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Abstract—This paper addresses the problem of resource allo-
cation in a multiservice optical network based on an overlapped
code-division-multiple-access system. A joint transmission power
and overlapping coefficient (transmission rate) allocation strategy
is provided via the solution of a constrained convex quadratic
optimization problem. The solution of this problem maximizes the
aggregate throughput subject to peak laser transmission power
constraints. The optimization problem is solved in a closed form,
and the resource allocation strategy is simple to implement in an
optical network. Simulation results are presented, showing a total
agreement between the derived analytical solution and the one
obtained using a numerical search method. In addition, analytical
and numerical results show that the proposed resource alloca-
tion strategy can offer substantial improvement in the system
throughput.

Index Terms—Capacity, fiber Bragg grating (FBG), multirate,
overlapped optical code division multiple access (OCDMA), over-
lapping coefficient, power control, quadratic function, rate con-
trol, throughput.

I. INTRODUCTION

PTICAL CODE division multiple access (OCDMA)

has received considerable attention as a multiple access
scheme for optical local area networks [1], [2]. In addition, het-
erogeneous services, entailing multirate transmission, are now
feasible due to the rapid evolution of fiber optic technology that
offers ultrawide optical bandwidth that is capable of handling
these multirate transmissions and fulfilling good quality-of-
service (QoS) requirements.

The first work toward this target was presented in [3] and [4],
where a novel coding technique that leads to the generation of
a new family of optical orthogonal codes (OOCs) called the
strict OOC. Although the strict OOC ensures both the auto-
and the cross correlation constraints to be less than or equal
to one, the variability of transmission rate at constant power
may not agree with the demanded QoS. Moreover, when the
optical system attempts to transmit at a certain rate with very
high power, a substantial increase in the interference occurs
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on the desired user at the receiver side [S]-[7]. This yields
degradation in the system performance. One way to ameliorate
the system efficiency is to adopt an efficient resource allocation
strategy that regulates the amount of transmitted power with
regard to the rate variation and the number of active users that
maximizes the aggregate throughput of the multirate CDMA
system [6].

Most of the analyses conducted on CDMA communication
systems agree that optimal selection of the system’s parameters
such as the transmitted power and the bit rate would improve
their performances [5]-[7]. This, in turn, gives rise to opti-
mization problems that are rarely discussed in the literature of
OCDMA. For instance, nonlinear programming power control
algorithm has been proposed in [8] to maximize the capacity of
multirate optical fast frequency hopping code division multiple
access (OFFH-CDMA) system constrained by a predefined
QoS based on the received signal-to-interference ratio (SIR) of
each class of users. The rate of each class of users is chosen sta-
tically by choosing the corresponding processing gain (PG) in a
way that higher rate users have smaller PG and lower rate users
have larger PG. Then, the power of multirate users is optimally
regulated with variable optical attenuator before transmission
to limit the interference directly from the transmitter. In [9],
a power control algorithm, based on optical power selector
consisting of a set of optical hardlimiters and couplers, has been
inspected for a multirate optical direct-sequence CDMA system
using one signature for each user with time hopping. In this
paper, the transmission rate and the bit error rate are controlled
by the hopping rate and the optical power, respectively, to
improve the system performance. Nevertheless, this algorithm
employs ideal optical hardlimiters that are practically very
difficult to realize. In addition, an adaptive overlapped pulse-
position modulator, which is employed to create multirate and
multiquality transmission schemes, has been investigated in
[10] for OCDMA networks, where power control mechanism
is done by means of an optical attenuators. It was proven that
this system can tolerate four different services associated with
four different classes of rates, which are easily differentiated
by the intensity of the transmitted pulses and the number of
transmitting slots, respectively. Moreover, the power control
problem is also addressed in [11] for a temporal prime-coded
OCDMA system taking into consideration the effect of the
near—far problem caused by different fiber lengths connecting
the users to the star network. It was shown that the fiber
length after the star coupler is irrelevant to the optimal power
evaluation. However, the consequences of multirate users were
not investigated in this analysis.
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In this paper, and for the first time, we propose a novel
hybrid power/rate control algorithm for overlapped OFFH-
CDMA (OOFFH-CDMA) system [12], [13] in which multirate
transmission is achieved by overlapping consecutive bits while
coded using fiber Bragg grating (FBG). It is shown in [12]
that it is possible to increase the transmission of each class
of users well beyond the nominal rate without decreasing the
PG. In addition, a service curve has been introduced, which
relates the cutoff rates of the offered multimedia classes in
a multiclass system. Our purpose in this paper is to find the
optimal overlapping coefficient through which we can achieve
maximum transmission rate with minimum transmitted optical
power directly from a laser source according to a predefined
QoS required at the optical receivers for each class of users.
In our analysis, we consider the average SIR as an adequate
QoS requirement for each class of users. We derive an explicit
solution of the optimal power as a function of the optimal data
rate, from which the throughput function has been simplified
to a quadratic function of the transmission rate vector. For
each class of users, we provide a joint transmission power
and overlapping coefficient allocation strategy, which has been
obtained via the solution of a constrained optimization problem,
which maximizes the aggregate system throughput subject to a
peak laser transmission power constraint. Under this strategy,
the classes of users are allocated maximum transmission rate
in decreasing order of the QoS requirements. It is also shown
that there is at most one class of users that has an overlapping
coefficient between zero and full overlap, and the remaining
classes either transmit with full overlap or with no overlap.

