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ARTICLE INFO ABSTRACT

Keywords:
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In this paper, we modify the Gaussian noise model (GN-model) to address the nonlinearity effects in few-mode
fibers. Closed-form expressions for the nonlinear interference power in birefringent few-mode fibers (FMFs)
are derived and the effect of differential mode group delay (DMGD) is investigated. Moreover, the nonlinearity
accumulation through propagation in multiple-spans fiber and the birefringence effect are considered. In
addition, we discuss the effect of the DMGD on the fiber nonlinearity in systems adopting mode-division
multiplexing (MDM). The results show that the DMGD management degrades the system performance in weak
coupling regime because the nonlinear interference is enhanced. However, strong coupling-based transmission
outperforms weak coupling transmission regardless of the DMGD effect in the weak coupling regime. On the
other hand, by taking the DMGD effect into account, the system performance in weak coupling regime is better
than that in strong coupling regime. Furthermore, the impact of the nonlinearity on the maximum reach is

Mode-division multiplexing (MDM)
Nonlinearity modeling
Space-division multiplexing (SDM)

discussed.

1. Introduction

Optical transmission capacity is rapidly approaching its fundamen-
tal nonlinear limit in single mode fibers (SMFs) [1]. Optical space-
division multiplexing (SDM) is a promising degree of freedom that
increases the fiber transmission capacity. It supports multiple communi-
cation channels using modes in few-mode fibers (FMFs) and/or cores in
multi-core fibers (MCFs) [2-4]. In recent years, several experimental ef-
forts have been done to demonstrate optical space-division multiplexing
based systems [5-7].

However, in long-haul transmission, the system performance suffers
from physical impairments due to attenuation, dispersion, and nonlin-
earity. The fiber nonlinearity is a major source of capacity performance
limitation [4,8-11]. This nonlinear limitation arises from the nonlinear
interaction between different co-propagating optical fields due to Kerr-
effects. These Kerr-effects simply involve nonlinear changes in the
refractive index with increasing transmitted signal power, thus gener-
ating self-phase modulation (SPM), cross-phase modulation (XPM), or
four wave mixing (FWM) [12-15]. Another linear interaction in FMFs
transmission arises from the coupling between various spatial coprop-
agating fields that results in a periodic-power transfer from an optical
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field to another copropagating one [11,16,17]. This linear coupling can
exist: between dual-polarized fields on a specific mode (core), called
linear polarization coupling, or (and) between different copropagating
mode (core) fields, called linear mode coupling [17]. When the linear
mode coupling level is comparable to that of polarization one, two
distinct coupling regimes occur, namely weak- and strong-coupling
regimes. In the weak coupling regime, the linear mode coupling is
insignificant and could be neglected compared to the linear polariza-
tion coupling. On the other hand, in the strong coupling regime, the
linear mode coupling is significant compared to the linear polarization
coupling [16]. The randomly-varying birefringence during fiber trans-
mission results in a reduction of the nonlinear interaction due to the
randomly-averaging operation under the birefringence effect [16,18,
19]. In the strong coupling regime, this randomly-averaging is higher
compared to the weak coupling one, because of the large random-
fluctuation of the propagating power in strong coupling case. Another
linear propagation process in FMFs transmission is the differential
mode group delay (DMGD) between the co-propagating modes [20,
21]. It is similar to the differential group delay (DGD) between dual-
polarized fields in SMFs transmission [22]. DMGD is a design limitation
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of multiple-input-multiple-output (MIMO) receivers in MDM based sys-
tems [21,23]. Though the DMGD leads to an increase in the complexity
of MIMO-receivers, it reduces the impact of nonlinearity of FMFs based
transmission [24]. Further, a DMGD-management may be performed
by periodically interchanging FMFs with different DMGDs in order to
reduce the complexity of MIMO receivers [25].

