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Error Exponents for Distributed
Detection of Markov Sources

Hossam M. H. Shalaby, Member, IEEE, and Adrian Papamarcou, Member, IEEE

Abstract— The paper considers a binary hypothesis testing
system in which two sensors simultaneously observe a discrete-
time finite-valued stationary ergodic Markov source and transmit
M -ary messages to a Neyman-Pearson central detector. The size
M of the message alphabet increases at most subexponentially
with the number of observations. The asymptotic behavior of
the type II error rate is investigated as the number of obser-
vations increases to infinity, and the associated error exponent
is obtained under mild assumptions on the source distributions.
This exponent is independent of the test level ¢ and the actual
codebook sizes M, is achieved by a universally optimal sequence
of acceptance regions, and is characterized by an infimum of
informational divergence rate over a class of infinite-dimensional
distributions. Important differences—due to the observations
being Markov—Dbetween the asymptotically optimal distributed
tests and their nondistributed counterparts are highlighted. The
converse results require a blowing-up lemma for stationary er-
godic Markov sources, which is also proven.

Index Terms— hypothesis testing, distributed detection, error
exponent, Markov source, divergence rate, blowing-up lemma.

I. INTRODUCTION
PROBLEM STATEMENT AND BACKGROUND

N this paper, we discuss the asymptotically optimal design

of a distributed hypothesis testing system for Markov
sources. Our setup is as follows:

i) a discrete-time, finite-alphabet, stationary ergodic Markov
source (X;, ¥;)>_ with X; € X, Y; € ),

ii) two remote sensors Sy and Sy;

iii) a central detector.

The sensors Sy and Sy observe the source components X7
and Y7", and encode their observations into single messages
taking Mx,, and My, ,, values, respectively. These messages
are communicated to the central detector, which proceeds to
declare which of two hypotheses (Hp or H;) concerning the
source statistics is true.

A classical (Neyman—Pearson) procedure for testing Hy
versus H; is assumed throughout. Our aim is to study the
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asymptotic performance of the optimal test of level € € (0, 1)
based on n consecutive sensor observations. Specifically, if
Bn(Mx, My, €) is the type II error probability of the above
optimal test, we seek to determine the error exponent

G(MX1 AirYs E)dzef—_ limsupn;lzlogﬂn(MX, MYa E). (1.1)

The codebook sizes Mx , and My, , are essential param-
eters in the above formulation and determine the extent to
which the detection process is distributed. For example, setting
Mx , = X" and My,, = )" we obtain the case of the
conventional centralized detector, for which the error exponent
is known [1]. Specifically, if the source has transition matrix
W(- | -) under Hy and V(- | -) under Hy, then

0(Mx, My, ¢) = D(W | V) (1.2)
where D(W || V) is the conditional informational divergence
[2] of W(- | ) to V(-] -). It is defined by

DW(V)= S we)Wes | 2)log 22
. V(z2 | 21)

(z1,22)€EZ

(1.3)
where Z = X x Y and =(-) is the initial distribution of the
source under Hy. If we assume that W (- | -} is irreducible,
then w(-) is uniquely determined by W, and the notation
D(W || V) is unambiguous. We note from (1.2) and (1.3) that
the value of the error exponent does not involve € and depends
on the source distribution only through its restriction to two
consecutive time coordinates.

In this paper we consider the nondegenerate case of one-
sided or two-sided data compression at asymptotically zero
rate. This means that one or both codebooks grow at most
subexponentially with n:

1
lim%log Mx , =0 and/or limﬁlog My ,=0 (14)

Our search for (Mx, My, €) follows earlier work [3], [4]
on memoryless sources exhibiting spatial dependence. These
studies showed that if (X;, Y;)°° is an i.i.d. process whose
distribution is the infinite product of a bivariate Pxy (under
Hy) or a bivariate Q xy > 0 (under Hy) on X x ), then the
error exponent is given by

D(Pxy || Qxv)

(1.5)
provided (1.4) holds. Here D(-||-) is the ordinary (not condi-
tional) informational divergence, defined for two distributions

giid(MX7 MY) E) = . - min

Pxy: Px=Px, Py=Py
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P and @ on Z by

P(z)
Q(z)

D(P||Q) =Y P(z)log

z2€EZ

(1.6)

The value of the error exponent does not involve {Mx, .},
{My,n} or ¢, and depends on the source distribution only
through its restriction to a sing}le time coordinate.

!
II. MAIN CONTRIBU'HON

Based on the results presented in the previous section,
one might conjecture that for distributed testing of Markov
hypotheses under the zero rate constraint (1.4):

i) the error exponent #(Mx, My, €) is independent of
{Mx, n}, {My n} and ¢

ii) a characterization of (M x, My, €) can be given via the
minimum of a suitable divergence functional over a class of
distributions on (X x Y)Z.

Our main result indicates that only the first of the above
two statements is true. Specifically, we prove the following.

Theorem 2.1: If the alternative transition matrix V(- | -)
satisfies the positivity constraint V(- | -) > 0 and condition
(1.4) holds, then the error exponent §( Mx, My, ¢) is given
by the infimum of

P{(XY)o | (XY)25}
V{(XY)o [ (XY)_1}

Ezlog

over all stationary ergodic distributions P on (X x y)Z whose
restrictions on XZ and JJZ agree with those of the null
Markov distribution.

The expectation appearing in the statement of the theorem
equals the divergence rate of the stationary measure P relative
to a stationary Markov measure with transition matrix V(- | -).
The above characterization of §(Mx, My, ¢) in terms of this
divergence rate clearly involves a class of distributions on
an infinite-dimensional space and does not appear to have a
finite-dimensional equivalent. Thus statement ii) seems to be
false.

This conclusion is not implausible considering that the
source components (X;)>_ and (¥;)>
Markov of any finite-order (even though the joint process
(X;, Y;)> is). Yet as it turns out, non-Markovity of com-
ponents is not critical here; the error exponent also seems to
have an irreducibly infinite-dimensional characterization for a
large class of examples in which the X and Y processes are
individually Markov. This implies that in an asymptotically
optimal system, the sensors cannot rely on the empirical transi-
tion matrix alone in order to encode their Markov observations.
In other words, the usual sufficient statistic for the detection
of Markov sources in the conventional framework does not
necessarily yield optimal results in a distributed one.

