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Multiterminal Detection with Zero-Rate Data
Compression

Hossam M. H. Shalaby, Member, IEEE, and Adrian Papamarcou, Member, IEEE

Abstract—The asymptotic performance of a multiterminal
detection system comprising a central detector and two remote
sensors that have access to discrete, spatially dependent, and
temporally memoryless observations is discussed. It is assumed
that prior to transmitting information to the central detector,
each sensor compresses its observations at a rate which ap-
proaches zero as the sample size tends to infinity; and that on
the basis of the compressed data from both sensors, the central
detector seeks to determine whether the true distribution of the
observations belongs to a null class IT or an alternative class =.
Under the criterion that stipulates minimization of the type 11
error rate subject to an upper bound e on the type I error rate,
we show that in the case of simple distribution classes ( O =
| Z| = 1), the error exponent achievable by such a system has a
simple characterization, is independent of the value of €, and is
insensitive to changes in compression rate as long as the asymp-
totic rate on one of the sensors is zero. By considering four
different settings, it is then demonstrated that these conclusions
do not hold in the case of composite distribution classes.

Key Words: hypothesis testing, distributed detection, data
compression, quantization, error exponents, blowing-up lemma.

1. INTRODUCTION

WE consider the problem of testing a null hypothesis H,
against an alternative FH, on the basis of compressed
data from a discrete-time, discrete-alphabet, memoryless
multiple source. In its simplest form, our setup comprises
two remote sensors S, and S, that are linked to a central
detector. The sensors Sy and S, observe the respective
components of the random sequence {(X,, Y;)}",, and en-
code their observations into a maximum of M, and N,
messages, respectively. Upon receipt of the two codewords,
the central detector accepts or rejects the null hypothesis in
conformity with the classical criterion that stipulates mini-
mization of the probability of falsely accepting H,, (type II
error) subject to a fixed upper bound ¢ on the probability of
falsely rejecting H, (type I error).

Distributed detection systems of the above type have been
widely studied in the recent literature. The models most
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frequently encountered [9]-[17] employ fixed codebook sizes
M, =M and N, = N, where M and N are often equal to
2. In such cases, the central detector receives from each
sensor what amounts to a local decision, possibly accompa-
nied by an assessment (on a fixed finite-valued scale) of the
sensor’s confidence in that decision. Of course, it is also
possible to design distributed detection systems employing
varying codebook sizes M, and N,, as is the case with
certain models discussed in the information-theoretic litera-
ture [1]-[6] and in this paper.

It is worth noting that for one particular model, namely
that in which M, and N, are large enough so that no
compression is needed, the analysis is well known. In that
case, the central detector knows the observed sequence
{(X;, YD}/, precisely, and the optimal decision rule for
testing H,: Py, versus H,:Q,, at any level ¢ is speci-
fied by the Neyman-Pearson lemma. Furthermore, the re-
sulting minimum type II error probability 3,(e) satisfies the
asymptotic identity

1
- lirrln ;logﬁn(é) =D(Pxy|lQxvy)-

The quantity appearing on the left-hand side of this equa-
tion (which is due to Stein [7]) is termed the error exponent
for the hypothesis testing problem. On the right-hand side,
D(-|| - ) denotes informational divergence.

Unfortunately, in cases where data compression is manda-
tory, the determination of the optimal system is a highly
complex task that involves the joint optimization of the local
data encoders and the central detector. This difficulty has
motivated the study of tractable compression/decision
schemes which are asymptotically optimal, i.e., achieve the
same error exponents as their optimal counterparts. The
investigations in [2]-[5] are examples of such studies.

In [2], Ahlswede and Csiszar discussed the problem of
hypothesis testing under fixed-rate compression on one sen-
sor. In the special case of testing against independence (i.e.,
Oxy = Qx X Qy), they obtained a single-letter characteri-
zation of the error exponent by recourse to entropy character-
ization techniques. Also, in the general case where Q xy >0,
they showed that the error exponent is independent of the
level e. Yet the problem of single-letter characterization of
the error exponent in the case Qyy # Q, X Qy remained
unsolved; single-letter lower bounds to that exponent were
obtained in both [2] and [3] using compression /decision
schemes whose asymptotic optimality was not established. In
a somewhat different model involving exponentially decaying
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bounds on the type I error rate, Han and Kobayashi [4]
developed good upper bounds on the error exponent for
fixed-rate compression on both sensors.

In this paper, we consider the hypothesis testing problem
under data compression at (asymptotically) zero rate. In
other words, we assume that the codebook sizes satisfy
constraints of the type

1 1
Ry(n) = ;logM,,*O, Ry(n) = ;logN,,—>0.

Our inquiry was motivated by the study in [3] of hypothesis
testing under two-sided one-bit (M, =2, N, =2), and
one-sided one-bit (M, =2, N, = o), compression. For
those systems, Han proposed a simple scheme that com-
pressed both S, and Sy to one bit, was independent of the
level ¢, and yielded a simply characterized lower bound on
the error exponent. He then proved by converse theorems the
tightness of the lower bound

1) for all values of ¢ in the case of two-sided one-bit
compression;

2) for a range (0, €,) of values of €, where ¢, < 1, in the
case of one-sided one-bit compression.

Related work has appeared in the pioneering paper of
Amari and Han [5], where differential-geometric arguments
were used to establish the error exponent in certain cases of
two-sided zero-rate compression under the additional con-
straint of symmetric encoding. We should also note that
under the assumption of exponential decay in the level e, Han
and Kobayashi [4] derived the error exponent under two-sided
one-bit compression and provided lower bounds for that
exponent under one-sided one-bit, and two-sided zero-rate,
compression.

We complement and extend these results as follows. First,
for fixed-level simple hypothesis testing under the positivity
constraint Q> 0, we prove that the two-sided one-bit
compression/decision scheme proposed by Han in [3] is, for
all €€(0, 1), asymptotically optimal in the broader class of
one-sided zero-rate compression /decision schemes. Thus, an
optimal distributed detection system employing two sensors,
of which one transmits data at a vanishing rate while the
other supplies complete information about its observations, is
asymptotically no better than optimal system in which each
sensor transmits a single binary digit. It also follows as a
special case that optimal systems for fixed codebook-size
compression (M, = M, N, = N) have the same asymptotic
performance regardless of the values M and N. In other
words, no gain in asymptotic performance can result by
allowing each sensor to transmit a quantized, or soft, deci-
sion [16] instead of a binary, or hard, decision.

Our second body of contributions is in the area of compos-
ite hypothesis testing under zero-rate compression. By con-
sidering four different problems in this area, we demonstrate
that the error exponent here is not only a function of the null
and alternative distribution classes, but also depends on the
level e and the sequences of codebook sizes M, and N,.

255

This conclusion is in sharp antithesis to our findings in the
area of simple hypothesis testing.

The formulation of the general problem is given in Section
II, together with pertinent notation. The converse theorem
for simple hypothesis testing appears in Section III, followed
in Section IV by an extension to the multivariate case (r
sensors, where r > 2). Section V serves as introduction to
the problems in composite hypothesis testing discussed in
Sections VI and VII.

II. PROBLEM STATEMENT AND PRELIMINARIES
A. General Notation

The observations of S, and S, are denoted by the
sequences X" = (X,,*, X, )€ %" and Y" = (Y,
~--, Y, )€ ", respectively, and the alphabets 2" and %
are assumed finite. Since the multiple source is memoryless,
the sequence of pairs (X, Y;),***, (X, Y,)e(Z'*x #)"
is i.i.d. under both hypotheses. In what follows, it will be
convenient to deal with the product space 2" X #" in-
stead of (4 X #)", and thus, the observations will be
collectively represented by the pair (X", Y") e " x % ".

