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Abstract—This paper addresses the problem of real-time mul-
timedia transmission in fiber-optic networks using code division
multiple access (CDMA). We present a multirate optical fast
frequency hopping CDMA (OFFH-CDMA) system architecture
using fiber Bragg gratings (FBGs). In addition, we argue that, in
multimedia applications, different services have different quality
of service (QoS) requirements; hence, the user only needs to use
the minimum required power to transmit the signal, such that the
required signal-to-interference ratio (SIR) is met. We show that a
variable bit rate optical communication system with variable QoS
can be implemented by way of power control with great efficiency.
Present-day multirate optical CDMA systems concentrate on
finding the code structure that supports a variable rate system,
neglecting the importance of the transmission power of active
users on the multiple access interference (MAI) and, therefore, on
the system capacity. In this work, we assign different power levels
to each rate through a power control algorithm using variable
optical attenuators, which minimizes the interference and, at
the same time, provides variable QoS constraints for different
traffic types. Although we are using a code family that preserves
good correlation properties between codes of different lengths,
simulations show a great improvement in the system capacity
when power control is used.

Index Terms—Fiber Bragg grating (FBG), multimedia network,
multirate optical frequency hopping code division multiple access
(OFFH-CDMA), power control function.

I. INTRODUCTION

T HE subject of integration of heterogeneous traffic in op-
tical code division multiple access (CDMA) has received

much attention lately [3], [4]. This is due to growing interest
in the development of broad-band optical fiber communication
networks for multimedia applications. Future networks are re-
quired to accommodate a variety of services, including multi-
rate data, graphics, audio, video, voice, and image with different
performance and traffic constraints. Each type requires a given
quality of service (QoS) specified by its signal-to-interference
(SIR) ratio. For example, voice terminals have stringent delay
requirements but tolerate some transmission errors, whereas er-
rors cannot be tolerated at the destination for high-speed data
transfer [1]. Moreover, real-time video communications require
both error-free transmission and real-time delivery [2].

Previous works have addressed multirate communication
using optical direct sequence CDMA (DS-CDMA) [2], [3]. In
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these works, the strategy has largely been to give priority to
the code structure that supports multirate traffic. Although the
code family plays an important role in the performance of a
communication system, it is not the only factor to be considered
in the analysis and design of a multirate optical CDMA system.
This is especially true when the system allows users to dynam-
ically switch traffic types for different connection applications
with different QoS requirements. Even when using a code
family that supports multirate applications and preserves auto-
and cross-correlation properties between codes of different
lengths, higher rate users exhibit low performance compared
to lower rate users. This will limit the number of higher rate
users, especially if they require high QoS, as is the case for
high-speed data transfer. We will prove that by controlling the
optical transmission power of each rate, using variable optical
attenuators, we are able to reduce the wide differences between
bit error rates (BERs) for different types of traffic, therefore
helping to meet QoS requirements.

It must be noted that a sort of power control was proposed pre-
viously for single-rate DS-CDMA systems by using double op-
tical hard-limiter correlation receivers [4]. This technique needs
two threshold settings for the first and second hard limiters.
These thresholds are generally dependent on the received optical
power and the number of simultaneous users. Furthermore, op-
tical hard limiters with variable thresholds do not exist in prac-
tice. For this reason, we propose to limit the interference directly
from the transmitter using variable optical attenuators; thus, the
receiver will remain a simple optical correlator.

In Section II, we propose a multirate optical fast frequency
hopping CDMA (OFFH-CDMA) [5] system based on a power
control algorithm that maximizes the system capacity and, at
the same time, allows dynamic switching of traffic rates. We
present a possible implementation of multirate OFFH-CDMA
encode–decoder. Performance analysis and simulation results
for a dual-rate communication scenario are investigated in terms
of BER with and without power control in Section III. Sec-
tion IV presents an upper bound on the system capacity based
on the QoS requirements that are specified by lower bounds
on the SIR. In Section V, we are able to optimize the power
control function by solving a nonlinear programming problem
using linear programming theory based on which a newly de-
fined function is derived. This function enables us to obtain an
analytical solution to the optimal power function that maximizes
the system throughput. In addition, insightful simulations and
discussions are presented in Section VI. Finally, our conclusion
is given in Section VII.