Recently, the description of nonlinear propagation of dual-polarized
signal through nonlinear-dispersive multi-mode optical fibers is de-
scribed by the coupled multi-mode generalized nonlinear Schrédinger
equation (MM-NLSE) and generalized coupled multi-mode Manakov
equations [9,16,18,26,27]. The generalized multi-mode coupled Man-
akov equations are simpler than the MM-NLSE, but both have to be
solved numerically by the split-step-Fourier-method (SSFM) [11,16].
Extensive efforts have been made for analytical modeling of the nonlin-
ear interaction in SMFs using perturbative approaches [14,15,28-38].
In [14,15], an analytical model based on Volterra series transfer func-
tion (VSTF) has been developed to address the nonlinear impairments
in long-haul transmission. One of these approaches is the well-known
Gaussian noise model (GN-model), which is considered a reasonable-
simple tool for addressing the nonlinearity [38]. The GN-model concept
has been proposed in [36]. Then, it has been validated over a wide
range of SMFs systems [37-41]. Recently, several extension efforts have
been done on the GN model to enhance its accuracy and consider
new features such as the impact of modulation formats and stimulated
Raman scattering on long-haul transmission performance [42-46]. In
this work, we discuss the nonlinear Kerr-effects for transmission over
FMFs. For simplicity, we do not take into our consideration the impact
of the modulation techniques and other nonlinear impairments. The
GN-model is extended for FMFs transmission, since the nonlinear inter-
ference between two orthogonal-polarized fields is equivalent to that
between two co-propagating spatial modes [47]. In recent years, some
numerical and analytical efforts have been developed for evaluating
this nonlinear propagation in FMFs [10,16,48-54]. In [50], an analyti-
cal analysis of the nonlinear interference in a weak coupled two-mode
MDM based system has been introduced. In [4,10,51], the application
of the GN-model in multi-mode fibers (MMFs) based systems has been
validated. Furthermore, a generic expression for estimating the non-
linear information spectral density of MMFs based system has been
proposed in [52]. In our previous work, we have just presented simple
closed-form expressions for the nonlinear interference power for both
weak- and strong coupling regimes [53,54].

The main contributions in this paper are summarized as follows.

» A complete mathematical analysis has been explored for obtain-
ing closed-form expressions of the nonlinear interference power
for both weak- and strong coupling regimes over FMFs based
transmission systems.

The effect of DMGD and its management in week coupling trans-
mission is discussed.

Expressions for the nonlinearity accumulation through multiple
spans fiber propagation is presented.

Analytical results illustrate the impact of nonlinearity on the bit-
error rate (BER) performance under different system parameters,
where the effect of both intra- and inter-modal nonlinearities are
discussed.

The impact of linear mode coupling is analytically explored.

The impact of the nonlinearity on the maximum reach of different
optical fiber schemes is discussed.

The remaining of this paper is organized as follows. In Section 2,
we review the FWM in FMFs transmission and explore the deriva-
tion of simplified expressions for the phase-matching condition of
FWM process for both weak- and strong-coupling regimes. The non-
linear propagation equations are also reviewed and the performance
parameters are presented in same Section. In Section 3, a rigorous
mathematical derivation for the modified GN-model in FMFs is detailed
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Fig. 1. Different nonlinear Kerr-effects in FMFs based system; SM-SPM: self-mode self-
phase modulation, SM-XPM: self-mode cross-phase modulation, SM-FWM: self-mode
four wave mixing, XM-XPM: cross-mode cross-phase modulation, XM-FWM: cross-mode
four wave mixing. (r,s, k,i) and (m,q,/, p) are the frequencies and spatial modes indices,
respectively.

in order to obtain closed-form expressions for the nonlinear interfer-
ence power in both coupling regimes. In addition, a scenario for the
nonlinearity accumulation when propagating over multiple-spans fiber
is discussed. In Section 4, our results of the derived expressions are
discussed and compared to similar cases in literature. Finally, we give
the conclusions in Section 5.

2. General considerations
2.1. Four-wave-mixing in FMFs

The different nonlinear Kerr-effects that originate in FMFs trans-
mission are summarized in Fig. 1. Self-phase modulation (SPM), cross-
phase modulation (XPM), and four wave mixing (FWM) are third-order
parametric processes that modulate the fiber refractive index [55,56].
These nonlinear effects can be classified into: (a) intra- and inter-
channel nonlinearity based on the frequency channel interactions and
(b) intra- and inter-modal nonlinearity based on space (mode) in-
teractions [57,58]. Both SPM and XPM processes can be treated as
special types of the FWM process [36]. For a FWM process in FMFs,
the nonlinear interaction process among spatial fields at frequencies
(fy» fs» fi) results in an energy-transfer into an idler mode with a
frequency (f;), where (i, s, r, k) are the frequencies indices [59,60]. This
FWM nonlinear-interaction occurrence among different spatial fields
requires two conditions to be satisfied [51,55,59,60]: (1) a frequency
(wavelength)/mode conservation condition [i Solp = [rfolm — [sfolg +
[kfol;, and (2) a phase-matching condition Aﬂ:rfq’;‘p( fo) = Barfy) —
B, (sfo)+ Bk fo)— B,(i fo), where f is the frequency separation between
any two successive frequency-components and the subscripts (m, g, 1, p)
are the spatial modes indices.