By virtue of the aforementioned i.i.d. assumption, all
distributions of interest can be specified through bivariate
distributions on 2" X #. Under the null hypothesis, the
distribution of any pair (X, Y;) is usually denoted by P,
and its respective marginals by P, and P,. The distribu-
tions of X", Y”", and (X", Y") under the same hypothesis
are denoted by Py, P} and Pj,, respectively. The i.i.d.
assumption then implies that for all (x”, y™)in 2" x # ",

n
Piy(x", y") = Hl Pyy(xi ¥,)-
i

Analogous notation is employed for the alternative hypothe-
sis, with Q replacing P. We will also have occasion to use
distributions Py, Py, and Py, on Z X %, which will
yield marginals and higher order distributions in the same
manner as Py and Qxy.

The spaces of all distributions on Z°, %, and & X % will
be denoted by #(Z), #(¥) and #(Z X %), respec-
tively.

The compression of X" and Y " is effected by encoders
S and g, respectively, where

ol "= {1, M)}, and g,: %"~ {1,---,N,}.
For one-sided zero-rate compression of X" we assume that
N,z | % |" and

(2.1)

and similarly for one-sided zero-rate compression of Y ", we
have M, = | % |" and

1
M,=12, lim —log M, = 0,
n R

1
N, =2, lim —log N, = 0. (2.2)
n R

For two-sided zero-rate compression, both (2.1) and (2.2) are
assumed.
The central detector is represented by the function

$ni Lo My} X {1 N} = {0, 1),
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where the output O signifies the acceptance of the null hy-
pothesis H,, and 1 its rejection. This induces a partition of
the original (i.e., noncompressed) sample space " x & "
into an acceptance region

%,,d:ef{(x",y")e " x

and a critical (or rejection) region .7,°.

By nature of the encoding process, the acceptance reglon
can be decomposed into M, rectangles C; X F, in %"
%" that possess disjoint projections C; on &". More
precisely, if for every 1 < i < M, we define

Ci= {x”ef{" :fn(xn) = i}
wd F= (e 97 01, 8(3") =0},

@

then we can write

(2.3)

M,
UG xF
i=1
where (Vi # j) C;N C; = P. We can obtain an alternative
representation for .«/, by partitioning % " into N, sets:
N,
U D x G,
i=1
where (Vi #j) D, ND; = 0. Note that (2.3) and 2.4)
Jointly characterlze all admlssxble acceptance regions under
two-sided compression with codebook sizes M, (for X™)
and N, (for Y"). Taken separately, the above conditions
characterize the admissible acceptance regions under one-
sided compression of X" and Y ", respectively.

(2.4)

B. Simple Hypothesis Testing

The optimal acceptance region for testing H,: P versus
H;:Q at a given level e€(0,1) is one that minimizes
Q% y(#,) over all acceptance regions o/, that

Cl) yield a value of Pg,(+,°) less than or equal to e;
and

C2) satisfy the appropriate compression constraints;
namely,
e (2.1) and (2.3) for one-sided compression of X”;
e (2.2) and (2.4) for one-sided compression of Y”;
e 2.1), 2.2), (2. 3), and (2.4) for two-sided com-

pression.

The resulting minimum probability of type II error is de-
noted by 8,(M,, N,, €), and the associated error exponent
is given by

. 1
6(M, N, &)= - lim—logB,(M,. N,, ),
n R

provided the limit on the right-hand side exists.

C. Composite Hypothesis Testing

Let II and Z be disjoint subsets of Z(2 X %). For
testing Hy: Py eIl versus H,: Q,, € ata given level
€, we employ the wniformly most powerful (UMP) test.
Thus for a given level e €(0,1), we seek to minimize the

ba(fu(x"), &™) = 0},

quantity

Sllp Qgr Y ( ”q/n)
Q€&

over all acceptance regions .2/, that meet the constraints

C1) Pgy(,) < e forall Py, inII;
and
C2) as before.

We use the notation

def
Bn(Mn’ Nn’ 6) é min SupQ?{Y(ﬂn)’
M Qe=

and define the error exponent 8( M, N, €) as before.

D. Typical Sequences

Our proofs rely on the concept of a typical sequence, as
developed in [8]. We cite some basic definitions and facts on
typical sequences.

The type of a sequence x" € # " is the distribution A, on
Z defined by the relationship

def 1

(vae 77) )\X(a)=;

N(a| x"),
where N(a| x") is the number of terms in x” equal to a.
The set of all types of sequences in 2" ", namely {\, : x" e
2"}, will be denoted by #,(Z").

Given a type Py e 2 (1), we will denote by T7 the set
of sequences x"¢€ f " of type Py

f)’}dg{x”e TN =Pyl
Also, for an arbitrary distribution P on Z and a constant
n > 0, we will denote by T; the set of (P, n)-typical
sequences in Z°". A sequence x" is (BP,, n)-typical if
| \(@) — Py(a)| <7 for every letter ae % and, in addi-
tion, A (a) = O for every a such that PX(a) = 0. Thus, if
| - || denotes the sup norm and < denotes absolute continu-
ity, we have
~ def ~ ~
T, ={x"eZ" 1|\, — Py| <, A€ Pyl

In the same manner, we will denote by T3 , and T,\’l , the
sets of (Py, 7)- and (P, n)- (respectively) typical sequences
in 2 ". We will have no need to consider sequences with
exact or approximate type Q.

The proofs of the following lemmas appear in [8]. As
usual, | ./ | denotes the size of .«7.

Lemma 1: The size of #,(Z")is at most (n + 1)/ ! For
any Px in Z(Z)and Qy in (%),

(n+ 1)—| /"exp[nH(IsX)] < |7 < exp[nH(ﬁX)],
and
(n+ 1)7|'7 Iexp[—nD(}A’)‘,H QX)]

< Q;’((f";) = exp[—nD(IsXHQX)].
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Lemma 2: For any distribution P, on Z and 5 > 0,
| |

P)?(T)'},n) z1- 4’,“72 :

One can easily modify this exposition to accommodate
pairs (x”, y")e€ " x ¥ " by reverting to their represen-
tation in (2" X %)". Thus the type of (x”, y") is the distri-
bution N\, on Z X % such that

Mol 8) = - {i: (x,, ) = (a, )],

and the class Z(% x %), as well as the sets f’)'}y C " x
Y™ and T} v.n C "X @7, are defined accordingly.

In this and the following sections, we will omit the super-
script n from T”, as n will be essentially constant.

III. A CoNVERSE THEOREM FOR SIMPLE HYPOTHESIS
TESTING

In this section, we derive the error exponent for simple
hypothesis testing under the positivity condition Oxy>0.
We show that the error exponent (M, N, ¢) is independent
of ¢ and the compression scheme used (one-sided or two-
sided), provided the asymptotic zero-rate constraints 2.1
and/or (2.2) are met. Furthermore, its value is given by the
minimum of the quantity

D(Pyy|Qxy)

over all bivariate distributions P, , on % X % whose
marginals on Z" and % agree with those of P, .