The paper is organized as follows. Section III covers techni-
cal preliminaries. The direct part of Theorem 2.1 is established
in Section IV, and the converse part in Section V. Sections
VI and VII contains a discussion of our results and their

are not, in general,

immediate extensions. The class of examples mentioned in the
previous paragraph is developed in Appendix A. Proof of an
auxiliary result (the blowing-up lemma for stationary ergodic
Markov sources) is given in Appendix B.

III. PRELIMINARIES

A. General Notation

For simplicity we let 2%y « Y and Zidéf(Xi, Y;). We
will denote (Z;,---,Z;) and (2,---,2;) by Z! and 27,
respectively.

If P is a stationary measure on the Borel field of zZ , we
will use P, to denote the restriction of P to n successive time
coordinates. Where A, C Z", we will write for simplicity
P(A,) instead of P,(A,). Also, if A C X", we will write
P(A) insteac of P,(A x Y"); and similarly for B ¢ Y.

The measure P can be specified by the family of conditional
distributions {W,, n € N} defined by
P(21)

Wﬂ(z'l 1 Z;l_l) = P(zn—-l)
1

n—1

where, as usual, W, (- | 2]
P(z771) = ). We thus have

) is chosen arbitrarily when

n

Py = [[Wita | 27

=1

which leads ro the abbreviated representation P = []. W;.

If P is first-order Markov, then W (the initial distribution)
and W> (the transition matrix) completely specify P; while Wy
alone is sufficient if it is irreducible. Similarly, if P is order-
(k—1) Markov, then it is completely specified by Wy, - -, Wy;
and by W alone if Wy, is irreducible.

B. Entropy, Divergence, and Ergodic Decomposition

We have the following identities for entropy, conditional
entropy, and entropy rate (respectiv%y) pertaining to the
stationary measure P = [[, W; on Z4:

H(P.) = ~Eplog P(Z}) = — 3 P(:})log P(s])
z2tezZn
H(W,) = —EplogWn(Z, | Z1™")
= 3 P(})logW(zn | 257Y)
zFEZ"
H(P) = lim %H(Pn) = lim H(W,,). 3.1

If P is order-(k — 1) Markov, then H(W,) = H(W}) for
n > k and thus H(P) = H(Wy).

Now let ¢ =[], Vi be another stationary measure on ZZ .
The divergerce of P, relative to Q,, is defined by

pzr) _
Q(Zy)

P(a1)
Q=)

D(P, Q) = Eplog Y. Plal)log

2pezZn
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and the cbnditional divergence of W, relative to V,, by

W(Za |27
V(Zn | 2771

10V (n 12170
2 My T

z2p €2

D(W,, ||Vn) = Eplog

If Q,, is finite-order Markov and @, > P, for all n, then the
divergence rate of P relative to () also exists and is given by
(see also Lemma 7.4.1 in [5])

D(P[1Q) = lim D(P, | @u) = lim D(Wy | V). (32)

If, in particular, both P and @ are order-(k — 1) Markov, then
D(P, ||Qn) = D(Wy|| Vi) for n > k and thus D(P || Q) =
D(W || Vi)-

The following facts on ergodic decompositions can be found
in [5]. There exists a family of stationary ergodic measures
{m., z € zZ } on 22 such that any stationary measure P
on 2Z can be expressed in the form

P() = / m. (") dP(z).

If P itself is ergodic, then m, = P with P-probability 1. The
entropy rate of P has a similar decomposition as

A(P) = / H(m.) dP(2).

If Q is finite-order Markov and Q,, > P, for all n, then with
P-probability 1 the measure m satisfies Qpn > m;,, for all
n. The divergence rate of P relative to () can then be written as

D(P|Q) = / D(m. |Q)dP(z).

C. Typical Sequences

We give here a summary of pertinent facts on a Markov
concept of typicality derived from the work of Davisson,
Longo and Sgarro [6]. A related concept has been used in [7].

The order-k type of a finite sequence 2 € Z™ is the
empirical distribution on Z* resulting from computing the
relative frequency of each k-string along the periodic extension
of z7. This method of evaluation of relative frequency ensures
that all lower dimensional distributions of an order-k type Py

are shift-invariant. That is to say, if both I and I + 1d§f{i +
1: i € I} are subsets of {1,---,k}, then the marginals of P,
corresponding to the index sets I and I + 1 are identical.

The above observation enables us to extend P to a station-
ary ergodic measure on 2Z in the following standard fashion.
First, we let

Pk_l(zi“'

D=3 Bleh)

2 €2

and

Wiz | 2571)

_ {Pk(Z{“)/Pk—l(Zf_IL
/12|,

if Pp_q(2%
otherwise.

Y > 0;

Then we de‘ine a measure P on positive-time sequences by

(Vn > k) P(lezl,---,Zn:zn)

=P (25! HWk(z | 21

Using the sift-invariance property discussed earher it is
straightforward to prove that P is stationary on zN (it can
then be extended to 22 ). By construction, P is also order-
(k — 1) Ma-kov with transition probability matrix W(- | -).
And since I, is obtained by evaluating the relative frequency
of k-strings along a period sequence, the measure P has a
single recurrent class of (k — 1)-strings; it is thus ergodic.

By the ergodic theorem, for any stationary ergodic measure
P on 22 , there exists a suitably long sequence 2" whose
order-k type approximates P, (e.g., in sup-norm) arbitrarily
closely. Thus, the set Pr(Z™) of all order-k types obtained
from sequerces of length = is asymptotically dense in the set
of all measures on Z* that have stationary ergodic extensions
on 2%

We will clistinguish between two notions of typicality. The
first is precise: if Py € Py(Z™), we say that a sequence z7] is
Pk-typical if its order-k type equals P,.. We denote the set of
all such sequences by Tk(Z") or, where no confusion as to
the value of n may arise, simply by TZ, %- The second notion
of typicality involves an ap%ronmation' if P is an arbitrary
stationary distribution on Z#, we say that a sequence z7 is
(P4, n)-typical if its type B satlsﬁes

max| Py(af) - P(ab)] <7
ay

and we denote the set of all such sequences by T, ,(Z™), or
simply by TZ‘ k, g

In the following lemma we give some standard facts on the
cardinalities (denoted by | - |) and probabilities of some of the
sets introduced previously. The proof of assertions i) and ii)
for £ = 2 can be found in [6]; generalization to arbitrary k
is straightforward. Assertion iii) is easily established using the
pointwise ergodic theorem.