0733–8724/02$17.00 © 2002 IEEE
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Fig. 1. Multirate OFFH-CDMA system.

II. M ULTIRATE OFFH-CDMA WITH POWER CONTROL

Optical FFH-CDMA has been proposed in [5]. The encoding
and decoding are achieved passively using a sequence of fiber
Bragg gratings (FBGs). The gratings will spectrally and tempo-
rally slice an incoming broad-band pulse into several compo-
nents [6], as shown in Fig. 1 (encoder). Pulses are equally
spaced at chip intervals seconds apart, corresponding to the
round-trip propagation time between two consecutive gratings.
The chip time is given by . represents the sum
of one grating length and one spacing distance between adjacent
grating pairs, is the speed of light, and is the group index.
The time spacing, the chip duration, and the number of gratings
will limit the data bit rate of the system, i.e., all reflected pulses
should exit the fiber before the next bit enters. The bit duration
is given by the total round-trip time in a grating structure of
gratings, , where is referred to as the
processing gainPG .

A. Programmable Multirate OFFH-CDMA Encoder–Decoder
Device

It is important to emphasize the difference between passive
optical CDMA and its electrical active counterpart in order to
justify our work. In fact, in active CDMA systems, there is a
one-to-one correspondence between the transmitted symbol du-
ration and the PG in the sense that changing the bit duration will
eventually lead to a change in the user’s PG. On the other hand,
this one-to-one relation does not exists in passive optical CDMA
systems. For instance, decreasing the bit duration will not affect
the symbol duration at the output of the optical encoder. There-
fore, for a fixed PG, increasing the link transmission rate beyond
a given value, known as the nominal rate, leads to bit overlap at
the output of the encoder [7]. This, in turn, leads to high inter-
ference level. The idea is to respect the total round-trip time for
light from a data bit to traverse the encoder. Our intention is to
guarantee the one-to-one correspondence between the PG and
the source transmission rate. Therefore, in order to increase the
transmission rate, we should decrease the duration of the total
round-trip time for light to go through the encoder–decoder and,
hence, decrease the code duration. Given these constraints, it is
clear that we are naturally using fixed chip rate and variable PG
to achieve a multirate system. As a result, in order to dynami-
cally control the spreading gain of an OFFH-CDMA user, we
should control the length of the code of this user represented by
the PG. Fig. 1 shows an illustrative example of a lower () and
higher ( ) rate encoder structure. In Fig. 2, we show the fre-
quency hopping patterns corresponding to the lower and higher
rate cases presented in Fig. 1. Programmability or multirate re-

Fig. 2. FFH Pattern for (a) lower rate and (b) higher rate users.

configurability of the encoder–decoder is possible using tun-
able FBGs. In fact, in order to obtain shorter codes, wavelengths
from longer codes can be tuned outside the working bandwidth
of the system. In doing so, these wavelengths are no longer re-
flected by the intended encoder–decoder; hence, the reflected
pattern looks like the one presented in Fig. 2(b). It is important to
mention that the limitation on the multirate reconfigurability of
the system is related to the tunability margin of the fiber Bragg
grating [5].

Due to the fact that the weight for a higher rate user is less
than that for lower rate users, dramatic decrease in the higher
rate SIR will be experienced; hence, low performance can be
expected.