The positive result, namely the existence of a sequence of
acceptance regions that achieve the above value, was shown
in [3]. The acceptance regions used in that work had the
simple rectangular form

Tx,,, xTy,,

and were thus admissible under the most stringent of two-
sided compression schemes, namely M, =N, =2.Our re-
sult here is a strong converse for one-sided compression of
X", i.e., we show that for every value of € € (0, 1) and every
sequence of acceptance regions .7, satisfying (C1), (2.1)
and (2.3), the following is true:

1
- liminf —log Q% y(#,) <
n n

min D(ﬁXY”QXY)'

. Xv*

By=pPy,P,=P,

By symmetry, the same is true for one-sided compression of
Y", and a fortiori, for two-sided compression.

Theorem 1: Let Py be arbitrary, and Q, , > 0. For all
€€(0,1) and sequences M, and &, satistying (2.1) and
(2.3), the following is true: if for every n,

P;Y(M,f) <e,
then

1
- liminf —log Q% , (#,) =
n n
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Proof: By (2.3), we have

Mﬂ
o, = |JC; X F,
i=1
where the C;’s are pairwise disjoint. Assume that P2, (. ©)
=< ¢, or equivalently, PZ, (%) = 1 — e. Then there exists
an index i, such that

1 —¢

M

n

P)’}Y(Cio X on) =

Letting C = C; and F = F, , we can rewrite it as

Pgy(C X F) = exp(—nj,),

(3.1)

where

n

1 1
6,=206,(M,, €)= —;log(l —€) + ;logMn,

and 6, — 0 by (2.1). Equation (3.1) clearly implies that

P3(C) = exp(-né,) and PJ(F) = exp(—ns,).
(3.2)

Thus, asymptotically, neither C nor F has ‘‘exponentially
small”’ probability. By the blowing-up lemma [8, Theorem
5.4], this fact implies that both sets possess Hamming & -
neighborhoods which are asymptotically ‘“as thin’* as the sets
themselves (i.e., k,/n— 0), and whose probabilities ap-
proach unity as » tends to infinity. Specifically, let d(- , - )
denote Hamming distance, and define the Hamming &-
neighborhood T'*C of C by

I‘"Cd:ef{u”e 7" (3x"eC)d(x", u") < k}.

The blowing-up lemma asserts that under condition (3.2),
there exist sequences k, and v, satisfying

k,/n—>0 and «v,—0,
and such that
Pi(T*C)=1-4y, and P}(T*F)=1-~, (3.3)

Furthermore, &, and v, depend only on | Z |, | % | and
,, and not on Py .
In what follows, we will use k instead of k, in all
superscripts. 5
Equation (3.3) clearly holds true if we replace P by P,
where ﬁXY satisfies the marginal constraints

Py=Py and P,=P,.

Using the elementary property Pr(A N B) = Pr(A) +
Pr(B) — 1, we then obtain

P}, (T*C x T*F) = P2(T*C) + PL(T*F) - 1,
and hence,

Pry(T*C X T*F) =2 1 - 24,. (3.4)
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Thus, under the n-fold product of 13)(,,, the probability of
the rectangle T*C x T'*F approaches unity as »n tends to
infinity. By Lemma 2, the same is true of the set of
(ﬁxy,n)-typical elements in 2" x %", where n =19, =
n~ '3 Indeed,

| 2% |
4n'/?

NEIEA
4m7,7;

ﬁ;y(fxy,y,) =1

Hence, for all sufficiently large n, we obtain
P ((T*CXT*F)Y N Ty ) = 1. (3.5)

By definition of f’X y.,» We have the following decomposi-
tion:

Txy,= . U Tyy.

Pyye? (7 XU ):

“ny_Px_y"S’?v
Pyy<Pyy

Thus, observing that the elements of a given f"XY are
equiprobable under any i.i.d. measure, we can rewrite (3.5)
as

<. |(T*C X T*F) N Ty, |
) > P)'("Y(TXY) =
Py yeZ (7' X¥): | Tyy I
IIny—ﬁx_leSn,
Pxy<Pxy

=

N =

At least one of the fractions in the above sum must be greater
than or equal to 1/2; hence, there exists a type Pyye€ 2,
(Z X %) satisfying

| Pyy — Pyyll<n and Py, < B,
and such that
[(T¥C x T*F) N Ty |
ITA‘XY'

Since pairs (x”, y") of the same type are also equiprobable
under Q%, we conclude that for the previous type Py,

N -

Q%y(T*C x T*F)
= Q% y((T*C X T*F) N Ty )
[(T¥C x T*F) N Ty |

Q;{Y(TXY) '7”-, I
XY

1 R
= EQ/”\'Y(TXY)‘ (3.6)

We have, thus, established that the probabilities of the sets
T'“C X T*F and Ty are of the same exponential order
under Q% . We now show that the same is true of the pair
I'*C x T¥F and C x F. The argument is similar to that
given in [2, Section IV].

Consider an arbitrary element (1", v") of T'*C x I'*F.
By definition of T'*, there exists at least one element (x",
y")€C X F such that (x;, y,) differs from (u;, v;) for at
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most 2k, values of i. We, thus, have

Q% y(u",v") =

ﬁ Oxy(u;,v)

i=1
n
prkHl Qxv(x:, ¥)
iz

= P_ZkQ:;(Y(xn’ "),

IA

(3.7)
where

def

p= min

xed', ye

@Qxy(xs y) > 0.

As (u", v™) ranges over I'“C x T'*F, each element (x",
y™) of C X F will be selected at most | T'*(x")| - |T*(y™|
times. By virtue of this, (3.7) yields

0% (T*C x T*F)
< p HITH(x")IT*(»") | Q% y(C X F).

From [8], we have the upper bound
k” kn
|T¥(x")| < exp|n h(—) + 710g | Z |},
n

where /(-) denotes the binary entropy function. Thus, we
may write
Q% y(T*C X T*F) = exp (n£,)Q%y(C X F), (3.8)

where

k,\ K, ) 2k,
£n=2h(—)+—log(|:f||€#|)— log p = 0.
n n n

As a final step, we combine (3.6) and (3.8) with the upper
bound on Q% y(7Ty ) provided by Lemma 1. Thus,

Q%y(C x F)
= %exp(_nfn)Qg(Y(TXY)

(n + 1)*W'H~’N

> exp[_n(D(}SXY”QXY) +En)]

exp [ ~n(D(Pyy||Qxy) + )]s

I\

where
Go=talo e, M, | 2], |2 |)~0.

Over the range of pairs (ﬁxy, QXY) such that and Qxy =
p, the divergence functional D(Pyy||Qyy) is convex and
bounded, and thus also uniformly continuous. It follows that
we can find a sequence

B =ta(0, | 2], 1% )0
such that

I Pyy — Pyyl| <u,=n"""

="‘D(PXY”QXY) - D(PXY”Q)()')| = Py
Hence,
Q%y(Cx F) = exp[_n(D(ISXY"QXY) + &+ ,u,,)],

(3.9)
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and consequently

1 ~
- lm;mf; log Q% y(#,) < D(Pxy | Qxy)-
Since 13Xy satisfies the appropriate marginal constraints, the
proof is complete. O

This result, in conjunction with the positive part of [3,
Theorem 5] yields the following theorem.

Theorem 2: If Q, , > 0, the error exponent for H, : Py
versus H,; : Q,, under one-sided or two-sided zero-rate
compression is given by

6(M,N,¢) = min
XY
PX PX PY PY

D(ﬁXY”QXY)'

Remark: In the proof of the converse theorem, the con-
stants {, and u, appearing on the right-hand side of (3.9) are
independent of the distributions Py, ISX,,, and depend on
Qx y only through the lower bound p. With this in mind, we
state without proof the following variant of Theorem 1,
which will be useful in establishing converse results in the
sections that follow.