Lemma 3 1:

i) |Pr(Z™)| < r(n) where 7(-) is a polynomial of degree
E

i) Let P = IL W; be a stationary measure such that
P, € Px(Z"). Then there exists a polynomial s(-) of degree
2|Z|* and an absolute constant ¢ such that

exp [nH(Wy)] < [Tz, x| < cexp [nH(Wy)].

1
s(n)

iii) Let /> be a stationary ergodic measure on 22 Then
for any integer k > 1 there exist positive sequences {7, }32;



400 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 40, NO. 2, MARCH 1994

and {£,}52., converging to zero such that the set of (Py, 7,)-
typical sequences of length n satisfies

P(TZ, k,n) Z 1 _€n~

D. Blowing-Up Lemma

The blowing-up lemma of Ahlswede-Gacs—Komer [2] is a
powerful tool for proving converse theorems involving i.i.d.
sources and was used in establishing the error exponent for
distributed detection of such sources under zero-rate data
compression [4]. This lemma has been recently extended by
Marton and Shields [8], [9] to all stationary ergodic sources
which are finitary codings of i.i.d. sources. We employ the
following weaker version of their result, for which we give
independent proof in Appendix B.

Lemma 3.2: Let P be a stationary first-order Markov mea-
sure on 22 with irreducible and aperiodic transition matrix.
If, for 6,, — 0, the set B,, C Z™ satisfies

(Vn)  P(Bn) 2 exp[—nén],

then there exist integers «,, with &, /n — 0 such that the Ham-
ming k,-neighborhood of B,—denoted by I'*~ B,,—satisfies

lim P(T"" B,,) = 1.

IV. DIRECT THEOREM

We recapitulate the problem statement as follows. We are
given a stationary ergodic first-order Markov source Z2_ =
(Xi, Y;)=, and two simple hypotheses Hy and H;. Under
Hy, the source distribution is P = [], W; where W = W is
an irreducible aperiodic transition matrix. Under H;, we have
Q = [1; Vi where V5 = V satisfies the additional positivity
constraint V' > 0. The condition V' > 0, which will be needed
in the proof of the converse theorem, also guarantees that
Qn > P, for any stationary measure P and value of n.

The two sensors Sx and Sy encode their observations X7
and Y7 into one of Mx , and My, , messages, respectively,
where Mx , and My, , satisfy the asymptotic zero rate
constraint (1.4). Thus, fo; any given n, Sx partitions the
space X" into cells C,(:) where 1 < ¢ < Mx ,; and
Sy partitions V" into cells Gﬁf), where 1 < j < My p.
Each sensor then communicates to the central detector the
cell index corresponding to its observation. This forces the
central detector to employ an acceptance region (for the null
hypothesis) of the form

Mx »
A= |J CY x F®

i=1

4.1

where each F,(f) is a (possibly empty) union of cells Gg ),

The optimal test of level ¢ based on n consecutive sensor
observations is one that minimizes Q(.A,,) (the probability of
type II error) over all acceptance regions A,, that

* yield a value of P(AS) (probability of type I error) less
than or equal to ¢; and

* are expressible in the form (4.1) using partitions {C,(f)}
and {G(nj)} constrained in size by (1.4).

The resulting minimum probability of type II error
is denoted by B,(Mx, My, ¢), and the error exponent
6(Mx, My, €) is defined as in (1.1).

The positive theorem of this section yields a lower bound
on the error exponent expressed in terms of linear subspaces
L, and L of distributions on 22 These are defined by

Ly = {P stationary on zZ.

Py, and Py agree on X* and Y*}; (4.2)

£ = {P stationary on zZ.
Pand P agree on xZ and yZ}. 4.3)

It is clear that £y D L4 and £, N\, £. Using the notation
developed in the previous section, we will express the generic
element of the above subspaces as P = IL Wi

Theorem 4.1: If we let

D% min D(Wy || Vi)
PeLk
then for all = € (0, 1) we have

€(2, 2, €) > supDy, > inf D(P|| Q).
k Pec

Proof: 'The idea is to construct for fixed k a sequence
of acceptance regions A, C Z™ that contain the set Tz i ,
of (P, n)-typical sequences where = 1, — 0 is as in
statement iii> of Lemma 3.1. This will ensure that P{A,) is
greater than | — ¢ for all sufficiently large n, and thus the type
I error constraint will be satisfied.

The set Tz x, n itself cannot be expressed in the form of
(4.1) if Mx, , and My, , satisfy constraint (1.4), and thus the
choice A, = Tz i, is not permissible. We consider instead
the restriction of P on X and yZ , and let

An =Tx,k,n X Ty, k, -

Here Tx,k,, and Ty, i, , are the sets of (P, n)-typical se-
quences in X" and (P, n)-typical sequences in }*, respec-
tively. Cleariy A,, can be written as in (4.1) with Mx , =
My, n = 2, and thus it satisfies constraint (1.4).

The type [ error constraint is met for n sufficiently large,
since A, D Tz i, ¢ for {, equal to a suitable multiple of 7,,.
To evaluate the corresponding type Il error, we note z7* lies in
A, if and only if its order-k type is drawn from the class

%"é‘{ﬁk € Pu(Z"): max| Pu(a}) - P(ab)| < mn,
Ty
nﬁxiﬁk(yi“) - Pyh)| < nn} (4.4)
1

and thus

An= U Tz

Pred,

4.5)
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A routine computation based on Lemma 3.1 ii) gives for any
P e Pk(Z )]

ﬁexp[—w(m 1Vl

< Q(Tz,x) < vexp[-nD(Wi | V2)]  (4.6)

where o(n) is a polynomial of degree at most 2|Z|* and «y
is an absolute constant. From (4.4), (4.5), (4.6) and the type
counting result in Lemma 3.1 i) we obtain, for 6, — 0, the
estimate

1 .
=log Q(Ar) < — min D(Wy || Vi) +6
n PLed,;