B. Proposed Communication System

Consider a fiber-optic CDMA communication network with
transmitter–receiver pairs using OFFH-CDMA withON-OFF

keying modulation. This system supportsusers, which share
the same optical medium in a star architecture, as shown in
Fig. 3. Each of the users has the possibility of switching its
traffic rate for any of possible values
corresponding to different types of multimedia traffic or

different classes1 . Each of these classes is constrained to
a given QoS QoS QoS QoS requirement. The
corresponding PGs are given by .
Furthermore, a power control block is used in order to limit
the interference and optimize the system capacity. In fact, this
can be easily implemented using variable optical attenuators.
Accordingly, we must determine the function that rep-
resents the transmission power of users transmitting at rate

. is given in (1), where we define
to be its corresponding attenuation function. We

assume all users transmitting at the same rate will have the
same level of attenuation. represents the maximum power
available in the system

with (1)

III. PERFORMANCEANALYSIS

A. Hamming Auto- and Cross-Correlation

In frequency hopping CDMA systems, mutual interference
occurs when two or more transmitters use the same frequency

1In this paper, rate and class are used interchangeably.
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Fig. 3. Block diagram of the proposed OFFH-CDMA network for multimedia communication.

at the same time. This interference can be controlled by
the cross correlation of the frequency hopping sequences.
One of the best hopping sequence performance measures is
provided by the periodic Hamming cross-correlation func-
tion [8]. Let
and denote two hop-
ping sequences of periods and , respectively, with

. Let and , where
is one of the possible frequency slots. Suppose thatis the
desired user’s code andis the interferer code. At the receiver,
the Hamming cross correlation between these two sequences
is defined as

for (2)

where the sum is taken modulo and 2 is the
Hamming function. The autocorrelation function is defined as

for (3)

The average variance of the cross correlation between two
users transmitting at rates and , and using codes and

, is given by

(4)
where is the delay-averaged value of the cross-corre-
lation function.

B. SIR

In this paper, the SIR experienced by users clustered in each
class plays an important role in determining the performance

2Hamming function

h(a; b) =
0; if a 6= b

1; if a = b:

of these users, and, therefore, the system capacity. Each class
is characterized by its own QoS requirement,

specified by a given SIR. Hence, the SIR experienced by an
active user that has rate , where [3], is

SIR (5)

where

and are the PG, the attenuation value, and the number
of active users inclass , respectively. and are the av-
erage variances of the cross-correlation amplitude in the same
class and between different classes, respectively. In addition,

represents the additive white Gaussian noise (AWGN)
power spectral density after power control.

C. BER

Using the Gaussian assumption for multiple access interfer-
ence (MAI) [9] and equiprobable data, the probability of error
(or the BER), for each class of users is given by

SIR
for (6)

where

Using this assumption, we have simulated the case of a
dual-rate system, represented asclass andclass for lower
and higher rate users, with two different traffic types and QoS
requirements, as shown in Table I. We used a family of codes
with 29 available frequencies, generated from the algorithm
of Bin [10], and falling into the category of the so-called
one-coincidence sequences [11]. It is characterized by the
following three properties: 1) in each sequence, each frequency
is used once, at most; 2) the maximum number of hits between
any pair of sequences for any time shift equals one; and 3) it
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TABLE I
SYSTEM PARAMETERS: DUAL RATE SYSTEM

Fig. 4. BER for both classes with fixed number of higher rate users and using
(a)P = P = 1, and (b)P = P =2 = 0:5.

preserves good auto- and cross-correlation properties between
codes with different lengths obtained by truncating long codes
[11].

Fig. 4(a) shows the BER performance for both classes using
normalized equal transmission power (assuming ),

. It is clear that the BER for higher rate users
is much higher than that for lower rate users. As mentioned
before, this will lead to a wide diversity between the perfor-
mances of the two classes, and the possibility of adding higher
rate users will be limited for stringent QoS requirements. As
shown in Fig. 4(b), when is reduced to 0.5, theclass
bit energy is reduced, resulting in higher BER. On the other
hand, the BER performance is improved forclass . This
improvement is due to the reduction of the MAI variance for
class users.