Theorem 3: Fix p > 0 and €€ (0, 1), and let M, be a
sequence of integers satisfying (2.1). Then there exists a
sequence

Vn=V(peM,|ﬁ”|,f€V|)—>0

such that for every QXYe P(X X U ) that satisfies O, , =
p, and every P, e (X' X ¥), Ce ", Fe #" that
satisfy either

1—€
M

n

(3Pxy: Py =Py, P, = P)) P2 (CXF) =

or, more generally,

PL(C) =

the following is true:

0%y (C x F) = exp [—”(D(ﬁxynéxy) + Vn]~

IV. ARBITRARY NUMBERS OF SENSORS

The results of the previous section can be extended to
multiterminal detection systems employing r sensors, where
r > 2. Here the problem is that of testing H,: P versus
H,: Q, where P and Q are r-variate distributions. As in the
case r = 2, we assume Q > 0.

Without going into detail, we give the following statements
that can be established by suitably modifying the arguments
in the proofs of [3, Theorem 5] and Theorem 1.

1) If at least r — 1 sensors employ zero-rate compression,
then the error exponent is given by the ‘minimum of
D(P||Q) over all r-variate distributions 2 whose uni-
variate marginals agree with those of P. As in the
bivariate case, the value of the exponent does not
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depend on the level e and the codebook sizes. Thus, in
particular, systems employing one-bit compression per
source component can attain the same asymptotic per-
formance as more complex systems employing zero-rate
compression on r — 1 source components, and no com-
pression at all on the remaining component.

2) More generally, if r. out of r source components are
compressed at asymptotically zero rate and the remain-
ing r, = r — r, are not compressed, the error exponent
is given by the minimum of D(B| Q) over all distribu-
tions P that agree with P on
a) the univariate marginals corresponding to the com-

pressed source components, and
b) the r,-variate marginal corresponding to the r, com-
ponents that are not compressed.

Thus, the latter r, components are essentially treated as
one. It also follows for r, = 2 that if we impose zero-rate
compression on any one of these r, components, then the
error exponent will (in general) decrease.

V. ComprosiTE HYPoTHESIS TESTING

In the remainder of this work, we consider issues of
optimal zero-rate compression for composite hypothesis test-
ing. For disjoint classes II and Z of bivariate distributions on
4 X %, we wish to test

H,: Pyyell against H,:Q,,€E
subject to the compression rate constraints introduced earlier
in this paper. The precise formulation of the problem appears
in Section II-C.

The key result of our inquiry into the simple hypothesis
testing problem with zero-rate data compression was that
under a positivity assumption on the alternative distribution,
the error exponent §(M, N, €) exists and is independent of
the sequences M, N and the level e. Furthermore, as the
proof of the positive part (given in [3]) indicates, it is
possible to specify a sequence of asymptotically optimal
acceptance regions solely in terms of the null distribution P,
and thus the alternative distribution enters the picture only in
the computation of the error exponent §( M, N, ¢).

In examining the composite hypothesis testing problem, we
have found that these conclusions are of limited validity in
this case. That is, given two classes of distributions IT and &,
the error exponent for testing the hypothesis H,, : II versus
H, : E depends in general on the sequences M, N and the
level e. Furthermore, the choice of optimal acceptance re-
gions is influenced by both IT and E.

Our results, which are presented in the following two
sections, highlight similarities and differences between the
simple and composite hypothesis settings by reference to both
general and specific problems parametrized by II, =, M and
N. Some of the more specialized results admit generaliza-
tions, albeit at the expense of compactness in the characteri-
zation of the error exponent. It seems to us that the general
problem of determining error exponents for arbitrary II, =,
M and N resists coherent treatment, and is, thus, placed
outside the scope of this work.
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The following notation will be used in Sections VI and
VII.

1) For a class IT of distributions on 2" x %, the corre-
sponding classes of marginals are denoted by

Ny = {PyeP(Z):3Pyyell}
and Iy = {P,e P (% ):3Py,ell}.

2) If Py, Py, Qyy are distributions on %', %, and

Z X ¥, respectively, we let

def . ~

d(Pyx, Py|Q) = i D(Pxy|Qxy)-
ﬁX=PX)f35,:PY

More generally, if A, A and = are classes of distributions on
the same spaces (respectively), then

def )
d(A,A)E) = inf

. QxyEE.
Pyy: PyeA, PyeA

D(Pyy | Qxy)-

VI. ADEQUATE CODEBOOKS

Our main observation here is that if the codebook sizes M,
and N, allow the codes to distinguish between distributions
in the marginal classes I1, and IT, derived from II, then
the error exponent has no further dependence on M, N, and
€, and is achieved by a sequence of acceptance regions
specified solely in terms of IT.

We first consider the case in which M, and N, increase to
infinity while satisfying the zero rate compression constraint,
ie.,

limM, = lim N, = oo
n n

and

I

(6.1)

In this case it is possible to encode the types of the observed
sequences x” and y" with arbitrary accuracy and thus
construct acceptance regions which are similar to those given
in [3] for the simple hypothesis testing problem. To prove the
converse, we employ Theorem 3, assuming the uniform
positivity constraint

1 1
lim —log M, = lim —logN, = 0.
n n n n

def 3
Pins = Inf min

,¥)>0.
QeE (x.y)e:i‘xQOXY(x y)

(6.2)
This ensures that the convex function D(-|| - ) is bounded on
P(X' X %)X E and is thus uniformly continuous. The
result is as follows.

Theorem 4: If I1 C #(% X %) is arbitrary, and (6.2) on
E and (6.1) on M, N are satisfied, then
6(M,N,¢) = inf d(Py, Py||Q .
Pryell Oy yei (Px, Pyl Qxy)
Proof: See Appendix A.
Next we assume that the codebook sizes are fixed in #,
i.e., M, = M, N, = N. In this case, it is no longer possible

to encode the type of the observed sequences with arbitrary
accuracy, and the conclusion of Theorem 4 does not hold in
general. However, in the special case

M= |II,| +1, N=z= |l | +1, (6.3)

it is still possible for the codes to distinguish between distri-
butions in IT, and II,, and by a straightforward adaptation
of the proof given for the positive part of Theorem 4, we
readily obtain the following.

Theorem 5: If 1 C P(Z X %) is finite and (6.2) on E
and (6.3) on (M, N) are satisfied, then
O(M, N, e) = inf _d(Py,Py||Qxy). O

Pyyell, Qyye=

VII. INADEQUATE CODEBOOKS

In this section, we consider situations in which the pre-
scribed codebook sizes do not allow the codes to distinguish
between the distributions in IT, and IT,. A consequence of
this inadequacy is that the optimal system design will depend
on both the null and the alternative distribution classes, as
well as on the actual codebook sizes and the value of the level
€.

For simplicity we will assume that the class IT is finite. As
we pointed out earlier, some of our proofs admit cumber-
some but straightforward generalizations to situations in which
IT is infinite. However, since our aim is to highlight salient
differences from the simple hypothesis testing problem, we
choose to restrict our attention to the simplest possible case.
For this reason we will also assume that that the alternative
hypothesis is simple, i.e., & = {Qyy}.

For finite II, we already know from Theorem 5 that the
codebooks will be adequate if they have fixed sizes M and N
such that

M= |II,| +1, Nz |II,| +1.