Phase-matching condition

Simplified expressions for the phase-matching condition in FMFs
can easily be formulated. For the weak coupling regime, the dispersion
term of the pth mode can be expanded using Taylor’s series as: §,(f) =
bo, +27 B +272 f zﬂzp +---, where bo,» P1,» and §, are the propagation
constant, the group delay (GD) parameter, and the group velocity
dispersion (GVD) parameter, respectively. We focus our consideration
to significant terms only (that is, up to the GVD term) [27,61]. By
substituting this expansion in the phase-matching condition, we obtain

Ayt (o) =(Bom = Bog + Por = Bo,) +2xlrfuby, = sfobr,
+ kfoy, = ifoby, )+ 22 {Irf B, = IsSoF B,
+ kfoPPBs, = 1ifoBs, ). M

In birefringent-fiber transmission, both SPM and XPM effects are dom-
inant compared to the FWM effect [16,47], thus the phase-matching
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conditions for both XPM and SPM (i.e., m = ¢, and / = p) can be
rewritten as:
Aﬁ;lil‘;il(fo) =2z (r - S)ﬁlq - (l - k)ﬂlp] fa + 2”2{[(rf0)2

= (S0 1By, +1G10)* = kfoP1Bs, }- @

Then, by applying the frequency conservation condition, i.e., (rf, —
sfo = ify — kfy) and setting a simplified notation for Aﬁ;;;’;(fo) as
4B, (fo), we get:

BB,y (fo) =22 { G = KLy, = By, 1S, } + 272 {10,)°
= £’V + 1 fo)* = (kfo))B, }-

In order to obtain a continuous frequency-domain expression, we sub-

stitute: ify, — f, kfy — fi, rfo = f, sfy = fi + f, — f. This
yields

A, (f) =22(f, = DIABy, +27°(f1 = DI = f +212)b,
= (fi+ Dby, “@

where apy, =P, =P, is the DMGD between spatial modes with indices
p and q. At the center channel (i.e., i = 0), the last expression reduces
to:

Afpg = 22 f1 (AP +27f2 ).

Moreover, for the intramodal case (i.e., ¢ = p), the phase-matching
condition is further simplified to: 44,, ~ 4z f| fzﬁzp- Whereas, for
strong coupling regime, the phase-matching condition is given by: 48 ~
4z f| f, B, where f is the average GVD parameter of the co-propagating
spatial modes for the strong coupling regime.

3

(5)

2.2. Signal propagation in FMFs

The frequency-domain electric-field propagating in FMFs can be
expressed for the pth mode [16] as:

E,(x, 7.2, f) = F,(x, YAz, /), (6)

where F,(x, y) is the spatial field distribution and Ap(z, f) is the slowly-

varying field envelope vector for the pth mode as in [27]. According

to [16], the nonlinear propagation in nonlinear-dispersive FMFs can be

described by the generalized multi-mode coupled Manakov equation

for the pth mode as follows

0A,(z, f)
z

7]
The right-hand side of (7) is divided into two terms: the first one is
the linear part, where Ep( f) is a linear operator that includes both
attenuation and dispersion operators, and the second term represents
the source of nonlinear interference due to the Kerr-effects. Both Ep( f)
and Q,,,P (z, f) are expressed based on the generalized multi-mode cou-
pled Manakov equations for both coupling regimes in the following
subsections 2.2.1 and 2.2.2. It is worth mentioning that there is another
linear part due to the linear coupling between the co-propagating fields.
However, the randomly-birefringence process averages out this linear
part [16,19].