IV. SYSTEM CAPACITY

A. Admissible Region

In this section, we establish a relation between number of
users, QoS requirements, and transmission powers in each class.
For simplicity, we describe the case of the two-rate system il-
lustrated in Section III-C. We impose a minimum QoS for each
rate by fixing a lower bound for the SIR, i.e., SIR
where . Using (5), we obtain two inequalities for
the number of users in each class.

(7)

(8)

where and represent the maximum number of active
users inclass andclass when there are noclass and
class users, respectively. They are given by

(9)

(10)

Before continuing, let us simulate the example given in
Table I. Fig. 5(a) shows the admissible region for the case of
equal power. Due to the diversity between the performances
of the two classes, there is no intersection between the two
regions. The achievable region is linear, and it is imposed
by the condition on the higher rate users given by (7). By
lowering , the region is wider; hence, more users can
be supported from the two classes, as shown in Fig. 5(b).
Although the boundary region generated by the QoS condition
on lower rate users given by (8) is smaller, this will not affect
the maximum allowable number of users in the system due to
the overperformance experienced by this class.

The first intersection point, illustrated in Fig. 5(b), is reached
between the two regions when the value of the power ratio

is

(11)

Below this value, the two regions begin to overlap, as shown
in Fig. 5(c). This means that the diversity between the perfor-
mances of the two classes is minimized. The overlap between
the two regions is the admissible region. Our goal is to maxi-
mize this region in order to maximize the system capacity. Note
the intersection point of the two regions , which plays an
important role in defining the largest possible boundary region
that can be achieved, as will be shown in Section V. If we further
attenuate , there is a value after which the intersection be-
tween the two lines will no longer exist, as shown in Fig. 5(d).
For thisclass power value, the power ratio between the two
classes is

(12)
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Fig. 5. Boundary limit for(K ;K ), for a given minimum(SIR ; SIR ) with P = 1 and (a)P = 1, (b)P = P , (c) P < P <

P and (d)P = P .

Observation: It is important to mention that in an optical
medium, there is a need to support a large variety of applications
with very diverse traffic characteristics [1], [2]. Consequently,
we observe that the optimal transmission power of each class
depends on the relative values of and . When ,
the “1” in (9) and (10) can be neglected. Thus, the relative value
between these two parameters can be approximated by

When and the values of and are compa-
rable, is greater than , as shown in Fig. 5(a). Hence, it
is normal to decrease the transmission power ofclass users
in order to increase the system admissible region. On the other
hand, when will be smaller than

. This situation may happen when , as revealed
in Fig. 6(a), for and . Assuming that this sit-
uation may happen in practice, theclass transmission power
must be decreased, compared to that of theclass , in order to
increase the system admissible region, as illustrated in Fig. 6(b),
for a power ratio of 1.5. This procedure insures the existence of
the intersection point between and

[ and are given in (11) and (12),

respectively] whether increased or decreased, depending on
the system requirements.

B. Generalized Concept

The expression for the admissible region can be easily gener-
alized to classes of users operating atdifferent rates. The in-
equalities governing the system capacity forclasses are given
by

(13)

The coefficient , for , is determined by
. The parameter denotes the max-

imum number of active users inclass when there are no ac-
tive users in the system from other classes. Plotting these in-
equalities versus , yields the allowable region,
bounded by an -dimensional hyperplane of points representing
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Fig. 6. Boundary limit for(K ;K ), for a given minimum(SIR ; SIR )
with P = 1 and (a)P = 1, (b)P < P < P .

the maximum number ofclass users for , and
for given QoS constraints.

V. OPTIMIZATION OF THE POWER CONTROL FUNCTION

A. System Throughput

Because each class has a different rate, the system utilization
is maximized when the number of higher rate users is more than
the number of lower rate users. Thus, the system throughput
is defined as the sum of the maximum allowable active users
with given weights for sub-class . These weights represent
the available rates , normalized by the highest
rate in the system. Hence, the optimization problem is pre-
sented as follows:

(14)
with . The constraints are

(15)

(16)

Fig. 7. The acceptance region drawn by varying the power ratio between�

and� .