Thus, we investigate what happens when at least one of the
inequalities is not satisfied. Specifically, we consider three
cases:

Problem a) || = [T, | = |1, | =2,M=2,N=3;
Problem b) |I1| = |1y | = |, | =2, M =2, N=2;
Problem ¢) |II| > |II,|, M=2, N= |II].

In Problem a), if I1 = { Py, Py}, then the two code-
words available to the Sy encoder do not suffice in order to
classify the observed x" sequence as (approximate) type Py,
(approximate) type P,, or neither. At first glance, the
logical choice is to pair the two distributions in IT, together
and thus encode x” as either lying in the set Ty , U TX‘ 5 Of
its complement. Yet, this encoder is not always optimal and
may be outperformed by one that separates the distributions
P, and P, by placing them in two disjoint and mutually
exhaustive classes. The complete result is given by the
following theorem.

Theorem 6: Let I1 = { Py, Py}, where Py # P, and
P, #Py,. If Qy,>0,thenforO<e<1,

6(2,3,6) =00V o?,
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where

def
o = d(nX’ Oy Q)

and

9(2)‘1;fd(13x, PylQ) Nd(Py, P, | Q)

A min {d(Py, Py Q)vd(By, By|Q)}.
Pye?(T)
Proof: See Appendix B.

In Problem b), where M = N = 2, neither encoder can
provide a ternary classification of the received sequence. As
in case a), either of two encoding schemes can be asymptoti-
cally optimal. The first classifies each of the two observed
sequences as “‘type II”’ or “‘not type II,”’ while the second
uses partitions of #(Z°) and P(¥) that separate the
marginals of Py, and P, . Specifically, we have

Theorem 7: Let Il = { Py, Py}, where Py # P, and
Py# Py . If Qyy>0,thenfor0<e<1,

6(2,2,¢) = 6OV,

where 8V is as defined in Theorem 6, and % is the
supremum, over all partitions {®, ®} of #(% ) and {¥, ¥}
of #(¥), of the quantity

d(® U {Py},¥ U {P,}] Q)
ANd(® U {Py}, T U {P,}]0Q).

Proof: See Appendix C.

It should be noted that although the definition of §® given
in the statement of Theorem 7 is seemingly more involved
than the one given for 6 in Theorem 6, it is analytically
possible to reduce 6 to an expression that involves no
maximization, namely

6% = {D(Py||Qx) AD(Py | Qy)}
V{D(PxlQx) AD(Py]|Qy)}. (7.1)

This characterization, which is derived in Appendix D, is
also useful for determining the maximizing classes ¢ and ¥
in the original definition of §%.

We finally consider Problem c), which would be a straight-
forward generalization of Problem a) if it were not for the
possibility that |IT| > |II, |. When this arises, i.c., two or
more distributions in IT have the same X marginal P, itis
possible to improve upon the second encoding scheme (the
one which induces a nonempty partition of II,,) by separat-
ing sequences that have approximate type Py. The resulting
scheme, however, is only admissible for values of the level e
greater than 1/2, and thus the error exponent depends on e.
This is somewhat of a surprise, considering the chain of
strong converse theorems which have been derived in [2]-[4],
and in this work. The statement of our result is given below,

where 1, denotes the set of degenerate distributions of
P(T).

Theorem 8 LetlI<oo, M=2,and N = [y | + 1.
Also, let {A, A} denote a partition of IT. If Q, > 0, then
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for e€(0,1/2) U (1/2, 1), the following is true:

8(2,N,e) =0 vo%(e),
where

0V = d(Il, M, Q),
max, x5 na,-p7(A.4), if0<e<?,

09 (e) = { max Lo TaB). ifi<e<t,

AxNExN1 =P
and

T(A’ Z) = d(AX’AY”Q) /\d(K)m ZY”Q)
Amin {d(Py.a, Q) vd(Py,Ay]0)}.

Remark: We have been unable to evaluate 8(2, N, 1/2).

Proof: See Appendix E.

The results of this section illustrate that the error exponent
in distributed hypothesis testing with zero-rate compression
depends on the codebook sizes M, N, as well as on the level
€; and that the choice of asymptotically optimal acceptance
regions (those that achieve 8?, 8 and #®(¢) in Theorems
6, 7, and 8) is also affected by the alternative distribution Q.
We should also add that the dominant error exponent in each
of the above three theorems is not trivially determined, e.g.,
9" does not always dominate ®. Furthermore, in regard to
Theorem 8, we have examples in which the dominant error
exponent 6 (¢) actually decreases as ¢ drops below 1/2.

VIII. CONCLUDING REMARKS

The positivity assumption on the alternative hypothesis was
essential for the derivation of the converse results in this
paper. Without this assumption, we could not have applied
the blowing-up lemma in the proof of the pivotal Theorems 2
and 3. The same difficulty was encountered in the proof of
the converse result in [2, Theorem 6], which also employed
the blowing-up lemma. We hope that this obstacle will
eventually be removed.

In the meantime, we should note that in the case of simple
hypothesis testing, there are instances where Q 3% 0 and
D(P|| Q) is trivially minimized by P = P. In such cases, the
resulting minimum is equal to the error exponent under no
data compression (cf. Stein’s lemma [7]), and the converse
result follows immediately.

We must also emphasize that Theorem 2 does not subsume
its counterpart in [3]. Although the converse theorem appear-
ing in that work was valid for one-bit compression of S, and
for e€(0, ¢;) only, the hypothesis of that theorem did not
impose any constraints on Qy other than D(Py | Qxy)
< o,

APPENDIX A

PrOOF OF THEOREM 4

Direct Part: Let a,=|M,/1”"||. Then by an elementary
geometrical construction we can partition 2(Z2°) into at most
a,’,’ I< M, cells %" of maximum dimension (measured by sup
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norm) not exceeding a,'; clearly a,!
same is true for @(@/ ) with b,
l Nl/ | ¥ IJ

We denote the #(# )-counterpart of %" by %", and we write

U Tx. U T

Pyee) Pyeﬁ

— 0 since M, — . The
replacing a,, ie., b, =

Based on the above partition, we devise a compression /decision
scheme as follows. First, we require that each encoder transmit the
cell index corresponding to the observed type, i.e.,

fn(xn) =1,
&.(»") =/,

iff x"eC/,
iff y"eF/.
Next, we seek an acceptance region &/, C £ " x %" such that

2, |J Ty, (A1)
Py yell

for some fixed n > 0. This is because the above set has PZ ,-prob-
ability that uniformly approaches unity for all P, , eIl (by Lemma
2), and this automatically ensures that the type I error bound is met
for every € € (0, 1). We define &, as the smallest union of rectan-
gles C" X F[ that contains

U Tx.e X Ty
Pyyell

where £ is a multiple of 5 chosen so as to ensure that (A.1) holds.

Since £ is fixed and the dimension of each C” and F" shrinks to
zero as n approaches infinity, it is also true that for n sufficiently
large,

s, C U Ty 2: X Ty 5.
Py yell

By a standard argument based on the definition of typicality, we also
have

Tx2e X Ty,2¢ C U Txy, ¢
Pxy:
Py=Py, Py=P,

where { is a fixed multiple of £ and 4. We conclude that
s, C U

Pxr:
@Pxyell) By=Py, Py=Py

Tyy ¢

A union bound on Q"(s/,) for Q€ Z can now be established
using Lemma 1 and the fact that D(-|| - ) is uniformly continuous
on (X x¥)XE

O(#,) = | 2(T x¥)|exp|—n inf
Pyy:
GPXYEH)P)/(Y:YP)(sﬁY:PY

'(D(ﬁX}'” Qxy) - #’(3‘))]

=< exp[-—np)i(l‘lin(d(PX, PyllQxy) - I‘(f))] >

where u({) goes to zero together with ¢ (and, hence, also 7). We,
therefore, have

B.(M,, N, ¢) sexp[—n inf

Pyyell, Qyye=E

“(d(Py, Py|Qxy) - M(f))] .