Following the introduction, this paper is structured as fol-
lows. Section II introduces the system model and the optimiza-
tion problem formulation. The resource allocation problem is
obtained in Section III. Section IV presents the solution for a
two-class system. Results for a three-class system are covered
in Section V. Finally, the conclusion is presented in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

An OOFFH-CDMA system that supports M users in S
classes, sharing the same optical medium in a star architecture,
has been proposed in [12]. We will consider that all users
transmitting their data at the same QoS are clustered in the same
class. All classes have the same PG G. The encoding—decoding
is achieved passively using a sequence of FBGs. The gratings
spectrally and temporarily slice the incoming broadband pulse
into several components that are equally spaced at chip interval
T,. The chip duration and the number of grating G determine
the nominal bit duration to be T}, = GT.. The corresponding
nominal transmission rate is R, = 1/7,,. Increasing the trans-
mission rate beyond the nominal rate R, without decreasing G
introduces an overlapping of coefficient € ; among the transmit-
ted bits during the same period T, as revealed in Fig. 1.

In this case, the concept of overlapping is illustrated among
six bits of G = 5, and the overlapping coefficient of class-j
is €; = 3, which means that there are three chips in each
OCDMA-coded bit that overlap with three chips of the other
bits in the same class. This, in turn, augments the overall trans-
mission rate of the users involved in this class from three bits
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Fig. 1. Concept of overlapping among the bits of class-j users, showing the
effect of the overlapping coefficient €; on their transmission rate.

after 37, to six bits. In general, the overlapping coefficient
represents the number of overlapped chips among consecutive
bits of class-j. Accordingly, the new transmission rate of class-j
is given by

G
G—€j

R; = R, (1)
where 0 <¢e; <G —1 for j € {0,...,5 —1}. This implies
that R < R; < R, where R") = R, and R = GR,, are
the lower and the upper data rate common to all classes, respec-
tively. Also, we assume that the system is chip-synchronous
and of discrete rate variation. Furthermore, all users of the
same class transmit with the equal power and have the same
overlapping coefficient. Hence, each class is characterized by
its own QoS. Thus, let P; and (3; be the transmitted power and
QoS of class-j, respectively.

A. SIR as QoS Measure

In many cases, it is reasonable to take the QoS requirements
as meeting the SIR constraints [6], [8]. It was shown in [12] that
the SIR for class-j using an OOFFH-CDMA system is given by

P,;G?

5—1
w-1G2 = p0p o
o°F ZO G=c; T0n
i=

SIR; = . jef0,....,5-1} @

where F' is the total number of available frequencies used in
the code construction [14], and afl is the variance of additive
white Gaussian noise. On the other hand, p(*) is the multimedia
probability density function and it represents the probability
that a user selects class-i, where Zf;ol p(9) = 1. We can easily
simplify (2) into the following:

P,
SIR; = =~ J — jef{0,...,.85-1} (3
>, M;PR; + G5
i=0

where R; is given in (1), and M, represents the weight factor of
class-7 and is given by

“)
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Note that by increasing p(*) of class-i as if we are increasing
its weight for fixed system parameters F', G, M, and R,,.