B. Analytical Method

1) Two-Class System:First, consider two classes of users
that have been used in previous sections, namelyclass and
class . Equations (7) and (8) can be written in matrix form as
follows:

(17)

where

When , the intersection point exists, as shown
in Fig. 7. Hence, solving (17) using the coordinate of points
and shown in Fig. 7, we obtain the following boundary limit
for the power ratio:

(18)

exists in the first quadrant when , where
, and represent values satisfying (18). Thus, by

solving (17), we can write

(19)

(20)

where and
. We define the weighted sum of the coordinate of

as shown in (21) at the bottom of the next page. is a
valid function of because, for every power ratio, there is
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Fig. 8. The admissible region of a two-rate system withrank(A) = 1 (a) for
an uncontrolled system and (b) using the optimal power ratio.

a corresponding unique value . When
. For this case, the two boundary lines intersect

on a line passing by and , as shown in Fig. 8.
Proposition 1: Given that , the maximum of

the throughput function defined in (14) is given by the
maximum of the function . Thus

(22)

Therefore, the optimal power ratio between the two
classes is given by

(23)

On the other hand, if , the optimal throughput is
given by one of the extremes

for (24)

depending on whether attenuation or amplification is per-
formed.

Proof: For a fixed power ratio , the optimization problem
defined in (14)–(16) is a linear programming problem because

is fixed and is also constant. This problem is characterized
by the following facts.

• The set of feasible solutions is a convex set. This convex
set has a finite number of corners, which are usually re-
ferred to as extreme points.

• The set , which yield a specified value of the
objective function, is a line. Furthermore, the lines corre-
sponding to different values of the objective function are
parallel.

• A local maximum is also the absolute (global) maximum
of the objective function over the set of feasible solutions.

• If the optimal value of the objective function is bounded, at
least one of the extreme points of the convex set of feasible
solutions will be an optimal solution.

Thus, in our case, the global maximum is one of the extremes
of the acceptance region. When we varyto , we are practi-
cally varying the acceptance region. For this new region, there is
a new global maximum given by one of the extremes. Therefore,
the optimization process is simplified to the search between the
extreme points for every . The extreme point that maxi-
mizes will correspond to the optimal transmission power ratio

.
For each , we define the set of extreme points

, where is the intersection point between the
two boundary lines of the admissible region if it exists.

represents an extreme point on theth dimension axis.
may vary from to the point . Thus, the optimal point

is either on the dimensional axis or the intersection point.
If the solution is on the th dimension axis, then we take the
maximum of , which is . If the solution is not on one of
the axes, it will be the intersection point for

. In fact, even is an intersection point, when the lines
intersect the th dimension axis for a particular value of. As
a conclusion, the search space has now been reduced to the set
of intersection points

(25)

Therefore, by obtaining the maximum of for
, we can compute the maximum of , which

proves (22). Consequently, the optimality criterion can now be
viewed as finding the that maximizes the newly defined func-
tion for the new boundary limits given in (18), and, thus,
the proof of (23).

On the other hand, if and the
intersection point does not exists. This happens when the fol-
lowing equality holds true:

If this expression is valid for a given family of codes, the two
lines are parallel and intersect in a line when we vary, as
shown in Fig. 8. It is clear that the widest acceptance region is
shown in Fig. 8(b) where attenuation is performed for the lower
rate users to reach . If the acceptance region drawn
from higher rate constraint is wider, the system must perform
amplification for the power of the lower rate users to reach the
intersection line at . Due to the fact that Fig. 8(b)
is the widest possible acceptance region of the system, the op-
timal solution is one of the extremes for

, which proves (24).