Consider now the classes of measures on Z* given by

Se={P: PeLy} and & = {Pi: P ergodic in Ly}
The class &, is nonempty (it contains P = Px x Py where Py
and Py are the ergodic X and Y marginals of the null measure
P) and the same is true of S D &. It is easy to verify that
Sy, is closed (e.g., in sup-norm) and that any measure in Sy,
when contaminated by (Py X Py )i, yields a measure in &;
thus Sy is the closure of &;. From the discussion above and
in Section III-C, the classes & and S, will approximate each
other as n — oo and 7, — 0, in that the distance between
any measure in one class and the closest measure in the other
class will approach zero. The continuity of the conditional
divergence functional then gives

1 .
—log Q(-An) < — min D(Wk ” Vk) + 6 + V("]n)
n PeLy

where v(n,) — 0 as n — oo. Invoking the definition of the
error exponent, we obtain

1
6(2, 2, €) = —limsup , —log 3,,(2, 2, €)
n

1
> —limsup,,—log Q(A,)
n
> min D(W, || Vx) = Dx.
Pely
It also follows that (2, 2, €) > sup, Dj. This establishes
the first inequality in the statement of the theorem. (For
the above choice of A, it is straightforward to show that
—lim,, n~!log Q(A,) also exists and is equal to Dj.)
Note that £ DO Lg41 implies Dgyy > Dy, so that
sup, Dr = limy Dy. Thus, it remains to show that
lim Dy > inf D(P || Q). %))
k Pec
To do so, we consider a sequence of measures {x(*)} on
22 such that w® =TT, w§"’ achieves the minimum in the
definition of Dy, i.e.,

Dy = D(w® || V).

The product space 22 s compact under the product topology
induced by the discrete topology on Z. It is also clearly
metrizable and thus equivalent to a compact metric space.
We invoke Prohorov’s theorem [10] to conclude that {/L(’“)}

contains a subsequence {u*), i € N} which converges
weakly to a measure . Weak convergence implies that every
cylinder set K C ZZ—bemg both open and closed in the
product topology—will satisfy
tim p ) (K) = u(K). “8)

It also follows easily that j is stationary and lies in £. We
will write ¢, = []; w;.

To establish (4.7), it suffices to show that lim; Dy, >
D(u]| Q). We do so in four steps.

Step 1) We approximate D(j|| Q) by D(w || V). Indeed,
from (3.2) we have

lirrln D(w, || V)

=D(u| Q). (4.9)

Although the above suffices for our purposes, we also note that

D(wn41 || Vas1) — D(wn || Va) = H(wn) — H(wnt1) 20

and hence
D(wn || Va) 1 D(1]l Q).

Step 2) We approximate D(w, || V,) by D(wr(lk) Il V). By
(4.8),

(V€ 27)
1)>0)

tim %9 (27) = u(af),

hmw(k (1227 = wal- | 77,

(Va1 (2
Thus,

lim D(wi*) || Vi)
(e | 257

= hm (k) 21 ) 1o
E (27 log 2 V(znlzn—l)

wn(zn | 27~ )

_2 p(z}) log O (4.10)

= D(wn || Vo).
Step 3) We observe that if k& > n, then D(wgk) | V) and
Dy = D(w;ck) || Vi) are related via

Dy — D(w® || Vo) = Hw®) - Hw) > 0. @11)

Step 4) Combining (4.10) and (4.11) yields

lim Dy, > lim D(w,*

= D(wn || Va)-

Taking the Jimit as n — oo and using (4.9), we obtain

lim Dy, > D(u | Q). o
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Remarks:

a) As is the case with the definition of p-distance [11],
the infimum in (4.7) can be taken over the subclass L. of
ergodic measures in £. Indeed, let P be any measure in £ and
{m,, z € zZ } be the class of ergodic measures introduced
in Section IT1I-B. One can show by a standard argument (see,
e.g., [12, Theorem 8.3.1]) that the event

A={z m, €L}

has P—probability 1. Using the ergodic decomposition of
divergence rate, we then obtain

D(P||Q) = /A D(m. || Q) dP(2)
> inf D(m, || Q) > _inf D(P'|Q),
z€EA PeLl,

as needed. ~ :
b) For an arbitrary P = I1; Wi in £ O L;, the monotonicity
of D(W, || V) in n as established in Step 1) implies that

Dy < D(Wi || Vi) < D(P | Q)
and thus .
supDy < infﬁ(f) Il Q).
k Pel

This is the reverse of the inequality (4.7), and will also follow
from the converse theorem below.

V. CONVERSE THEOREM
We now prove that no scheme involving one-sided or two-
sided zero-rate compression can result in an error exponent
higher than the lower bound of Theorem 4.1.
Theorem 5.1: If the asymptotic zero-rate compression con-
straint (1.4) is satisfied, then

8(Mx, My, ¢) < inf D(P| Q).
PeL,

Proof: The argument parallels the proof of Theorem
3.1 in [4]. We assume without loss of generality that
n~1log Mx,, — 0 and that My, , is unconstrained.
Consider an arbitrary acceptance region defined by
Mx, n
A, = U Cpn,ix Fy
i=1
where C,, ; C ™ and F,,; C Y™ Since P(A,) > 1 —¢,
there exists j € {1,---, Mx, ,} such that
1—¢
MX, n ’

P(Cn,j x Fn,j) 2
We write for brevity C,, ; = Cp, F,,,; = F, and B, =
C, x F,. By (1.4), there exists 6, — 0 such that
P(Bn) > exp £—n6n]'

Next we apply Lemma 3.2 to obtain a Hamming neigh-
borhood of B, with probability asymptotically approaching
unity under every measure in the class £.. Indeed, since P is

stationary Markov with irreducible aperiodic transition matrix
W, there exists an integer sequence {x,} such that

Kn

W 0 and liTanP(F""Bn) =1.
Dropping the subscript n from I'*~, we have
li}zn P(I*C, xI'"F,) > liTIInP(I"‘Bn) =1,
which in turn yields
lirI.n PI"C,)=1 and lirrln P(T"F,)=1.
The above relationships also hold for any P= I W; in L.