Since u({) can be made arbitrarily small by choice of 75, we
conclude that

0(M, N,e)~ inf

d( Py,
Py yell, Qxye

Pyl Qxy)-

Converse Part: Let o/, be an admissible acceptance region. By
(2.3), for every distribution P, , in II, we can find a rectangle
CXFCZ"x %" such that

P (CXF)=(1-¢€)/M,.

Applying Theorem 3 with p = p;,;, we obtain a universal sequence
v, = 0 with the property that for every Qxye , Pyy€ll and

Pyye P(X X ¥) such that Py=Py, P, = Py, the following
is true:

Qxv(,) = CXP[_”(D(ﬁxy“QXY) + ”n)]~
We conclude that

B.(M,, N,, ¢) Zexp[— inf

Pyy: (aP”en) Py=Px, By=pP

xye—,

'(D(PXYHQXY) + Vn)
and hence,

9(M, N, ¢) < inf

_d(Py, Py|Qxvy)- O
Pxyell, QxyeX

APPENDIX B

PrOOF OF THEOREM 6

Direct Part: We restrict our attention to encoders that group
sequences of the same type together. The sensible choice for the Sy
encoder is one that specifies whether the sequence y” lies in 7'y, »
TYT, or (Ty , U Ty Wis

For the S, encoder the first choice is one that specifies whether
the type of the observed sequence x” is close to either one or none

of the distributions Py, Py, i.e.,
— — c
CI:TX,WUTXVH’ C2=(TXV11UTX~11) .

With this choice of encoders, the smallest acceptance region that
satisfies the type I error constraint under both Py, and Py, is

&,V = (Ty  UTy,) x (Ty ,UTy,).

The Q"-probability of the above set can be upper-bounded in the
standard fashion (viz. Appendix A):

0%y () = exp[—n(

i _ min _
Pxe{Px, Px}, Pye{Py, Py}

D(ISXY” QXY) - #("l))]
where u(n) — 0 as n — 0. This yields, since 7 is arbitrary small,
6(2,3,¢) =0V =d(lx,11,]Q). (B.1)

The second candidate for the S, encoder is one that separates
sequences of approximate type P, from ones of approximate type
P, . Formally, we define a ball of radius # centered at P, by
Q(Px)_ {Pye 2(2): | Py - Py| <7, Py<Py}. (B2)

We then consider two sets ® and ® of distributions such that

®C 2(7) - %(Px) - %,(Py)
and @ = 2(2) - B(Py) - 4,(Py) - &,
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and we let the encoder partition 2" into

Ci=Ty,U | Ty
Pyed
and C;=(C)) =Ty ,U J Ty. (B.3)
Pyed

This expression contains a slight abuse of notation, since not every
Py in® or & willbe in 7 ,(Z7). In what follows, however, it will
be convenient to write

U Ty and U Ty ,»
Pyed Pyed
for
f”X and f'X,
PxedN 2 7) PyeB ()N F (1)
respectively.

The second choice of Sy encoder (together with the S, encoder
introduced in the beginning of the proof) yields the acceptance
region

#,2 = (Cix Ty U (Cy x Ty ).

Note that unlike /", &/® does not contain Ty, X Ty or
TX 2 X Ty, It does however contain pairs (x y" whose
marginal type A, is close to neither Py nor Py.

To estimate Q"(.%/, (2)) we decompose each of C; and Cj into
two sets as in definition (B.3). We then treat A @ as a union of
four disjoint sets, and upper-bound their Q- probabllmes in the
usual way:

Q5v(Tx,, X Ty,)

sexp[~n(d(Px, P, Q) - u(n))],
Qxy(Tx , x Ty,)

= exp [~ n(d(Py. Py] Q) — u(n))],
Q;’(Y( U 7, x Ty,,,)

sted’
< exp [—n(ﬁinfc}d(ﬁxa PyllQ) - l‘("))]’

o

Pyed
< exp [—n(ﬁinﬁ@d(ﬁx, PyllQ) ~ p.(‘r))):l

where pu(n) = 0 as n - 0.

Thus, the error exponent associated with this choice of acceptance
region is greater than or equal to the minimum of the four exponents
appearing in the above bounds, namely the quantity

d(PvaY”Q)Ad(ﬁX’ﬁY”Q)
A inf d(Py, Py||Q) A inf d(By, Py Q).
Pyed Pyed

At this point, we should note that ' by letting # shrink to zero, we
have expanded the classes  and & in the vicinity P, and PX SO
that U & = 2(7) — {Pyx} — {Py}. This is justified by conti-
nuity of d(-, - || @), which further allows us to treat ® and & in
the previous expression as constituting a partition of (7).
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It remains to find that partition {®, ®} of #(%") which maxi-
mizes

Py) A inf 5(By),

v(Px) Au(Py) A inf o nf
X'

Pyed

def _ def
where v(*) = d(-, Py | Q) and i(*) = d(-,
accomplished by noting that

)A igfﬁ(i’x)

P, || Q). This is easily

infu( By
L4

1A

inf [v(By) vE(Py)] A inf [v(Py) vi(Py)]

;(“f [ (PX V”(Px)]

o(Py).

1

B inf u(PX)A . inf
Py u(Py)=u(Py) Py u(Py)<i(Py)

Thus, an optimal partition consists of the sets
& = {Py:v(Py) 25(By)}
and & = {By:v(Py) <i(Py)},

and the error exponent associated with the resulting . @ s given
by

0@ = d(Py, Py||Q) Ad(Py, Py Q)

A min {d(PX,P 10) va(Py, Py|Q)}.

PXE P
We conclude that 8(2,3, €) = 6°, and in light of (B.1),
0(2,3,¢) =20V vo?.

Converse Part: For fixed n, consider an admissible acceptance
region &/,. By nature of the encoding, %/, can be written as

o, = (C, x F) U(C, X F,),

where C, and C, form a partition of 2", and at most one of F,,
F, may be empty. From the type I error constraint

PXY('Mn) =

it follows that two cases may arise.
Case 1: For i and j distinct, we have

Piy(C x F) = Py (C; x F)

I —~¢ and ﬁxy(ﬂn) =1 —¢,

and  P%y(C;x F) = P}, (C; x F}).
This clearly implies that
1—e¢

Bi(C) = —.

and PL(F) =

for any ﬁXeHX, Pye ITy. From Theorem 3, we obtain

1
——logQ%y(C, x F) <d(lly, I, ||Q) + », = 60 + Yy
n

where », = 0 as n = o, and, thus, also

1
- —logQ™"(#,) = 60 + »,. (B.4)
n .
Case 2: For i and j distinct, we have
Piy(Cix F) = P, (C; X F)
and Py (C; x F) < P2y(C; x F}). (B.5)
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Using Theorem 3 once again, we obtain respectively

1
_ZIOSQ:'\’Y(CI‘ X F) = d(Px, Py| Q) + v,

and

1 _
—;1ogQ;'(y(cj X F;) =d(Py, Py||Q) + v,.