(21)
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Fig. 9. The set(K (�); K (�)) drawn for (a) different� requirements
and (b) different� requirements.

From this proposition, the optimization problem can be con-
sidered as a nonlinear programming problem that has linear con-
straints and a concave function over the nonnegative quadrant,
and it can be written as

is concave

and (26)

Because the constraints are linear and, thus, can be considered
concave or convex, Kuhn–Tucker (KT) theory [12] states that a
necessary and sufficient condition that takes on its global
optimum at is that there exist a and (Lagrange
multipliers) such that

(27)

(28)

(29)

The values of and strongly depend on the amount
of interference generated by active users and the statistics of
frequency hits specified by the used family of codes. We can
distinguish three cases.

i) The global maximum is between and
from (28) and (29). Thus, (27) yields an optimal

attenuation value of

(30)

ii) The global maximum occurs at an greater than
and . is computed from

(27).
iii) The global maximum occurs at anless then

and . is also computed from (27).

Using the same family of codes applied in Section III, Fig. 9
plots the set , when varies from to

, for different QoS requirements of each class. Note that
the search space has been transformed from a plane to a line,
thus reducing the complexity of the problem and enabling us
to derive an analytical solution of the optimal transmission

Fig. 10. Throughput versus� for several values of� requirements with
� = 50.

power for each class. Fig. 9(a) shows the dependency of this
line on the variations in the higher rate QoS requirements when
we fix the lower rate one; on the other hand, Fig. 9(b) shows
its dependency on the lower rate QoS requirements when we
fix the higher rate requirements. Thus, we see the importance
of the system requirements in a multimedia networks. The
validity of the newly defined function is demonstrated
in Fig. 10(a), where we compare the analytical method versus
the numerical method for different QoS requirements. By
numerical function, we mean a brute-force method where we
search the space for the maximum of . In Fig. 10(b),
we plot the defined function versus . We can notice
that, for , the optimal solution is at , rather than
at the global maximum of the function. On the other hand, for

, the optimal solution is at , given in (30).
2) Higher Dimensional System:In a higher dimensional

system, the analysis becomes more complicated. For this
reason, we begin by presenting the case of a three-rate system
and then generalize the procedure to the-class system.
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Fig. 11. The admissible region of a three-rate system with (a)rank(A) = 3,
(b) rank(A) = 2, and (c)rank(A) = 1

For a three-rate system, the boundary equations can be written
as in (17), with and given by

where . In this case, the problem is di-
vided into three parts: a) ; b) ; and
c) .

a) : The rows of are linearly independent
and the three planes intersect in a pointof coordinates

obtained by solving the linear set
of equations in (17). If we solve (17) using the coordinate
of points and shown in Fig. 11(a), we obtain the
following boundary limits for the power ratios, which insure
the existence of in the first orthant:

(31)

where and . The set of extreme points
is now . This problem can be solved
as in the case of the two-rate system by defining as

(32)

b) : When , does not exists.
In this case, there are two rows ofthat are linearly depen-
dent (for example, rows 2 and 3, without loss of generality).
Thus, the two linearly independent planes will eventually in-
tersect on a line, as shown in Fig. 11(b). This line will be in
the first orthant, by respecting (31), and the set of extremes is
given by . Hence, we cannot de-
fine the throughput function based on the intersection point
because it does not exist. Instead, we notice that there are
two extreme points and . In addition, the optimal so-
lution will be either on the plane or on the
plane; thus, the optimized system cannot support more than

two classes of users. Therefore, we define two subsystems
in the and planes, respectively

(33)

(34)

where and are submatrices generated by eliminating
the third row and column and the second row and column
from , respectively. They are given by

, and are also given by

Now, and exist due to the fact that these matrices
are nonsingular. The solutions of the two linear systems de-
fined in (33) and (34) give two vectors containing the coor-
dinates of and , respectively

and

We define the two functions and based on
the coordinates of and as follows:

(35)

(36)

c) : When , the three equations
in (17) are redundant and the three planes are parallel.
Therefore, the maximum acceptance region is under the
plane passing by the three extreme points and

as shown in Fig. 11(c). In this case, the optimal
solution is clearly one of the extremes for

, depending on whether attenuation
or amplification is performed.

