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Capacity and Cutoff Rate for Optical Overlapping
Pulse-Position Modulation Channels

Hossam M. H. Shalaby, Member, IEEE

Abstract—Upper and lower bounds on the capacity
and cutoff rate for direct-detection optical overlapping-
pulse-position modulation channels are derived. It is
shown that these bounds are asymptotically tight, in
the sense that the difference between the upper and
lower bounds converges to zero as the pulse position
multiplicity M and/or the average photon count per
pulse @ goes to infinity. The tightness of these bounds
for finite values of M and Q@ is investigated by provid-
ing some numerical examples. Orders of magnitude of
the rate of convergence of the difference between the
bounds are also estimated in the last section of the

paper.

I. INTRODUCTION

In optical overlapping-pulse-position modulation
(OPPM) the input signal modulates the position of a laser
pulse within a finite time frame [1-9]. The set of all possi-
ble pulse positions within the time frame is assumed to be
finite and the adjacent pulse positions are allowed to over-
lap. An advantage of OPPM over the conventional pulse-
position modulation (PPM), where the adjacent pulse po-
sitions are disjoint, is the increase of the throughput (bit
rate) without decreasing the pulsewidth. This advantage is
accquired, however, at the expense of serious degradation
in the error-probability performance due to reducing the
distance between the symbols in the signal space. Fortu-
nately, we can improve the performance by employing error
correcting codes and sacrifice some of the throughput gain
[3]. Another way to improve the performance of OPPM
is to restrict the overlap between the pulse positions to
take values less than half the pulsewidth. In [9] we have
shown that we can always find values of the overlapping
index (ratio between the overlap and the pulsewidth) in
the interval [0,0.5] such that OPPM outperforms PPM.

Lower bounds on the capacity and cutoff rate of the
self-noise-limited OPPM channel have been derived in [1]
when the overlapping index is allowed to take values in the
discrete set {0, §, 2,...}. In this paper we find tight upper
bounds Cy on the capacity of the above channel when the
overlapping index is allowed to take values in the interval
[0,0.5]). The tightness of these bounds is measured by the
difference, AC = Cy — CL, between the upper and lower
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bounds. We are able to show that this difference is asymp-
totically zero, in the sense that AC — 0 as the pulse-
position multiplicity M and/or the average photon count
per pulse Q goes to infinity. We also derive asymptotically-
equal upper and lower bounds for the cutoff rate of the
above channel. In the last part of this paper we determine
the rates of convergence of AC and AR = Ry — Rr.

The paper is thus organized as follows: The channel
model and preliminaries are given in Section II. Section III
is devoted for the derivation of the capacity upper bound.
The cutoff rate bounds are given in Sections IV. Numerical
examples are provided in Section V. Finally the conclusion
is given in Section VI.

II. CHANNEL MODEL AND PRELIMINARIES

Our model for OPPM with overlapping index r €
[0,0.5] is as follows. A rectangular laser pulse is trans-
mitted in one of M possible positions {1,2,..., M} within
a time frame of duration T'. A pulse of width 7 is said to
be in position m, m € {1,2,..., M} if it extends over the
subinterval beginning at time (m—1)(1~r)7. The relation
between T, », M, and 7 is

T=(M1-r)+r)7.

The above model is called ambiguity and erasure channel
[1,9)].

Let the random variables X and Y denote the position
of the transmitted pulse and the demodulator output, re-
spectively. Thus Y € {m,a(m~—1,m),a(m,m+1),e} when
X =m,me {2,3,..., M -1}, where we have denoted the
ambiguity between positions m — 1 and m by a(m — 1, m)
and the erasure output by e. On the other hand, if X =1
or M,thenY € {1,a(1,2),e}or Y € {M,a(M —1,M), e},
respectively.