= L,(NA,z )+ (2 ). %)

2.2.1. Weak coupling regime

In this regime, the linear operator is expressed as le(z, fl=-a,-
iB,(f)s where a, and B,(f) are the fiber attenuation and dispersion
operator for a dual-polarized field on the pth mode, respectively. Fur-

thermore, the nonlinear term C,,,p(z, f) is expressed as [16]

G, (2. f) =

M N
i3 Y S (%)" Ay ) [A;u,f)]T xR,z f). ®
- q
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Here, y = 27n, /(1A¢g) is the fiber nonlinearity coefficient (with n, be-
ing the nonlinear-index coefficient, A the propagating wavelength, and
A the core effective area of the fundamental mode), M is the number
of the co-propagating modes, and 6, is the Kronecker delta function.
The operator * donates the convolution, and the superscripts 7" and x
donate for the transpose and conjugation operators, respectively. The
nonlinear interaction tensor f,, between spatial modes with
indices p and ¢ is given by:

T VE,G 9P IF (x,y) P dxdy
 1E, e Pdxdy- ] 1Fy(x, p)Pdxdy

Note that the source of nonlinear interference part is classified into two
distinct source-limited cases in FMFs; intramodal (self-mode modula-
tion, SMM) and intermodal (cross-mode modulation, XMM) nonlinear-

ity.

= S ppagq

def
f ppqq

)]

2.2.2. Strong coupling regime

In strong coupling regime, the linear operator is expressed as
L,(f) = —& — jp(f), where & and § are the attenuation coefficient
and average GVD parameter of the co-propagating spatial modes,
respectively. The nonlinear term in (7) is expressed as [8,16]:

_ M _ T

G, ) =irx LA« [AR )]+ Ay, a0
q

32 Fra

Pt & E— 11
290 6M(2M + 1) an

where « =

pge{l2,... .M}
qsp

2.3. Performance parameters

To assess the performance of optical communication systems, it is
essential to evaluate the bit-error rate (BER). It normally depends on
the modulation format characteristics and is obtained in terms of the
signal-to-noise ratio (SNR) based on the modulation techniques and its
constellation cardinality [62-64]. Moreover, the SNR for the pth mode
propagating in multiple-spans of FMFs can be expressed as [36]:

B P,
SNR, = - —
By, P+ By

12

where B, is the noise bandwidth, B, is the channel bandwidth, P,
is the average lunch power per mode, and Pn”l; is the accumulated
nonlinear interference power per mode, to be derived in Section 3.
P! is the accumulated complex optical amplifier noise variance. For
erbium-doped fiber amplifiers (EDFAs), it is simply the amplified-
spontaneous-emission (ASE) noise per lumped amplifier, and is ex-
pressed as: Pygp ~ (G — 1)FhvB,, where G is the amplifier gain, F is the
amplifier noise figure, h is Plank’s constant, and v is the center-channel
frequency [33,38,65].

3. Modified GN-model for mode-division multiplexing systems

In dual-polarized transmission over SMFs, the GN-model treats the
nonlinearity as an independent additive Gaussian noise source, which
is statistically independent from both the amplifier noise and the trans-
mitted signal [38,61]. This can be applied to FMFs as the nonlinear
interaction among the co-propagating spatial (mode) fields is equiva-
lent to that among the orthogonal-polarized fields [47]. In the following
subsections, we explore the modeling assumptions of the propagating
signal, followed by detailed derivations of expressions for the nonlinear
interference powers in both strong- and weak-coupling regimes.
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3.1. Modeling assumptions

In order to apply a perturbation analysis such as the GN-model,
some assumptions should be considered for the transmitted signal [38,
51,52]: (1) the signal Gaussianity, (2) the statistical independence of
the nonlinear interference from both the ASE noise and the transmitted
signal, (3) the mode dependent loss is negligible, and (4) the relative
low to moderate level of nonlinearity. A complex periodic process,
which is spectrally shaped to satisfy the above assumptions, is used as
a transmitted field envelope process at the input of the optical fiber
(z = 0) using Karhunen-Loéve formula [62]:

A,.0. )= H, (NV/Fy Z 9 13)

v=—00

. 6(/ —vfo),

where H, p (f) is the transmitting filter shape, and dpp, I8 @ random
variable of the pth mode on x-polarization at frequency (vf,) having a
zero mean E{9,, } =0 and a unity variance E{|9,, |*} = 1, such that
E is the expectation operation.