B. System Throughput

In this paper, we aim at finding an appropriate resource
allocation strategy that maximizes the transmission rates, as
well as minimizes the transmitted powers for each class of
users in a multirate overlapped CDMA environment in a way
to maximize the system capacity. The criterion to achieve this
optimality is to consider the aggregate throughput QM : RS x
R — R, as the weighted sum of the ratios of the transmission
rates over transmitted powers for the S classes, and it is
given by

H

R,
OMR,P) =) M;— (5)
— ' P
7=0
where R = (Ry, R1,...,Rs_1)" is the data rate vector, P =
(Po, P1,...,Ps_1)T is the power vector, and M; is the weight

factor of class-j, as defined in (4) with 0 < M; < 1. This
function of merit represents the system throughput, as the
average number of bits per second per unit of power.

Accordingly, we are interested in computing the jointly
optimal power and rate allocation for users in each class that
maximizes the aggregate throughput, subject to predetermined
QoS constraints in terms of the SIR of each class. The optimal
allocation policy is obtained by solving the following optimiza-
tion problem:

(I1;) (R*,P*) = arg (r{nl?))é {QM R,P)}

where the feasible set is given by

:{(RaP) SIR] :ﬂjv 0<Pj SPmax and

where P.x < 0o is the maximum permissible power of the
laser source, and (3; is the QoS of class-j.

The nonlinearity of the optimization problem is obvious from
(5) and (6). Thus, to solve (II;), the problem is decoupled
into two resource allocation scenarios: the power allocation
scenario and the rate allocation scenario as will be shown
in the next section. We first obtain the transmission power
allocations, which are determined as a function of the QoS
and the transmission rate of each class. We then maximize
the aggregate throughput with respect to the transmission rate
vector.

III. JOINTLY OPTIMAL POWER AND RATE ALLOCATIONS

In this scenario, we consider that the intensity of the trans-
mitted optical signal is directly adjusted from the laser source
with respect to the transmission data rate of users of the .S
classes. Thus, each class is allocated the minimum optical
power capable of handling the traffic rate of its users while
observing the transmission rate of all other classes and at the
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same time maintaining a low level of interference at the desired
receiver. To do so, we fix the transmission rate of all the classes,
and we find out the optimal transmitted power corresponding
to the desired class for a given QoS. Therefore, by taking
SIR; = f3; and rearranging terms in (3), we get a set of linear
equality constraints in terms of P;. That is

ZPMR ——+L:0,

SNR. Vi e {0,...,

S-1} (M

where SNR,, = (G?/02) is the nominal signal-to-noise ratio
common to all classes. Then, by solving the linear system in
(7) for P;, we get

1 8;
SNR,, 51 ’
1-3%" BiM;R;
1=0

Pj= Vje{0,...,5-1}. (8

The power is defined when the denominator is strictly greater
than zero. That is

S—1

> MiBiR; < 1. ©)

=0

Consequently, the optimal class-j transmission power P} is
obtained by solving the rate allocation problem and finding the
optimal rate R}‘-. Note that the thermal noise, dark current, and
surface leakage current of the system are taken into consider-
ation through the presence of the factor SNR,, in the power
allocation strategy.

A. Optimal Rate Allocation

In this scenario, we will compute the optimal rate of the sys-
tem classes that corresponds to the minimum power obtained in
the previous section by substituting P; in (8) into (5). We obtain

OM(R) =SNR,(-RTQR + CTR)
Q=QT7, Q >0, C>0 (10)
where Qs =[(1/2)M; M;((3:/B;)+(B;/Bi)lij=0.1.....5-1,
and C = [(My/Bo) (M1/B1) -+ (Ms_1/Bs-1)]*. Notice that

the throughput function is a quadratic function of the rate
vector R.
Thus, the optimization problem (II;) under the optimal
power allocation becomes
() R = (oM (®R)} (11)

= arg max
ReS

where the feasible set & is given by

S—-1
:{RZ ZMjﬁjRjSl—

=0

max(f8;)j=0,1,..,5-1
PoaxSNR,

51}}. (12)

and R, < R; < GR,, Vje{0,...,
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Notice that the gradient of 2 (R)) can be computed as

VOM = SNR,(—2QR. + C) (13)
and the Hessian matrix [15], [16] is
H = V2QM = _2SNR, Q. (14)