It is easy to check that

Py x(e|m) = exp[-Q] ,

Py|x(a(m —1,m)|m) = Py|x(a(m,m + 1)|m)
= (1 - exp[-Qr])exp[-Q(1 - 1)]
where @ denotes the average photon count per pulse.
The mutual information for the above channel model

is thus given by

P
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M~1
=t 3 (Px () + Px(z + 1)) log(Px(2) + Px(z + 1)

=1

— (s = ){ Px(1)log Px(1) + Px(M)log Px (M)}

M-1
—(s—2t) Z Px(z)log Px(z) , (1)

z=2
where

and tZf exp[-Q(1—r)] —exp[-@Q] .
In fact s is the probability that the OPPM pulse is not
erased and t is the probability of occurrence of an ambigu-
ity given that a pulse is transmitted.

s & 1 —exp[—-Q)

We need the following two lemmas in our derivations.
Lemma 1: For any a,b,Q >0 and v € [0,1], if av >
b(1 —v), then

a = (a-+ ) exp[~Qu] + bexp[-Q] 2 0.

Proof: Let f(Q) def a—(a+b) exp[—Qv]+bexp[-Q],

then f(0) = 0 and f(oo) = a. Thus it suffices to show that
3‘% > 0 for all @ > 0. Indeed we have

Q) =b[e? —e 9] +[av—b(1— v)]e™ @
which is non-negative under the given hypotheses. O

Lemma 2: For any @ > 0 and r € [0, 1]

expl-Q(1 = r)] = expl=Q] _,
T—eolQ

Proof: Let f(Q) & 2el=9Uzri=ol=d], they

f(0) = r and f(oo) = 0. The derivative f'(Q) is equal to
R(Q)/(1 - exp[—@Q])?, where

hQ) = —e Q01 —r— e~ 477 Q) .

Using Lemma 1 witha =1—7, b=r and v = r, it follows
that A(Q) < 0 for any Q > 0 and r € [0,1]. O

III. LowERr AND UPPER BounDps oN OPPM
CHANNEL CAPACITY

Lower and upper bounds on the ambiguity and erasure
channel capacity with » € [0, 0.5] are given in the following
theorem.

Theorem 1: The capacity of the optical OPPM chan-
nel with M pulse positions and overlapping index r €
[0, 0.5] is lower bounded by

def

C 2 Cr= (1-exp[-Q))logM

— 2log 2(1 - ﬁ_lj) (exp[—Q(l -7)] - exp[—Q])

1285

and upper bounded by

C < Cy £ (1~ exp[-Q]) log M
~ 210g2(1 = 1) (expl-Q(1 - )] - expl=@) ,

where Q is the average photon count per pulse.

Remark: It is obvious that AC = Cy — CL converges
to zero as M — oo for any r € [0, 0.5).

Proof: The proof of the lower bound is immediate
by substituting the uniform distribution in (1). Now we
prove the upper bound as follows. Define

M
L(Px) ¥ 1(X AY) = A(3 Px(e) - 1),

where ) is the Lagrangian multiplier. The distribution Px
achieving the capacity must satisfy the first order necessary
condition 5‘%’; =0,1ie.,

(s —t)log Px(1) +tlog (Px(l) + Px(2)) =-X-s, (2a)

(s — 1) log Px (M) + tlog (Px(M — 1) + Px(M))
=-A—s, (2b)

(s — 21) log Px(=) + tlog (Px (s = 1) + Px(2))
+tlog(Px(:v) + Px(z+ 1)) =-X-s,
z=2,...,.M—-1. (2¢)

We find an estimate of Px(1) as follows. Since Px(z) +
Px(z+1) <1and s —t > s— 2t, using (2) we obtain for
any z € {1,...,M}

/\+s]
s—2t "

(s—2t)log Px(z) > —A—s or Px(z)>exp[-

Adding over all z’s yields
A+s>(s—2t)logM .