replacing P, since any such measure agrees with P on &
and Y#. Thus,

P(I*C, x T*F,) > P(I*C,)+ P(T*F,) -1 — 1,
and since 2% B,, = ['?*(C,, x F,,) D I'*C,, xT'* F,,, we obtain
lim P(I'**B,) = 1. (5.1

_ Next we estimate Q(I' 2% B,,) using the above bound on the
P-probability of the same set. We have

QI*By) = Y Q1)

zp€l?~B,

Y exp[-nin()P(a)

27 €02<B,

(5.2)

where

. n d£f1 f’(z")
St T

1, - .1
= Elog P(z1) - EIOE Q(z1)

1 n
- EZ]Og V(z; | 2j-1)-
=2

Since P is ergodic, we apply the Shannon-McMillan-Breiman
and ergodic theorems to conclude that the sequence of random
variables on Z4 induced by the mappings {i,} converges
P-almost surely to the constant

~H(W) - EplogV (2, | Z1)
= lim Ep[log Wi (Zn | Z771) = l0g Va(Zn | Z771)]
=D(P|Q)
[see also (3.1) and (3.2)]. It then follows easily from (5.1) and
(5.2) that
Q(I**By) > exp [-n(D(P || Q) + (a)]

where (, — 0 as n — oo.

As a final step,we “reduce” I'?*B,, to the original set B,
and derive a lower bound on Q(B,) with the aid of (5.3).
The ratio Q(27)/Q(Z}) for 27 € B, and 27 € ['**B, is at
least p** where

(5.3)

def . .
= 1% A
p= min, (22 | 21) A min Q(2)
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and p > 0 by hypothesis. A standard upper bound [2, Lemma
5.1] on the size of I'?*{z7} then yields

Q(Br) 2 exp[~nv(rn/n)]Q(I** By)

where v(u) = h(2u) +2ulog (|Z|/p?). As n tends to infinity,
both x,/n and v(k,/n) tend to zero. Equations (5.3) and
(5.4) then give

Q(Bn) > exp[-n(D(P || Q) + &)]

where £, — 0 as n — oo, and hence

(5.4)

1 1
—limsup,, —log Q(A;,) < —limsup,, —log Q(B,,)
n n
<D(P| Q).
Thus, 8(Mx, My, €) < D(P]|Q), and also
8(Mx. My, ¢) < inf D(P| Q). A
Pec.
Theorems 4.1, 5.1 and the first remark following the proof
of Theorem 4.1 together yield
8(Mx, My, €) = supDy, = inf D(P| Q).
k Pec.

From Lemma 7.4.1 in [5], we have

P{(XY)o | (XY)5}

BB ot (X )o  (XY)-1)

D(P|Q) =

which proves Theorem 2.1.

V1. OrPTIMAL TESTS AND SUFFICIENT STATISTICS

Based on the proof of Theorem 4.1, one can design an
asymptotically optimal distributed detection system as follows.
Each sensor collects n observations and computes the order-k,,
type (empirical distribution) corresponding to these observa-
tions. If this type is within distance n of the null distribution
P (restricted to X* or Y* as appropriate), the sensor accepts
Hy; it rejects it otherwise. Thus, each sensor communicates
to the central detector a single binary message (acceptance or
rejection of Hy) and the central detector accepts Hj if and
only if both received messages indicate acceptance.

In proving Theorem 4.1 we treated k, as constant in 7,
which resulted in a detection scheme with error exponent
equal to Dy. Yet the optimal error exponent equals sup, Dy,
which may not be achieved for a finite value of k. In such
cases it is necessary to take k, — oc at a suitable rate (de-
tails omitted) and the complexity of local encoding increases
dramatically. Thus compared to the optimal conventional
(non-distributed) first-order Markov detection scheme which
employs the second-order (kK = 2) empirical distribution as
sufficient statistic, the decentralized scheme is considerably
more complex.

As we mentioned briefly in Section II, it is tempting to
attribute this difference in complexity to the fact that the
marginal (X and Y') processes are not, in general, first-order
Markov. Assuming that this is the case, one might offer
the following explanation for the added complexity of the
decentralized scheme: since each sensor essentially performs a

hypothesis test on observations that are not first-order Markov,
second-order types cannot possibly be sufficient. In particular,
if the data are not Markov of any order, then no finite-order
type can be sufficient.

Although the above argument is intuitively appealing, it
does not address situations in which the marginal processes
are first-order Markov. One might speculate that in such spe-
cial cases, second-order types are sufficient, or equivalently,
sup, D, = Ds. A straightforward analysis shows that this
is indeed true for the simplest nontrivial such case, namely
testing Hy: P = Px x Py versus H1: Q = Qx X Qy where
each of Px., Py, Qx, and Qy are first-order Makov. But in
other cases, the determination of

Dy = min D(Wy || Vi)
PeLly

is not as straightforward. This problem is equivalent to finding
the Markov I-projection [7] of the conditional distribution
Vie(zk | zf'l) = V{(zx | zx—1) on the linear space Ly. The
constraints defining Ly, are (cf. (4.2))

le) ZP('rl:yl)—P(ml) and

ZP 'Tl’ yl

Using (6. 1) above in conjunction with (27)-(29) in [7], one
can deduce that the sought I-projection u®) has the general
form

(k)(

Vyl

P(y}). (6.1)

T, yl )= T(zki yk) (zka yk)
V(g u | 2f

¥)awF)

where the functions r, s, f, and ¢ are not, in general,
decomposable into simpler blocks. The product of the first
three terms on the right-hand side is consistent with first-order
Markovity, but the last two terms are not unless they have
additional structure. We are thus led to believe that in the
general case, the solution [L(k) is not first-order Markov.

To support the above, we constructed a parametric class
of examples in which the X and Y processes are both
individually and jointly first-order Markov, and computed the
value of D,, for ¥ = 2 and & = 3 (the problem becomes
prohibitivelv complex for k£ > 3). Details of the construction
and numerical results are given in Appendix A. As a general
rule, we found that Dy is greater than D, by an appreciable
margin, confirming that 3 is not first-order Markov. We also
conjecture that in the same class of examples, D is strictly
increasing to sup, Dy and thus the error exponent is not
achieved by any finite-order Markov scheme.