Because the Hessian matrix is negative, the throughput func-
tion is a concave function in R, and therefore, the Kuhn-Tucker
(KT) condition [16] is sufficient for an optimal point to be
a maximum. To solve (IIy), we use the method of Lagrange
multiplier. Consequently, the Lagrangian function is defined as

25
MR+ D Angm
m=0

where g, is the mth constraint, \,, is the corresponding
Lagrangian multiplier, and A is the vector of Lagrangian mul-
tipliers. Applying the KT condition on (II5), we obtain

LR, A) = (15)

aLéRR;M—o, vielo,...,S—1}  (16)
Amgm =0, vm € {0,...,2S} a7

gm >0 (18)

Am >0. 19)

The nature of the stationary points is governed by the second-
order derivative of the Lagrangian function [15]. Notice that the
second-order derivative is strictly negative and independent of
Rj, i.e.,

O?L(R,A)
87}%? = —2SNR,, M (20)
and
LR, A) _ @ ﬁj .

This implies that (20) and (21) are sufficient conditions for
the stationary points to be maxima [16]. The following two
propositions show that the global maximum of Q*(R) is not
the solution of (II5).

Proposition 1: Givenan S x S positive symmetric matrix Q
of the form

B Bi ﬂg)]
x5 = | = M; M;
Qss [ <5J Bi vi,j€{0,1,...,5—1}
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where all 3; # 3;, Q is nonsingular for S = 2, and it is singular
for S > 3.
Proof: Let Asyo be any 2 x 2 matrix of the form

A2><2
1M M;, ("— + ﬁ)
M1 M, (ﬁ‘+1 + L )

Bz+1

o i + )
1Ml+1M€( _|_ 62 )

ﬂz+1

~ 1)

wherei =S5 —2,8>2,andk # 0,k (€ {0,1,...,S
Then, the determinant of Aoy is equal to

det(AQXQ)

1
= ——M;M; 1 MM, <

; Bi _ﬁi+1>(ﬁk_ﬁe)7é0

Bit1 Bi Be  Br

given that all (s are distinct. This implies that the matrix
is nonsingular. For S = 2, Q242 is a special case of Asyo,
where ¢ = 0, k = 0, and ¢ = 1. Hence, Q22 is symmetric and
nonsingular.

Now, Let As.3 be any 3 x 3 matrix of the form shown at
the bottom of the page, where t =S — 3, S > 3, and k # { #
rk,t,re{0,1,...,5—1}.

Then, det(Asy3) = 0. This implies that this matrix is singu-
lar. Consequently, all the 3 X 3 minors in the determinant of
Qsxs are zeros; hence, det(Qgsxs) = 0 and Qg is singular
for S > 3. |

Proposition 2: The global maximum of the optimization
problem (II5) is not feasible.

Proof: The throughput function has a global maximum
only when the gradient is null, VQ™ = 0. This implies

Q'cC

R =
2

(22)

The global maximum in (22) exists if and only if the matrix
Q is invertible. In addition, R* is feasible if it is in the feasible
set & of (Ily). By proposition 1, Q is nonsingular for S = 2.
Thus, for any two-class system, for example class-¢ and class-j,
the global maximum is found when the gradient is null. That is
VM = 0, which yields

RF=—— P
LM, (ﬁ?‘ﬁ?)
* ﬁj

R=—F——.
TOM; (85 - 57

By assumption, 3; # 3;, so both rates are finite. Also, notice
that, 3; M; R; + 3; M;R; = 1, which violates the condition in
(9). This means that this solution is not feasible and, hence, the

o (14 8)

M1 My, b

1
5 M 12 My

+?s‘

Azz =

i1 Bk 17, Bit1 Be 1ar ﬂ11+1 Br
( B T ﬁi+1> 2Ml+1M4( B T ﬂm) 2Ml+1Mr< B T ﬂ1:+1)
(%:2 + P ) %MHzMz(

,_.
E
2

—~
‘Q
\?

~—

Moo M, (%2
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global maximum. For S > 3, Q is singular by Proposition 1,
and therefore, the global maximum does not exist. |

B. Problem Solution

The solution of (Ily) is obtained via the following lemmas,
the first of which shows that the feasible set & can be reduced
to its boundaries. It also shows that there is at most one class
of users that has an overlapping coefficient between zero and
full overlap, and the remaining classes either transmit with full
overlap or with no overlap.