Hence,

1 —_
- ;logQ"(M,,) = d(Px, Py|Q) Nd(Py, Py|Q) + v,
(B.6)
Relationship (B.5) also implies that

1—e€

PY(F) = -

Té and Py(F) =

By virtue of Theorem 3, these inequalities can lead to a further
upper bound on Q"(,) provided there exists a distribution Pxe
P (X)) for which either PX(C) or PX(C) exceeds a fixed value
independent of n. But the last dls_lunctlon is true for every PX,
since C; and C; are complementary events. We, thus, obtain the
upper bound

min
F’XEW(Y)
'{d(lsX’PY”Q) Vd(ﬁX’FY”Q)} + v,
which, together with (B.6), yields

1
- ZIOgQ:’YY(‘Mn) =

1
- ;logQ}y(Mn) =0@ 4y,

Finally, by combining the bound for Case 1 (B.4) with the above
bound for Case 2, we obtain the converse statement

6(2,3,¢) =00 ve?. . 0

ApPPENDIX C

PrROOF OF THEOREM 7
Direct Part. Since M =2 as in Theorem 6, we consider the
same two candidates for the S, encoder:

SiC =Ty UTy,. C=(Ty,UTy,)

and

JiC=Tx,u J Ty,

C=Tx,U |J Ty,
Pxe<I>

Pyed

where (&, ®) form a partition of #(Z) — Q(PX) Q(PX)
Observe that, in this case, N = 2 also, and thus, it is no longer
possible for the Sy encoder to specify whether y” lies in Ty,
TY a OF (Ty ,UTy e Proceedmg as for Sy, we propose the
following two encoders for Sy

g:F =Ty ,UT,,, F=(Ty, UT, )

and

g:F =Ty ,U | Ty,

F=Ty,,u U Ty,
ﬁyE\II

Bye¥

where (¥, 3) are defined in a similar manner.

Given these possibilities for encoding Sy and Sy, there are only
two reasonable choices for the acceptance region .#7,,:

#"=C xF and &%= (C;xF)U(C,xF;).

Noting that the region yin“) is identical to the one used in the proof
of Theorem 6, we obtain

0(2.2,¢) 2 60 = d(Il. T, | Q).

To evaluate the error exponent associated with .52/,,‘3), we follow
the corresponding procedure for ﬂ/nm in the proof of Theorem 6.
Since

A = U Txx

T,)
QU Z(Py) YU ﬂ(Py)

( U % x)

=d(®U {Py}, ¥ U {P,}|0Q)

we obtain
1 3
— lim —logQ"(&/n( ))
n n

Ad(F U {Py}.¥ U {P,}]Q).

Once again, it is legitimate to assume that in the above equation,
{®,®}, {¥, ¥} constitute partitions of the entire spaces P(X)
and P (%), respectively. The best error exponént attainable by a
sequence of acceptance regions of the form %"(3) is therefore

09 = sup {d(® U {Py}. ¥ U {P,}]|Q)
@, ¥
Ad(3U {Py}, ¥ U {P,}]0)}.
We conclude that
8(2,2,¢) =2 6D v e,

Converse Part: In this case every admissible acceptance region
&/, can be written as

= (G, xF) VU (G xF),

where C,, C, are complementary, while F,, F, are constrained by
Fye{p, #", Ff}. As in the proof of Theorem 6, two cases may
arise.

Case 1: For i and j distinct, we have

PEy(Ci X F) = PJI;Y(C/‘ X F/)
and P%y(C;x F) = P}, (C; X F)).

This is same as Case 1 in the proof of Theorem 6, whence we obtain
1
- —logQ"(,:X/,,) =09+,
n

Note that this case subsumes the situation in which F, is empty.
Case 2: For i and j distinct, we have

Piy(Ci X F) = P3y(C; X F)

and  Pgy(C, x F) < Piy(C; x F).
We easily deduce that
1 —e¢ €
PI(C) =z —, Py(F) = ,
2C) = — HF) = —
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and

Let us define the classes

q’n:{ﬁX:IS}’}(Ci)Z%}’ ‘I’nz{ﬁY:ﬁ;"(F')Z

[SIES

|

and

& ={Px:PY(C;) >3}, ¥F={B,: PL(F) > 3}.
Since C; and C, are complementary, &y = &;. For F, and F,, we
have either F, = F{ or F, = #". In the former case we have
again ¥ = ¥?, while in the latter, either ¥, or ¥ is equal to
P(H).

By the foregoing discussion, all marginal distributions 15X6<1>,, V]
{Px}, Pye¥, U {P,}, satisfy

1—¢€

- 1-
PR(C) = 2

and PL(F) =
Applying Theorem 3, we obtain

1
- ;IOgQ:{’Y(Ci x F)

=d(®, U {Py},¥,U{P,}|Q) +, (C.1)
Similarly, for Cj X Fj, we have
1
—;logQ:{,y(CjX F)
=d(®7U {Py}. 47U {P,}Q) + 4, (C2)

We must show that the smaller of the two bounds appearing in
(C.1) and (C.2) is less than or equal to 6® as defined in the
statement of the theorem. This is certainly true if ¥¥ = ¥° since
we can then take

(2.3} = {&,,¢7) and {¥.9} - (¥, ¥}

in the definition of §®. Otherwise, if wlo.g V= 2(¥), the
same conclusion can be reached by taking

{2.8} = {®,.9} and {¥ ¥} = {¥,, ¥}
Thus, we have obtained
1
- —logQ% v (#,) <9 + »,.
n
This, together with our result for Case 1, yields the converse

statement

8(2.2,¢) <M ved, O

APPENDIX D
DERIVATION OF (7.1)
If we let, for all ® C 2(%) and ¥ P (W),
def

a(®.¥)= o d(Py, By|Q),
(P x, Py)e( X ¥)U (P x ¥°)
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then the definition of 8 becomes

0® = sup o(®, V).

(D.1)

$,¥:
(Px, Py)edx ¥,
(Py, Py)edx¥°

We must show that §® can be expressed as in (7.1), or equiva-
lently, that 8 = 6/, where

oS {D(Py | Qx) AD(Py110y)}
V{D(ﬁ){”QX)AD(PYHQY)}'
1) To show that 6 = 6, let & = {Py} and ¥ = {P,}°. Then
o<3>za(fb,w):d(PX,{ﬁy}”nQ)Ad({Px}c,ﬁYHQ)

= D(Px|Qx) AD(Py| Qy), (D.2)

where the last equality follows by continuity of divergence.
Similarly, if = {Py}and ¥ = {P,}, we have

0% = D(Py||Qy) AD(Py| Q).

Combining (D.2) with (D.3) we obtain §® < ¢,
2) To show the reverse inequality 9 < 6, let

A=cld, A=cl®, B=cl¥, B=cl¥°,

where cl denotes closure under sup norm. Then by continuity
of divergence,

a(®,¥) =

(D.3)

min d(Py, Py|0).

(Py, Py)e(AxBYU(AxB)

We must show that «(®, ¥) < 4’ for every ¢ and V. This is
trivially true if (Qy, Qy)€(A x B) U (A X B), in which case
we have

a(<I>,\I’) = d(QX’ QYHQ) =0.
Hence, we may assume that
(Qx,Qy) ¢ (A X B)U (4 x B).