In conclusion, asymptotically optimal distributed tests on
first-order Markov sources employ (in general) empirical dis-
tributions of order higher than two. This is true even in
situations where the observations of individual sensors are
first-order Markov, and where ipso facto each sensor would
only need an empirical distribution of order two if it were
to perform a locally (in a spatial sense) optimal test. Thus
for detection of Markov sources, a distributed system can be
strictly morz complex than a non-distributed one. We should

1 (@

7y1
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note that this was not true of the i.i.d. sources treated in [3] and
[4], for which asymptotically optimal tests—both centralized
and distributed—could be constructed using first-order types
only.

VII. CONCLUDING REMARKS

The sequence of tests described in the previous section (with
kn, — 00) is universally asymptotically optimal for every level
€ € (0, 1) and alternative Markov distribution ¢ with strictly
positive transition matrix V' (the value of the error exponent,
of course, depends on V). If the irreducibility assumption on
W is relaxed to allow non-ergodic Markov sources under the
null hypothesis, then the optimal tests wil have to be modified
to take into account all irreducible classes. These modifications
will in general depend on ¢ and on the values of Mx, , and
My p.

With minor changes, our results extend to hypothesis testing
for higher-order Markov sources, yielding similar conclusions.
Namely, optimal tests for order-(k — 1) Markov sources
involve (in general) empirical distributions of order higher
than k, and this is also true in cases where the marginal
observations are themselves order-(k — 1) Markov. We have
not considered stationary ergodic sources that are not finite-
order Markov; progress in this direction is linked with better
understanding of nondistributed hypothesis testing for general
ergodic processes. A more immediate issue is what happens
when the alternative transition matrix V is not strictly positive.
The answer to this question is not known even in the simpler
iid. case.

VIII. APPENDIX A

We present examples in which both P and its restrictions on
xZ and yz are first-order Markov, yet Dy is strictly greater
than D,. This implies that the error exponent supy Dy is not
achieved by a first-order Markov joining of Px and Py.

1) The Model: For simplicity we consider binary observa-
tions, i.e., X = Y = {0, 1}. The stationary Markov measures
P=]JW;and Q@ = [ Vion Z = & x ) are to be
specified through P, and ()2, their respective restrictions to
Z2_ The associated transition matrices W = Wy, V = V; and
stationary distributions W, = Py, Vi = (1 are then easily
derived. In what follows, P and @ will be drawn from the
same model, so duplication of equations will not be necessary.

We restrict our model to distributions P with the local
Markov property
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The above conditions imply that the X and Y components of
P are also first-order Markov. Indeed,
P(zq | X771 = E[P(za | XY | X777
= E[P(zn | Xn-1Yn-1) | X{l—l]
= E[P(¢n | Xn-1) | X777
= P("L.n | X"—l)a
and similarly P(y, | Y1) = P(yn | Ya_1).

To construct Pp, we start with }Z|? — 1 = 15 parameters,
which we reduce to 12 using the stationarity constraints

ZP2(ZI7 z) = ZPz(z, 22).

Condition (A.1) imposes four additional constraints that reduce
the number of free parameters to eight. Of these parameters,
four may be used to specify the X and Y components of P:

(A2)

e = P(X1 =0, Xz =0),
SZZP(X:[ =0, X2=1)=P(X1=1’ X2:0)7
ry = P(Yi =0, Ya = 0),

Sy 21)(Y1 =0, Y2= 1)‘—‘P(Y] = 1, YZZO)

Further siraplification of the model is possible by assuming
that the X and Y processes are interchangeable, i.e.,
P(X) =a;1, Y1 =b1, Xo = a3, Yo = b)

= P(in = bl, Y1 =ai, Xz = bg, Y2 = az). (A3)

This yields
Tg =Ty =T,

Sz =8, =3

and imposes two additional constraints. The free parameters
are thus reduced to four, which without loss of generality can
be taken as r, s (defined previously) and
t=P(X,=0, Y7 =0);
OfZP(Xl ZO, Y1=0, X2=0, Y2=l).
After some algebra, we obtain for P, the matrix at the

bottom of the page where the entries p;(r, s, t, o) are
obtainable from the row sums

P(X1 =(|, 1‘3:0):1;

P(zs | may) = P(zs | 21), Py | o) = Py [3n).  PXa=0Ti=1)=PXi =111 =0)=r+s—t
(A1) P(Xi=1,Yi=1)=1-2r—2s+t.
T1y1\T2y2 00 01 10 11
00 et o 1 pi(r, 8, t, @)
01 a T(r::;t) - s(lrj':_”:) —a par s, t, @)
10 a SY_"'T"__;) —-a T(T:L:s_'t) —a par, s, t, a)
11 Pl(", 8, tv Of) P2(T7 S, ta a) P2(T’ 8, t: a) p3(7‘v s, ta Cl)
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We further observe that the distribution P, is time-reversible,
ie.,

P(X1=a1, Y1 =01, Xo =ay, Y =1by)
= P(X1=ag, Y1 =bs, Xo=b1, Yo =0ay).

This property can also be derived independently using
(A.1)-(A.3) and the fact that X and ) are both binary. It
extends to the entire measure P:

P(zy, 29,
2) Evaluation of D and Djy:
Dy = min D(Wy || Vi)

PeLl;

yZn—1; Zn) = P(zna Zn—1y'""322, Zl)- (A4)

By definition,

where L}, is the convex family of stationary measures on Z*
with X and Y components that coincide with those of P. We
observe that D(W, || Vi) is a strictly convex function of P.
Indeed, it can be written as

S g

w Z | Zr-1)

R e i

—log4
where the first sum is a linear function of P and the second
is an unconditional divergence which strictly convex in P.

For a given P in Ly, let P’ and P” represent the measures
obtained by interchanging X with Y and by time-reversal,
respectively. If P and @ belong to the model developed in
(a) above, then

i) both P’ and P” lie in CF; i

i) D(Wi || Vi) = D(W( || Vi) = D(W( || V).

Using a standard convexity argument, we conclude that if
P coincides with the unique distribution %) that achieves
Dy, then

® = p= P = P

The above property greatly simplifies the search for p(*),
For k = 2, the number of free parameters in %) is only four,
while for k = 3, we need 16 parameters. This number is likely
to grow exponentially with k, but the exact dependence is not
known to us.