Lemma 1: Assume that R* = (R, R;,..., R5_;)7T solves
the optimization problem (Il). If Py < 00, there exists at
most one R;f such that R < R}f < R and R = R® or
R: = ROV £ j=0,1,...,5 — 1.

Proof: The throughput function is concave in R* and
thus, the optimal rate allocation lies on the boundary of the
feasible set (3). Consider the KT conditions on (Il3) V5 €

{0,1,...,k,..., S — 1} as follows:
891\4
37]%+)\j_)\s+j_)\stjﬁj:O (23)
N (R=RO)=0 @4
At (R =R;) =0 (25)
e [ 12 ax(Bi)vieqor,....5-1) —%MﬂR- _0. ©26)
25 PMa,xSNRn var: iMidlg | — U

There are four cases to consider.

1) If A; # 0, then Ag; = 0. This implies that R} = R(),
vje{0,1,...,k,..., S —1}.

2) If Agyj # 0, then A; = 0. This implies that R} = R("),
vje{0,1,...,k,...,S—1}.

In both cases, there are (S + 1) equations of (S + 1)

unknowns in A; and/or Agy; plus Aag. If Aog # 0, or
Aog = 0 then

%MﬂR* < <1 B maX(ﬁj)Vje{o,L...,su)

i—0 = PMaxSNRn
which satisfies condition (9). Therefore, R} are indeed
feasible solutions for (Il3).

3) Consider the class-k of users for which A\, =0 and
As+x = 0. This implies that the feasible solution is R}, #
{R®) R}, In addition to this condition, if cases 1)
and/or 2) are occurring for all j # k, there are also
(S + 1) equations of (S + 1) unknowns in Aj;j and/or
Astjzk Plus Aog and Ry. If Aog # 0, R}, is computed
from constraint (26), and it is given by

maX(ﬁj)WE{O)1w~’sl}> %Mﬂ R
- — iMidg
i=0 '

1
R = 1
k Mkﬁk ( PMaxSNRn

where R; € {R, R(W1,

#k
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Fig. 2. Feasible region for a two-class system.

In addition, Ayg is computed from (23). On the other
hand, if Ao = 0, then

§Mﬂ-R’f <(1- maX(ﬁj)Vje{o,l ..... S—1}
= vt = PraxSNR,

because R are feasible by assumption. In this case, I},
is computed from (9QM /OR;,) = 0.

Since, by assumption, Rj is feasible, R() < R} <
R™) | where all R; = RW or RW V) #£ k.

4) If \; =0 and As4; = 0 for more than one class at the
same time, then the system has no feasible solution by
Proposition 1. |

This means that there exists at most one class of users that
transmits with rate between R, and GR,,, and the remaining
classes either transmit with the maximum rate GR,, or with the
minimum rate R,,.

Lemma 2: Consider that 3; > f3;, V i<j. If R"=
(R§, R, ..., Ry ;)T solves the optimization problem (Ilz),
then R < R} ifandonlyif 0 < i < j < S —1.

Proof: See the Appendix.

IV. TWO-CLASS SYSTEM

In this section, we analyze the feasible region of the two-class
system by providing a graphical representation of the system’s
solution. Thereafter, we proceed on by a numerical analysis to
assess the validity of the optimal results.

A. Feasible Region Analysis

Due to the complexity of the problem under consideration,
and without loss of generality, we present the case of a two-
class system. Consider a two-class system, the class-i and the
class-j with R = (R;, R;)". The boundaries of the feasible
region is illustrated in Fig. 2. To solve (I13), we should obtain
the optimal solution which is defined in predetermined intervals
of 3; and ;. Let the set of edges of the feasible region be
E = {e1, e2, €3, €4, €5} to be the locus of our optimal solution.
By Lemma 1, we know that, at most, one class of users
transmits with transmission rate between R) and R(*), and the
remaining classes either transmit with R(*) or with R(“). Thus,
the search space of the optimal solution is E' = {e1, e2, €3, €5}.
In addition, without loss of generality, consider that 3; > ;.
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Fig. 3. Transmission rates versus QoS of class-1 users for different multime-
dia distribution.

By Lemma 2, we know that if 3; > 3;, then R; < R;. This
means that the locus of the optimal solution has been reduced
to E” = {ey,e3}.