We provide an upper bound on «(®, ¥) as follows. First we note
that

(D.4)

(ANA)x #(¥)c(AxB)U (A4 x B),

so that
a(®,¥)<  min_ d(Py, Py| Q)
(Py, Py)e(ANDx ?(#)
= min D(ﬁXY”QXY)'

(By, Py): PyeANA

Using the log-sum inequality, we can show that above minimum is
equal to

,min  D(Py[Qy).
PyeANA

By symmetry we conclude that
«(®,¥) = min _D(Py|Qx)A min _D(B,|Q,).
PxeanAd PyeBNB
(D.5)

Two cases may arise, according to whether Q liesin A4 or A
(note that it cannot lie in AN A by (D.4)).
Case 1: Qe A: Since Py e A, there exists Ae (0, 1] such that

Py=APy+ (1 -NQyedNA.
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This yields

ﬁxrenjr:‘vTD(ﬁX"QX) = D(st“ QX)
= )\D(ﬁXHQX) + (1 - )\)D(QX”QX)
< D(Px|Qx),

where the last inequality follows by convexity of divergence.

From (D.4), we also have the QYEE. An analogous argument
for Qye B and Pye B yields

_min _D(Py||Qy) < D(Py|Qy).
PyeBNB
From (D.5), we conclude that

a(®,¥) = D(Py||Qx) AD(Py|Qy)- (D.6)

Case 2: Q€ A : Again (D.4) implies that Q€ B. As in Case 1,
we obtain

a(®,¥) = D(Px|Qx) AD(Py||Qy). (D.7)

From (D.6) and (D.7) we conclude that a(®, ¥) < #’, and hence
also 9 < ¢, O

APPENDIX E

PrOOF OF THEOREM 8

Direct Part: Once again we take M,,“) as in the proof of
Theorem 6, whence we obtain (2, N, €) = V.
To construct «/,®) by analogy to Theorem 6, we partition the

space I1y into A, A, and the space #(2°) — #,(Il) into &, &.
We then have

@ _ 7 a
B ( ) Ty x U T,,,v)
PxedU #,(A) Pyyell: PyeA
u( fox U T)
ﬁxeiu ﬂ,,(x) f’xyel'lz ﬁxej_\

which is readily seen to satisfy the type I error constraint for every e
and every distribution in II.

Note that instead of partitioning IT , into A and A, one can begin
by partitioning II itself into A and A such that A xN Ay =5
Then one can write equivalently

Tex | f"y,")

Pyedy

o @ _
n
PxedU Z (A x)
Ty X ) Ty,

U (
PyedU Z(A x) Pyeldy

and by the argument given in the proof of Theorem 6,
0(2,N,e) z7(8,4) =d(Ax,Ay| Q) Ad(Ax, 8y Q)
Amin {d(Py,Ay[Q) Vd(By,5,]0Q)}.
X

Taking the maximum over all partitions {A, A} of II satisfying
Ay N A, =0, we obtain for all €& (0, 1),

0(2,N,¢e) = max T(A,Z).

AA AYNA =P
The constraint A, N A, =  is essential in the above construc-
tion of JX/n(z); its removal would allow

Ty and C} = U T,
Pxe®U F(B x)

-
Cl = i
PredU 4,(A x)
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to have nonempty intersection and, hence, be inadmissible under the
given compression scheme. If, however, 1/2 < e < 1, then it is
possible to relax the said constraint to

A,\'nxxnlx:ﬂ

in the following manner. For every ﬁx that lies in Z,(A x N A x)
(and hence not in 1 if » is properly chosen), we can partition Ty
into two sets T}} and T;( of sizes that differ by at most 1, and
redefine C; and C; by

C = v 1y T¥
Pye®U £(Ax—Ay) Pxe£(AxN4x)
and
Ch = Ty U U Ty .

Pye®U 4B x~Ax) PyeA(AxNA )
We can then
manner. _

It is easily seen that for every Py y €Il such that Py ¢ Ay N Ay,
and every e€ (0, 1),

complete the construction of %,,‘2) in the usual

for n sufficiently large. The same is true for every Py €Il such
that Pye Ay N Ay, if e€(1/2,1). To see this, let w.l.o.g. Pyy€
A. Then

Piy(42) = p;;,,( U Txx TM)

Pye 4(Px)

T;) +Py(Ty,) -1

zP}}( U

Pyed(Px)

1 |7 |
=— -\ +1- 5
2 4ny

where A, = 0 since % (Py) contains no degenerate distributions.
We conclude that for n sufficiently large,

P}Y(L,Q/n(z)) =1 -

By computing the error exponent as before, we obtain for 1/2 <
e< 1,

6(2, N,¢) = max 7(4, A).

ALA:
AxNAxN1x=P
This concludes the proof of the direct part.

Converse Part: As in the proof of the converse part of Theorem
6, we express &7/, as

o, = (C, x F) U (C, X Fy),

where C, and C, form a partition of #"", and at most one of F),
F, may be empty. Once again, two cases may arise.
Case 1: For i and j distinct, we have

(vPyyell) Piy(Cix F) = Piy(C; X F).

J

This implies that

1
- —logQ"(,) =6 +v,.
n
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Case 2: The sets A and A defined next form a nontrivial partition
of II:

A= {nyen: P;y(Cy X F) 2 Pgy(C, x F)},
A={Pyyell: P}, (C, x F) < Pgy(C, x Fy)}.

We claim further that Ay N A, N 1, = P. Indeed, if there exist
Pxy€A and PyyeA such that Py = Py, then

1 —e€ - 1—c¢
P(C) = 3 P(Cy) = PR(Cy) > >

Since C, and C, are complementary and have positive probability
under Py, P, cannot be degenerate.

As in Case 2 in the proof of the converse part of Theorem 6, we
obtain for all € € (0, 1),

I -
- ;logQ”(Mn) <7(A,A) + »,.

It remains to show that if ¢ € (0, 1 /2), the above bound is also valid
for a partition {Q, Q} of IT such that Q x N Oy = §. To construct
such a partition, we argue as follows.

For Pyelly, we consider the set # (Py) of distributions in IT
that have Py as X-marginal:

def , ~ -~
H(Py)={Pyyell: B, = Py}.

We let X > 0 be independent of 7, and we assume for the moment
that for every Py €Tl ., we can find i€ {1, 2} such that

'(VISXYG”(PX)) ﬁ;’Y(CiXF;') ERN (E.1)

If so, then we can partition IT x into A; and A, by placing each of
the members Py of I1, in A, iff / is the smallest index for which
the previous relationship holds. This, in turn, yields a partition Q,
of II through

Q= |J #(Py) and Q=

PyeA,

U #(Px).
PyeA,
Clearly @, = A, x = A;, and from the definition of A; and
relationship (E.1), we obtain the desired bound

1 -
- ;logQ"(Jzi,,) <7(92,0) + »,.

Thus, the issue is to prove that for suitable A > 0, every Pyell,
is such that (E.1) holds for /=1 or i = 2. By definition of the
classes A and A, this is true for PyeAy— Ay, and PyehA, -
A x. To show that it is also true for PyeAyNA,, assume the
contrary, namely that there exists Py,eA and ISXYEZ with
Py = P, and

Piy(Cix F) <\, Piy(Cyx F) <\

This implies that
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Pi(C) = PLy(Cyx F)>1—¢— A,
PE(C) 2 Ppy(Co X Fy) > 1€~ A\,
and hence,
PE(Cy) + PE(C,) > 2 — 2¢ — 2\,
Thus, if € < 1/2, we can set A= (1 — 2¢)/3 > 0 to obtain the
desired contradiction:

PE(C) + PR(Cy) > 1 + . O
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