Proposition 2:

i) Given that , the maximum of the
throughput function is given by the maximum of
the function . Thus

(37)

The optimal power vector is

(38)

ii) If , the maximum throughput is given by
the maximum of the maximums of the two functions

and defined in (35) and (36)

(39)

The optimal power vector is now given by

(40)
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where

iii) If , the maximum of is given by one
of the extremes

for (41)

depending on whether attenuation or amplification is per-
formed.

Proof: The proof of (i) and (iii) is very close to the one in
proposition 1, but uses three-dimensional space. The proof of
part (ii) is as follows. As shown previously, for a fixed value of
the power vector , the optimization problem is a linear pro-
gramming problem where the solution is one of the extreme
points . The search space now in-
cludes two sets of extremes

The set contains and when the intersection line be-
tween the two planes passes byand , respectively. On the
other hand, the set contains and when the intersec-
tion line between the two planes passes byand , respec-
tively. Therefore, the optimal solution is either in or in .
Given that the two functions and , which are
defined in and , respectively, are valid functions of, the
maximum of each of them can be obtained along with its cor-
responding value of . Then, the maximum of the maximum of
the two functions and its corresponding power vector will rep-
resent the maximum throughput and the optimum power vector
respectively, which proves (39) and (40).

For a generalized -classsystem, and using induction, it is
simple to show that the expression for the power-ratio boundary
condition is given by (31) with and .
Again, the process is divided into three parts.

a) Full rank system:When , the inverse
matrix exists. Thus, we define the weighted sum of the
coordinate of as

(42)

In order for to be a valid function of the
variables (where represents the
power ratio between two classes), we must ensure that, for
every point in , a unique
number can be obtained.
Suppose that there are two valuesand that correspond to
the point and are given by

and

Because the two matrices and are equal for a
fixed , we have . Hence, , defined in (42), is

a valid function. Thus, the problem has been transformed to the
following form:

is concave

(43)

For this optimization problem, KT theory [12] states
that a necessary and sufficient condition that takes on
its global optimum at is that there exists a vector
with for such that for every

(44)

(45)

(46)

where and are components of the vectors
and respectively.

b) Rank A smaller than, a subspace approach:Suppose
that where and ; then,
of the equations are redundant and they represent parallel hy-
perplanes in (assumed to be the last equations, in
this case). To generate all possible extreme points, we define

nonsingular submatrices from of order , where
stands for one of the linearly de-

pendent equations. These submatrices include the linearly
independent rows and one of the linearly dependent rows
of . We drop all equations not associated with the rows of
appearing in each of these submatrices. Therefore, we can get
the extreme point by giving zero values to thevariables not
associated with the columns of that appear in theth order
submatrix and then solve uniquely for thevariables associated
with the columns of that appear in the submatrix, because the
submatrix has an inverse. The resulting-tuple will be the co-
ordinates of one of the extremes. In this case, the set of extreme
points is where is
obtained by

(47)

with and
. Hence, is in the first or-

thant when . So, we can define the weighted
sum of the coordinate of as

(48)

The optimization process can now be done separately in theth
subspace where , using for each
of the subspaces.

is concave

(49)

Using KT theory for the problem defined in (49), we can
calculate the maximum of and its corre-
sponding optimum power vector using (44)–(46) with
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Fig. 12. Throughput versus� requirements for optimal� (solid),� = 0:5

(dashed), and� = 1 (dotted) with (a)� = 20 and (b)� = 100.