B. Numerical Results

In this part, we evaluate the effectiveness of the proposed
power/rate control algorithm for two-class. First of all, we
consider the two-class system for which we assume that M =
61 users are active, the PG of the user’s signature is G = 61, the
total number of available wavelengths is F' = 62, the nominal
signal-to-noise ratio is SNR,, = 35.7 dB, the upper bound on
the laser power is P ax = 5 dBm, the QoS of class-0 is fixed to
(o = 8 dB, and the nominal transmission rate is R,, = 1 Mb/s.
Besides, in order to assess the validity of our results, we make
use of a numerical method consisting of a sequential quadratic
method, based on the quasi-Newton method, in which a
quadratic programming subproblem is solved at each iteration,
and an estimate of the Hessian of the Lagrangian function is up-
dated using the BFGS method (as suggested by Broyden et al.
in 1970) [16]. The simulation shows that the explicit analytic
solution is completely matching the numeric one. This means
that the derived solution is indeed the exact optimal solution. In
addition, the performance of the proposed resource allocation
strategy is compared with that of a classical power control
algorithm with fixed transmission rates. If we assume that class-
0 users transmit at rate Ry = 2R; when [y < (1 and class-
1 users transmit at rate Ry = 2Ry when (7 < (g, then the
classical power control strategy allocates the best transmission
laser power to each user in either classes in order to guarantee
the QoS requirements.

In Fig. 3, the transmission rates are evaluated as a function of
(1, and they are plotted for different multimedia distributions.
For p(l) = 0.1, the multimedia traffic is more dense in class-0
rather than in class-1. Since small number of users are choosing
class-1, the minority class-1 users transmit at rate ] = R
for 51 < 8 dB. On the other hand, the majority class-0 users
transmit at rate R§ = R for 8; < 4 dB, and R®) < R} <
R™ for4dB < (1 < 8 dB. In addition, for 3; > 8 dB, class-1
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Fig. 4. Power consumption of class-0 and class-1 for different multimedia
distributions.

users now transmit at rate R} = RO while class-0 users trans-
mit at rate RO < Rj < R™)_ For p(l) = 0.9, class-1 users
are allowed to transmit only at RO < R < R for B1 <
8 dB, while class-0 users transmit at RO, Also, notice that for
8dB < 1 < 9dB, R®¥ < R; < R, and R = R™. This,
in turn, shows a total agreement with the hypotheses proposed
in the two lemmas proven in previous sections. Furthermore,
as the number of users in a certain class increases and, hence,
the multimedia traffic, the allocated transmission rate decreases
in order to keep the MAI at an acceptable level for satisfying
the required QoS.

The optimal transmission power for the corresponding mul-
timedia distributions is illustrated in Fig. 4. Note that, as the
number of class-0 users decreases, their allowable transmission
power increases. Therefore, when p(!) increases from 0.1 to
0.9, the MAI effect of class-0 on class-1 decreases, and the
system allows class-0 to transmit at the upper bound laser
power to improve the service requirement. In addition, class-1
power is proportional to QoS. Therefore, it is monotonically
increasing as 1 until it reaches a constant level at the maximum
attainable laser power for 3; > (y. The constant power in this
interval of (3; is necessary to assure the data transmission at
such QoS. Further, we remark that an additional augmentation
of B above 10 dB is no longer supportable because the laser
power of the source becomes inadequate.

The optimal throughput is plotted in Fig. 5 and compared
to the nonoptimal one achieved by the classical power con-
trol strategy. The optimal throughput decays as [3; increases
because at high QoS, the allocated resources are performed
to preserve the QoS requirement rather than to increase the
system capacity. In addition, we observe that an appropriate
traffic distribution gradually enhances the system throughput
according to the allocated resources. For p(l) = 0.1, both Rj
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and Rj are high, hence, the interference. Alongside, the allow-
able transmission power is relatively low. This yields the lowest
optimal throughput due to the fact that the allocated power
is insufficient to satisfy the QoS requirement and to combat
the MAI increase. As p(!) increases, the MAI relaxes and
the average system throughput increases. Also, we can clearly
observe that the system throughput of the proposed resource
allocation strategy is superior to that of the nonoptimal one for
the different multimedia distributions.