3) Results: 'We have, using the notation and results estab-
lished in the proof of Theorem 4.1,

D2 = D(w;” [V2) < D(w}?||V2) < D(ws”||Vs) = Ds

(A.5)
where both inequalities are equalities if and only if u(® is
first-order Markov.

We also consider D,, defined as
D, = min D(W, || V2)
PeL.
where £, is the nonconvex class of stationary first-order
Markov distributions P on 2% which satisfy

P(X1, Xo, X3) = P(X1, Xo, X3)
P(Y1, Yz, ¥3) = P(Y1, Y3, V3).

and
(A.6)

Clearly £, C L3, and thus

D3 < D,. (A7)
Here again equality is achieved if and only if (%) is first-order
Markov.

Using the optimization package CONSOLE [13], we com-
puted Dy, I'3, and D, for many pairs (P, Q) from the model
developed earlier and found that the inequalities in (A.5) and
(A.7) are in most cases strict. Hence, 1 is not, in general,
first-order Markov.

For a specific example, we consider P specified by r = 2/5,
s=1/5,¢=:2/5and o = 3/80. The corresponding P, matrix
is given (in 240ths) by

iy \.’L'2y2 00 01 10 11
00 5 9 9 23
01 9 23 15 1.
10 9 15 23 1

11 23 1 1 23

A simple choice for @ is Q(XY) = P(XY) where overbar
denotes binary complement. The resulting Q2 matrix is the
reflection of P, about the antidiagonal and is obtained for
r=1/58=2/5t=1/5 and a = 1/240.

We found (in nats)

Dy =8.773 x 102
D(w? || V) = 8.775 x 1072
D3 = 8.830 x 1072
D, >1.131 x 1071,

Thus, the inequalities of (A.5) and (A.7) are decidedly strict.
Consistent with the large gap between Ds and D, was our
the observation that the distribution p9 achieving Do failed to
satisfy consiraint (A.6) by a margin of up to 6%.

IX. APPENDIX B
Proof of Lemma 3.2: We let Z = {1,---,M} and P =
I1; Wi where W, = W is imeducible and aperiodic with
stationary distribution W; = =x. On a suitable probability
space, we construct an i.i.d. vector-valued process U with
alphabet I/ = ZM+1 as follows. We take M + 1 mutually
independent and individually i.i.d. Z-valued scalar processes

Sloo’ (T(l))?ov T (T(M))?c

with marginal distributions given by

(Vr,me 2Z) Pr{S;=m}=mn(m),

Pr{Ti(r)=m} =W(m|r) (B.1)
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and we let

We denote the distribution of Uf® by Py.
Next we define a process Z7{° by the recursion

Zy = 51,

(n>2)  Zn=Tu(Zn).

From (B.1) and the above definition, it readily follows that

n

Pr{Zy =21} = n(z) [ [W (=i | 2im1) = P(a1)

=2

so that Z7° is stationary first-order Markov with distribution
Pz = P. The recursive definition of Z7° also implies the
existence of functions {f,, n > 1} and {g,, n > 1} such
that

Z7 = fo(UT') and

(1<i<mn) Zn = gn-i(Zi, Uly,).

The i.i.d. process Uf® has the blowing-up property [2]. This
means that given a set A,, which contains the random sequence
U7 with subexponentially decaying probability, it only takes
“afew” (i.e., ky, with k, /n asymptotically vanishing) changes
in U in order for A, to contain the modified sequence
with probability that approaches unity. To establish the same
property for the Markov process Z7°, we will show that,
with sufficiently high probability, a few changes in the i.i.d.
sequence U7 will only induce a few changes in the Markov
sequence

Z7 = fu(UD).

1) The Positive Case: We first consider the case in which
the transition matrix W has at least one column with positive
entries, i.e.,

(Im)(Vr) W(m|r)>0.

In this case, if we let
U={(s, t(1), - 4(M)) elU: t(1) = --- = t(M)}
and W = U\U, then

def

p= Py(U) < 1. (B.2)

To illustrate the argument, consider a sequence u, where
u; = (85, ti(1), -+, (M)

and let 4} differ from u7 in the ith position only. Let the
corresponding z-sequences be 2z = f,(u?}) and £} = f,(a}).
From the definition of f,, it is clear that the first ¢ — 1 positions
of 27 will be unaffected by the change in the ith position of

- i—1 i1 . ~
ul (i.e., 277" = 2] ) whereas, in general, 2] # zI'. However,

the resulting error in 27 can only propagate as far as the first
position 7 > ¢ such that

ti(1) = =t;(M),
or equivalenily, u; € . This is so because
zj = tj(zj-1) =t(%-1) = %
and for 7/ > j,
zjr = g —i (2, Wigq) = 9jo—j(Z5, Wyy) = 2.

An analogous conclusion can be drawn in the case in which
4y differs from «7 in more than one position: the error in 2}
due to each change can only persist as far as the next position
where all ¢-components are equal.

Based on the above observation we will estimate the prob-
ability that U7 lies in

G, k1 = {uf: (307 € T*{ul})
(@) & TFHH{ fu(uf)} ),

i.e., there exist k& or fewer positions in U] that can induce a
change in k£ + ! or more positions in f,(UT).

We first define a null run as a finite sequence from 4. We
then let

Gy, k1 = {u7: u] contains, among others,
k disjoint null runs of total length !}.

From the discussion of the two previous paragraphs it follows
that G,, x,; is a subset of G;z,k,l'

To estimate the probability of G, | ;, we first write it as
the union of all sets G, , , defined by

—b —b
" 0 1 a 2
Grap =UD XU XU xU
—b
X oo XU XU T x U+
where {a;, b;} are nonnegative integers such that

o+ Fappr=n—1, b4+ +b=1L

Gl/

To upper-bcund the number N of distinct sets G .
we observe that there are ("_,i“’) choices for the vec-

+k—1

o1 ) choices for the vector

tor (aj,---,ak+1) and (
(b1,---,bx). Hence,

n—l+k\(l+k-1
v (0N

Actually, the above inequality is strict, since some duplications
will occur between cases in which an a; or a b; equals 0.