Making use of (2a) once more we get that
A+ s < —slog Px(1),

where we have made use of the fact that Px(2) > 0. Com-
bining the last two inequalities and making use of Lemma
2, we obtain

—log Px(1) > (1 —2t/s)log M > (1 —2r)log M

or 1
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Since Px(1) = Px(M), we write the mutual information
in (1) as

I(XAY) = 2H(X)+ (s —2t)H(X)—2tlog 2(1— Px(1)) ,

where H(-) is the informational entropy and X is a random
variable with probability distribution Px,

Px(z)+Px(z+1) .
)

p def 5 fe=1,...,M -1,
X(Z) - Px M!-I-Px!l .
2 )

fz=M.

But H(X) and H (X) are not greater than log M since
X, Xe{l,...,M}; hence
C < (1~ exp[-Q]) log M

—2log 2(1 — Px (1)) (exp[-Q(1 — )] — exp[-Q]) -

Substituting for Px (1) completes the proof. a

Remark: The estimate Px (1) < 1/2 is better than the
one given in the proof of the theorem if M=% < 2. This
suggests using the tighter upper bound

Cu &' (1 - exp[-Q)) log M
~ 210g2(1 - o)) (exp[-Q(1 - r)] - exp[-@]) ,

def

where o(M) £ min{}, 3=}

IV. BounDs oN THE CUTOFF RATE OF THE
OPPM CHANNEL

In this section we derive lower and upper bounds on
the cutoff rate of the OPPM channel with overlapping in-
dex r € [0,0.5]. The cutoff rate for discrete memoryless
channels is defined as Ry = — log ®*, where

&* &' min ®(Px)
Px

and

8(Px) & 2[5 Px@)/Prx ) |

YyEY zEX

Here X and ) are the cardinalities of the random vari-
ables X and Y, respectively. It is easy to see that for our
channel:

3(Px) =1 -5+ (s — 1) (PE(1) + P}(M))
M-1
+(s=2t) ) Pi(a)
=2

M-1

1Y (Px@+Px+1) . @)
z=1
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Theorem 2: The cutoff rate of the optical OPPM
channel with M pulse positions and overlapping index r €
[0,0.5] is Iower bounded by

Ro > ~log| expl-Q) + (1 = expl-Q)

+ Mﬁgﬁ(exp[—Q(l -r) - eXP["Q])]

and upper bounded by

Ry < —log [exp[—Q] + Xl,;(l — exp[-Q)])

+ 2_@4_:_1%_2:};_21)2_)_ (exp[——Q(l —-r)]- exp[—Q])] :

Proof: The lower bound is immediate by substitut-
ing the uniform distribution in (3). Now let

M
L(Px) £ a(Px) - A3 Px(@) - 1) ,
=1

where A is the Lagrangian multiplier. The first order nec-
essary conditions are thus

2sPx (1) +2tPx(2) = A,

95Px (M) +2Px(M - 1) = X,

2sPx(z) + 2t(Px(z — 1) + Px(z + 1)) = X,
e=2...,M-1.(4)

Adding the above equations and using the fact that
Px(M) = Px(1) (because of symmetry) we obtain

M = 2(s +2t) — 4tPx(1) .

From (4) we can see that A > 2sPx(1). Substituting in
the last equation, we get

s+ 2t
Ms+2t —

s+ 2t 1427

Px(1) < Ms = M '

where the last two inequalities are because t > 0 and t/s <
r, respectively. Now, we can rewrite ®(Px) as

M
®(Px)=1-s+(s=2t) ) Pk(c)

r=1
M ~
+4ty ] Pi(z) - 2tPx(1)Px(M) ,
r=1

where Py is the distribution on X defined previously.
Noticing that Px(1) = Px(M) and min{u + v} > minu +
min v we obtain

M
* __ . . 2
P = min O(Px) > 1—s+(s—2t)xlr.31)(n E Pi(z)

=1

M
+4tmin Y Pi(z) - 26P%(1) .