Next, we study the effectiveness of the proposed resource
allocation strategy with respect to the number of stations ac-
cessing the system for different multimedia distributions. We
keep the same parameter settings as in the previous part, but in
this case, we fix QoS of class-1 to 3; = 5 dB, which is 3 dB
less than 3. By this setting, the classical power control criteria
with constant transmission rate turns out to be the equal energy
criteria (EEC). We show that the EEC results are feasible but
nonoptimal.

The optimal transmission rates in terms of M are examined
in Fig. 6. Consequently, for small M, the system allows both
classes to transmit at maximum rate R(*) because the MAI is
sufficiently small. However, when M > 10, as the user popula-
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tion in a given class increases, its transmission rate decreases to
keep the MAI at regular level and to accommodate to the QoS
requirement. Note that, when R() < Ry < R, Rf = R,
and when R} = R, R®) < Ri < R™ is, thus, consistent
with Lemma 1. Furthermore, because (3, > (31, it is clear that
we always have R < R7, which validates Lemma 2.

Recall that, our objective is to determine the optimal over-
lapping coefficient 7, which is a point on the service curve
proposed in [12]. By obtaining the optimal rates Rj and Rj
for both classes, the optimal overlapping coefficients () and €]
satisfying the system requirements are now computed using (1).

In Fig. 7, the optimal power is compared to the nonoptimal
one as M varies. Notice that when p(l) is small, the EEC
allocates less power for small M and more power for large
M compared to our newly proposed algorithm. This criterion
makes the users always susceptible to MAI In contrast, our
proposed strategy provides more power for small M to improve
the optical signal and less power for large M to reduce the MAI
intensity. On the other hand, when p(l) = 0.5, the EEC follows
the optimal one. Finally, when p(!) = 0.9, the EEC power is
matching the optimal one for small M. However, it exceeds the
upper bound laser power for large M. On the other hand, our
proposed strategy controls this excess of power by clamping it
to the maximum allowable laser power.

The impact of the total number of users on the system
throughput is shown in Fig. 8. For small M, the performance
of the EEC approaches the optimal one, particularly when
the probability of selecting class-1 is high. As M increases,
the system throughput of our proposed strategy outperforms
that of the EEC. Note that as M becomes higher, the system
throughput mounts for increasing values of p(*). This happens
because when p(l) is small, both classes transmit at rates
higher than the nominal one as revealed in Fig. 3. This in turn
requires high overlapping coefficients. It follows that the inter-
ference level in the optical channel increases. In addition, the
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transmission power level dedicated for such rate is also low,
as shown in Fig. 4. This creates degradation in the system
throughput. When p(!) increases, the transmission rates de-
crease, whereas the power relatively increases. Consequently,
the throughput is significantly ameliorated.

V. THREE-CLASS SYSTEM NUMERICAL EVALUATION

Since our algorithm is derived for any number of multime-
dia classes, let us consider the case of a three-class system.
Consider the three classes class-0, class-1, and class-2, among
which the users are equally distributed, ie., p(® = p(t) =
p(?) = 1/3. Each class is characterized by its own QoS such
that Sy =11 dB, 51 =8 dB, and (> =5 dB, respectively.
Without loss of generality, the classes are rearranged by de-
scending order of QoS, such that the additional class comes
first. Let Pyjax = 8 dBm to be the maximum laser power. In or-
der to respect the EEC power settings, notice that there are 3-dB
differences between each two consecutive QoSs, and the trans-
mission rates of the three classes are set to be Ry = 2R; and
Ry =2 2Ry.

The three-class optimal transmission rates versus M are
illustrated in Fig. 9. It is clear that only one class can transmit
at rate between R and R, and the other classes either at
R® or R This completely conveys with Lemma 1. Also,
note that R < R} < R as o > (1 > [32, which confirms the
validity of Lemma 2 for the three-class system as well.