From the definition of G}, , , it follows that Py (G}, , ;) =
(Py(U))' = p' and thus

—l+k\[{l+k-1
PU(Gn,k,I)SPU(GIn,k,l)S(n k+ )( -l];_l )pl'

(B.3)

Now consider the set B,, C Z™ in the hypothesis of the

lemma and let A,, = f,;71(B,). From the definition of G, .1,
we obtain

fn(rk(An n sz, kl)) C Fk+an
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and thus

Py(T*(A, NG 4 ) < Pz(T*B,). (B4

We claim that the lemma will be established if integer se-
quences {k,} and {l,} are found such that:

i) the resulting set G, «,; satisfies, for all sufficiently large
n,

1

Py(Gn k1) < 36%P [-néa]; (B.5)
i) kn/(nV8,) — oo; (B.6)
iii) (kn + In)/n — 0. (B.7)

Indeed, in the presence of the hypothesis
Py(An) = Py(By) > exp[-néy),

condition (B.5) implies that

1
Py(An NGy 4 1) 2 §exp [—nb,)-
A version of the blowing-up lemma for i.i.d. sequences [2,
Corollary 5.3] in conjunction with condition (B.6) yields

Py(TH(A,NGE 1)) — 1.
By virtue of (B.4), the above implies that
Pz(T*B,) - 1

which in the presence of (B.7) becomes the sought conclusion.

In the final step, we demonstrate that &k, = {n&,l/ 3] and
lh=|n -711/ GJ satisfy conditions (B.5)-(B.7) given above. We
take without loss of generality § < 1, so that & < [; and
we assume that né, > ¢, where ¢, | 0 is suitably chosen.
The last assumption is permissible, since the conclusion of the
lemma follows trivially from the hypothesis if né, — 0. For
simplicity, we will also omit the subscript n from k,,, I, 6,
and ¢,.

Since & — 0, conditions (B.6) and (B.7) are satisfied. To
investigate condition (B.5), we first consider the bound in
(B.3). The binomial coefficients can be upper-bounded by

(1) <o ()] ()

where h(p)dzd—p log p—(1—p) log (1 —p). The first inequality
can be obtained from a type size bound (see, e.g., the proof of
Lemma 5.1 in [2]); while the second inequality follows from
—In(1 - p) < p/(1 — p). We thus have

k k-1
- k-1
PU(Gn,k,l)S€2k_l(" l+k) (l+ > o

k k—1
k IN*
< 2k(P v L
=€ (k) (1 + k) P
Using the chosen values for k and I, we obtain

%logPU(Gm k1) < (62 +n~h)[2loge + log ™13
+1log (6716 +1)] + 6/ log p.

Taking € = n~2 (so that n~! < §1/3) and invoking the
inequality In z* < a(z — 1) for @ > 0, we obtain the simpler
bound

1
;log Py(Gn k1) < (41oge)6™3[1 + 367112 4 616 1og p.

The first (positive) summand on the right-hand side is O(§/4),
the second  negative, by (B.2)] summand is proportional to
81/6, so for suitable ¢ > 0 and all sufficiently large 7,

Llog P(Gr 1) < —c8M/8 < 513 — 5 < —% —é.
n

This establishes (B.5) and completes our proof.

2) The General Case: If no column of the transition matrix
W is entirely positive, the above argument is clearly inappli-
cable because p = 1. Consider the following modification.

Since W is irreducible and aperiodic, the process Z7°
is strongly mixing. This implies that the n-step transition
probability from state m to state 7 converges to w(r) > 0
as n — oo and thus there exists d > 0 such that any state
can be reached from any other state in exactly d transitions.
In particular, there exists a collection of M allowable paths,
each originating from a different state m and terminating at
state 1 after d transitions:

Path 1: 210 211 Z192 21d
Path 2: 220 221 2922 29d
Path M: 2zpm0 2a1 2m2 ZMd

Here 2,,0 = m and z,,4 = 1 for all m. We may (if necessary)
modify the above collection by a simple recursion to ensure
that whenever two paths meet, they merge. In other words,

mj = zrj = (V5" > ) (B.7)

Zmj! = Zrj!-

Relationship (B.7) allows us to embed the above paths in
a sequence ¢ of nonzero probability, such that whenever ¢
occurs in the U-process, the derived Z-process is certain to

be driven to state 1, i.e.,

(Ym)  ga(m, ad) =1. (B.8)
To construct. 44, we first write it out as the array
81 S2 Sd
t1(1)  t2(1) ta(1)
t(2)  t2(2) ta(2) |
ti(M)  t2(M) ta(M)

Then for each path 2,1, -, 2md i turn, we assign values to
one entry per column j using the recursion

1<i<d)  ti(2m, j-1) = Zmj-

Relationship (B.7) ensures that no inconsistencies will arise
if an entry is visited in more than one recursion (i.e., by
more than cone path). For entries that are left unassigned, we
choose values that have nonzero probability, e.g., t;(r) =
arg max,,, W(m | r). It is easy to check that (B.8) is satisfied

and that Py {id} > 0. We let p=1 — Py {ad}.
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To complete the proof, we redefine a null run as any finite
sequence from I that does not contain the string ¢, and we
denote the set of null runs of length b by ;. Retaining the
previous definitions of G, ,; and G;% k1o WE again have
Gr ki C Gy pand Gy oy = U, 4 G 4p In this case
G, .4 is given by

e = UM XUy XU xUpy X - XU x Uy, x U+

n,a, b —

where the integers {a;, b;} are constrained as before. The
probability of each G, , , can be upper bounded as follows.
If 43 is a null run and ¢ = |b/d], then none of the consecutive
substrings uf, u3d .- ,ufg_l)dﬂ equals 4. Thus,

k k
Pu(Gl .4 = HPU(Hb.») < leb,-/dJ < pl/d=k,
=1 i=1

"
n,a,b

Using the same upper bound on the number N of sets
as before, we obtain

Py(Gn,k,1) < Pu(Gr k1)
n—1l+k l+k-1 1/d)—k
() ()
where p < 1. The above bound is asymptotically as good as

(B.3)if k = 61/ and | = §'/6, and the proof can be completed
as before. A

(1}

—_—
~J

18]

9]
(10]

(1]

[12]

(13]
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