. Thus, the maximum of the throughput
function is given by

(50)

(51)

c) : The final case is when
; thus, all the hyperplanes are parallel. The widest possible

region is under the hyperplane passing by the extreme points
. Thus, the optimal solution is one of these

extremes for is equal to either or , depending
on whether attenuation or amplification is performed.

VI. NUMERICAL RESULTS

Throughout this section, and using the two-rate system de-
scribed in Section III-C, we evaluate the effectiveness of the
proposed power control algorithm on the system throughput. In
addition, the effects and the advantages of the new transmitters
optimization method will be highlighted.

In Fig. 12, we plot the throughput versus for three dif-
ferent transmitters power settings: the conventional setting (CS)

; the equal bit energy criteria (EEC) ; and the
proposed power control function. In the three cases, we assume

Fig. 13. Maximum throughput for different system QoS requirements
scenarios.

fixed lower rate requirement . The most interesting case is the
EEC. Intuitively, this choice of is logical due to the fact that
the lower rate codes are twice as long as the higher rate codes.
When is low, as shown in Fig. 12(a), the system throughput
increases when we attenuate theclass transmission power.
For this reason, when is decreased from to ,
the system throughput is increased. Thus, the intuition of im-
posing EEC for the two classes is rather justifiable but not op-
timal. Another extreme case is when we assume high, as
shown in Fig. 12(b), for . In this case, it can be seen
that for low values of , the EEC introduces degradation in
the system throughput. The reason is that, when ,
the number ofclass users is smaller compared to the number
of class users. Thus, theclass users introduce most of the
MAI. Decreasing will further increase the interference caused
by theclass users on theclass ones. Therefore, the system
throughput will be decreased. After , the EEC gives
better results than the CS.

Nevertheless, for the two cases, the new power control
strategy achieves higher system throughput than both the EEC
and the conventional uncontrolled optical CDMA transmitters.

Fig. 13 shows the maximum throughput for different system
requirement scenarios and using the proposed power control al-
gorithm. It can be shown that when is small compared to

, varying will not significantly change the
value of the maximum throughput. This is true due to the fact
that when , theclass users dominate the system,
thus affecting the system capacity more than theclass users.
On the other hand, when , the maximum throughput
will be influenced mostly by because the number of lower
rate users that can be supported in the system is higher than the
number of higher rate users. This is shown by the asymptotic
behavior of the maximum throughput when tends to 60 for

.
The optimum power control function is depicted in Fig. 14

versus the system requirements. Notice the importance of the
QoS requirements on the choice of. For higher values of

increases as becomes very small, and it can reach
the level of amplification after , as was demonstrated
in the observation in Section IV. We also observe that for small
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Fig. 14. Optimal� versus different system QoS requirements scenarios.

values of increases somewhat linearly as increases.
On the other hand, there is an asymptotic behavior ofas
and become very large, which leads to a constant value of
the power ratio between the two classes. Observe that Fig. 14
generates the values ofthat are used to calculate the optimal
throughput shown in Fig. 13.

VII. CONCLUSION

In this paper, we have proposed an OFFH-CDMA network
that insures bit-rate flexibility. Then, we have demonstrated that
codes are not the only factor that must be considered in multi-
rate optical CDMA in order to ensure a reliable system. Conse-
quently, we have proposed using a power control algorithm for
multimedia–multirate applications, using variable optical atten-
uators.

We have proposed a power control strategy to solve the
nonlinear programming problem based on linear programming
theory. Then, KT theorem was used to obtain an analytical
solution for the optimal transmission power in each class.
Simulations have shown that the number of active users can
be efficiently increased, hence increasing the throughput. Note
that the analysis presented in this paper can be extended to
other optical CDMA techniques.

Future directions include extending this work to analyze a hy-
brid power control and coding technique, in which we will eval-
uate the importance of power control with respect to the used
code structure. We will also study the effectiveness of power
control when used with nonideal families of codes that usually
contain more sequences, thus allowing a higher number of ac-
tive users.
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