Px 721
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Fig. 1. Capacity bounds versus Q for OPPM with r = 0.3,

It is easy to see that

A 1
n};lnz:ZIPx(m) =37
Hence of Lt 92
<1>*21—s+sL — 24 Lz”) : O

Remark: If M < 2(1+42r), then the estimate Px(1) <
1/2 is better than the one given in the proof of the theorem.
Hence the following upper bound is tighter than the above
as long as M < 2(1 + 2r)

Ro < —log [exp[- @] + 3-(1 - exp[-Q))

+ 2 (expl-@(1 = ) - expl-)) | -

V. NUMERICAL RESULTS

As mentioned early the above bounds are asymptot-
ically tight in the sense that the difference between the
upper and lower bounds converges to zero as M and/or Q
goes to infinity. In this section we examine the tightness of
these bounds for small values of M and Q. We have eval-
uated numerically the bounds given in the above theorems
for different values of M, @, and r; some of our results are
plotted in Figs. 1-4. A general observation on the capacity
bounds (Figs. 1 and 2) is the closeness of the bounds even
for small values of M and/or Q. It can be seen from Fig.

1287

Nats/channel use
25

| | 1
4 -] 8 10

Average photons/pulse, Q

Fig. 2. Capacity bounds versus Q for OPPM with r = 0.4.
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Fig. 3. Cutoff rate bounds versus Q@ for OPPM with r = 0.3.

1 that, for overlapping index equals 0.3, the difference AC
is not greater than 0.097 of the true capacity. This ratio
is at most 0.143 when r = 0.4, Fig. 2. On the other hand,
the difference (A R) between the bounds of the cutoff rate
may be significant for small values of M and Q. As can
be seen from Figs. 3 and 4, AR is less than 0.156 of the
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Fig. 4. Cutoff rate bounds versus Q for OPPM with r = 0.4.

true cutoff rate when = 0.3 and less than 0.227 R, when
r = 0.4. For moderate values of M and/or @, however,
these bounds are becoming tight and the difference AR
converges so fast to zero.

VI. EXTENSIONS AND CONCLUDING REMARKS

We have derived asymptotically tight lower and upper
bounds on the channel capacity and cutoff rate of the di-
rect detection self-noise-limited OPPM channel. We have
shown by numerical examples that these bounds are also
tight for moderate values of M and/or Q. The main idea in
our derivations is to find an over-estimate of the optimiz-
ing probability of the input symbol Px(1). In the case of
the capacity we have shown that Px(1) < Ml—l_,,-, whereas
in the case of the cutoff rate we got that Px(1) < L2

To provide an estimate of the rate of convergence of
the difference in capacity bounds, we have

AC < AC _ 2log2(o(M) — &)t
C =~ Cr  slogM —2log2(1— =)t
__ 2log2(o(M) — )t/s
~ log M —2log2(1 — L)t/s
2log 2(o(M) — L) r
- logM—2log2(1— —Alz)r ’

The equality in the last expression holds when Q=0. We
can further increase the upper bound as follows

Ac < 2rlog 2 log 2
C = M- (log M —2rlog2) = Mi=2rlog(M/2)
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Similarly, to give an order of magnitude of the rate of
convergence of the difference between cutoff rate bounds,

we notice that

AR AR _ AR
BZR logt—s+ g +2(% - 5)
AR

SR

2
But for 5(M?) &' min i %)—},

1—s+ 3 +2(5 — 37)
T=s+ 37 +24(3 — 3(M2))
2(3(M?) - 5)
T 1-s+ 4 +2(5 — 6(M?))

AR:RU—RL=10g

. 1
< 2Mt(a(M?) XTZ)‘

The last inequality holds because

1-s+ = +2t(% — (M)
> 1—s+%=1—(1—%)s_>_ Ili
Hence
AR _ 2Mi(E(M?) = ghy) _ 2Mr(3(M?) - 5

R o R e T P
< 2Mrin) _ 161+ 1) <12
SA-I-f T Ma-n M-

r
2
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