The effect of adding a third class, with high QoS, to the
multirate system on the optimal transmission laser power has
been inspected in Fig. 10. As M increases, the power increases
to stabilize to 8 dBm. In addition, the upper bound powers
of class-1 and class-2 have not changed since the two-class
system, even though their overall allocated powers have been
slightly diminished with 3-dBm differences between each two
consecutive classes. This is caused by the reduction in the user’s
population in each of the three classes and the augmentation of
the total optical power in the fiber link. Furthermore, the power
provided by EEC is not properly allocated. Therefore, less
power is allocated for small number of users (M < 20), while
more power is allocated for large number of users (M > 20).
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The throughputs of both strategies are envisaged in Fig. 11.
Notice that the performance of our proposed strategy is always
superior to that of EEC.
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VI. CONCLUSION

A new resource allocation strategy was proposed for
OOFFH-CDMA system. With this strategy, the system through-
put is the average successfully transmitted bits per second per
unit of power. However, due to the nonlinearity of the through-
put and the constraint functions and, hence, the optimization
problem, two recourse allocation scenarios were derived for
both power and rate to simplify the analysis. Then, KT theorem
had been applied on the rate allocation scenario to find out
the optimal transmission rates upon which the optical intensity
of each class was optimally regulated directly form the laser
source. It was proven that this system, in general, has no global
maximum but a local maximum for a given set of QoSs. This
local maximum has as coordinates the transmission rates of
the S classes satisfying Lemmas 1 and 2. Afterward, two-
and three-class systems had been simulated as particular case
studies. The simulation assessed that multirate transmission
alternates among classes, depending on which QoS region,
whether low or high, the users are adhering to, as well as
on the total number of users exploiting the system and their
distribution among those classes.

APPENDIX

Proof of Lemma 2: Consider that R* = (R}, R})" solves
the optimization problem (II3) for any two-class subsystem:
class-i and class-j Vi # j € {0,1,...,5 — 1}. Satisfying the
KT conditions, the solution of (II3) is represented by 12 pos-
sible cases. For each one of them, all the variables are feasible
and have unique solution in finite intervals of the QoS 3; and 3;
for class-¢ and class-j, respectively. Consequently, the solution
is given as follows:

Case I:

1
B; € (53‘, W)

and

1-20M, RO,/ (1—2M, ROB,)*~(2M; R@3,)?
STV

if the second term has a positive real value; otherwise, we have
the expression of (;, shown at the bottom of the page. The
optimal solution is given by
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The Lagrange multipliers are

A\ =SNR, M; ( 2M;R¥Y) (51’ @‘) M.R<u>_1> 29
! < * 5j+ﬂi ! B 29

\; =SNR, M; (—zMjfz(”) - (ﬁ + ZJ)

J K2

1
MiR<f)+> (30)
Bj
5=\ =X\ =0. (31)

By checking the interval of 3; and 3;, we can easily recog-
nize that 3; > ;. In addition, the optimal solution in (27) and
(28) shows clearly that R} < R, which satisfies Lemma 2.

Case 2:

1
e (3
and
—M; R(u)ﬁiJr\/(Mj R(“’)ﬁi)2+MiR(£)(ﬁrMi R(/‘)ﬁ?)
8¢ M RO ;
J . —M; ROBA/(M; ROB; ) +M; RO (3,-M; R()32
mm(ﬁi» W Mij)w) ( ))
Ri=R®" (32)
1 M; (B B ) ¢
Ri= — =42l RO (33)
TO2M;pB; 2M; (53‘ Bi
* (ﬂZQ _BJQ) ) 2 2
AL —SNRnMiW (ﬁi—MiR (82— )) (34)

Note that 3; < B, R; = R®), and R; # {R“), R™}. In
addition, since R; and R} are feasible solutions and satisfying
Lemma 1, R} should satisfy R} < R} < R(). This implies
that R} > R;.

The same reasoning can be applied to the remaining ten cases
that correspond to different ranges of 3; and ;. As a result, it
is clear that for all possible solutions of a two-class subsystem
when §; > (3;, R} < R} and vice versa, which proves the
lemma for the two subclasses. To generalize this result to the
S-class system, consider a third class, which we call class-k,
with a QoS (k. Applying the previous derivation to the two-
class subsystem class-j and class-k, we can prove that when
Bi > B, R; < Rj, and vice versa. Therefore, if Bi > B; >
Bk, then R; < R; < Ry, is always true. Following the same

R = R (27) recurrence for S classes, we can easily show that if 5o > (51 >
-o+> g1, then Ry < Ry <--- < Rg_1, which completes
R; = R, (28) the proof. |
~M;R™ 3+ \/(MjR(“)ﬁi)erMiR(l) (Bi—M; R 32)
/3j € Oa

MRO
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