-CDMA, however, we can
increase this number by increasing M and preserving
the average power fixed.

ii) Even if we increased the average power we still may
not be able to accommodate all the subscribers in the
case of OOK. However for PPM, as mentioned in (iii)

above, we can accommodate any number of users by

increasing M. The reason is that, for OOK, the aver-

age number of interfering optical pulses equals N—g—l

This average number reduces to —Nw‘—l for PPM.

Of course these advantages are obtained at the ex-
pense of increasing the system complexity.

To increase the maximum number of codes, we can
use OOC’s with cross-correlations that are bounded by
two [8,11], where we can get ;%'T%(I;'T% codes. In this
case, the maximum number simultaneous of users that can
communicate with asymptotically zero error rate can be
shown to be bounded by

o Npmax — 1
liminf Tifevji—eh

> Y o=(14s)
M—oo M 2

Our results in Section IV can easily be extended to
asynchronous CDMA. In this case the assertion in Theo-
rem 1 would be modified to

.. NM max — 1 L -1+
1 fiMmax 77 2 2 ”
imin 7T "

The proof is pretty much similar to the one provided in
the paper with slight modifications.
APPENDIX A

Lemma 1: Let z; € [0,1], 1 € {0,1,...,M — 1}, where
M is any positive integer. Then

M-1 M-1
H(l—a:,-)zl—— P

i=0

Proof: Let the function f:[0,1)™ + R be defined
as follows:

det M-1 M-1
f@E Ja-z)+ Y z-1.
=0 =0

It suffices to show that f(z) > 0 or mingepo,1m f(z) = 0.
Notice that, for any k € {0,...,M — 1},

M-1
LT = gy (1 T 0= =0)
M-1 - M-1
+ H(l—xi)+ Et.’-—l]
S e
M-1 M-1
= H(l—ﬁi)+ Zl‘;—l,
T P

where the last equality is achieved for z; = 0 (since

Hﬁal(l — ;) < 1). Since k was arbitrary, we conclude
i#k
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that the minimum occurs at z = 0™. Hence minge[o, 1M
fz)=f(0M) = 0. o
Lemma 2: Consider the function

log M
pv '

9(2) £ 271 — (logz — p) 2> 1

where M and v are positive integers, and p > 0. The solu-
tion of the equation g(z) = 0 must satisfy the inequalities:

pv
logM ~

e# <z<el+

Proof: This function is monotonically decreasing
in z as long as z > 1. Indeed since the first derivative of
g(-) is negative:

2 _ logMz-l
pv

dg, . _
(Vz>1) a(z)_ z <0.

Hence it suffices to show that
and

) > p Py
o(e) 2 0 (e + ) <0.

Indeed, we have
glef)=e"">0

and
pv 1
g(ef + = 7
( logM) e + E%M_
log M . pv
B pv [log (e + logM) - p}
1 log M pv
= - log(1 g
e + o8( o)
< 1 N IOgM ]ogull'fe—p =0
= et + TaéLM_ pv 1+ Efé_“ve—p )

where we have made use of the fact that logy > 1—1/y
to justify the last inequality. a
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