We aim at obtaining an analytical model for the nonlinearity in
FMFs, thus we should obtain a closed-form solution of (7) as:

v,pxl

Az f) = AL 0. 1) +eFr / BTG, . a4
0

where A ,(f) is the transmitted optical field envelope vector. A straight-

forward hnear solution, A, (z, f), of (7) can be obtained by substitut-

ing (13) in the linear part of (14) as:

A, G ) = H, () &5V, Z 9, 8(f = vfo). (15)

v=—00
Obviously, obtaining the second part of the right hand side in (14)
represents a big dilemma, because the source of nonlinear interference
G,:(z, f) is a function of both the linear and nonlinear solutions. More-
over, the nonlinear solution depends on the source of the nonlinear
interference. Fortunately, the linear solution (15) can be used as a
perturbative start for obtaining the nonlinear-solution part in (14)
through the GN-model scenario, as will be shown in the following two
subsections.

3.2. Nonlinear interference in weak coupling regime

In this subsection, we follow a similar procedure as in [33,37,51]
to obtain an expression for the nonlinear interference power, Pn'f,;,
in the weak coupling regime. We substitute the linear solution from
(15) in the source of nonlinear interference Cnl(z, f) given by (8). We
assume that all dual-polarized transmitting filter shapes are identical,
ie., H, (f,)= pr(fv) = qu(fu) = H, (f,) = H(f,). Then, we perform
the triple convolution operation and apply the frequency condition:
(sfo—rfo+kfy =ify). The expression of G, (z, f) for a particular mode
at a specific frequency on x-polarization is obtained as:

M [
v G =ity ey g (%)5 PR
q i=—o0

9,, 9%

Ty 7 s,qy

X Y [H @ fo) H* (s fo) HUe fo)] 8y, (

r.s.k

+ Sr,qylg:,qy )e—j B4 f)=By (s o) +B,(k fo)] z 16)

where the superscript w. denotes the weak coupling regime. We use
(16) as a perturbative start to solve the dilemma of obtaining the second
term of (14). By recalling the linear operator expression £,(f) and
substituting by [8,(rfo) — B,(sfo) + B,(kfo) — B,(ifo) = 4B,,(fo)], we get
the nonlinear optical field solution as:

M pg O
: 43 2)\° B ,
A5 G ) =157 e g (3) X P e -ify)
) i=—00

x Y H(rfo)H*(sfo)H(ka)]< rae g+ 9rg, 9% q})

r.s.k

13
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_ o [2a=jaBy,(f0)]z
ng,px [1 e Pq a”

2a=jAB,(fo) |’
The power spectral density, S“ (z, fy), of the nonlinear interference

can be obtained by stat1st1cally averagmg the square absolute value of
the nonlinear optical field E{Ay (z fo)Ay (z, fo)) as:

M 89 &
S G = orde = Yk (3) Y 60 ik
- q i=—00

x ¥ [HGf)H* ) HKS)) Eggen2% (fp). (18)
r,s,k
where 7% (fy) = |(1 - e 24 U0ILs) /2 — jap, (fo))I” is the FWM

efficiency [66], and Egg« is expressed as E {(19,’%19
9p ) (95 1 09 a5, 0 ys,,qyak,p,)}.

The value of th1s expectatlon is altered for different nonlinearity
limits. For intermodal nonlinearity limit (XMM), by recalling the ran-
dom variable’s properties at the state: {(¢ = ¢,p = p/) and (r =
r,s = s’k = k')}, the value of Egg+« equals “2”. For intramodal
nonlinearity limit (SMM), the averaging operation is performed at the
aforementioned state in the intermodal limit besides an additional new
state: {(p = p') and (s = k’,r = ¥,k = s’)}. This new state produces
an additional “1” that makes the overall value of Egg« equals “3”. So,
the expression of the power spectral density (PSD) can be rewritten as
follows

* *
. qxi()kvﬂx + 19,.,()}}19&%)

6[“1 <
G =T e Y (5)" X o -is)
7 )

rSK (fo). 19

FWM

x Y [Hf)H*(sf)HKfp)|'n

r,s,k

The same expression for y-polarization effect is obtained by performing
similar analysis. The nonlinearity is evaluated at the span end where
the amplifier compensates for the span loss. Thus, the overall PSD,
ie., S"ﬁ})(fo) = Sr'ﬁ,',x (fo) + S:ﬁ",,(fO) can be expressed by

HEHON

x > H(rfo)H*(Sfo)H(kfo)] 15k (fo)-

r,s,k

S (fo)= Z 8(f —ifo)

(20)

The transmitting filter shape is assumed to be flat over the channel
bandwidth, such that, H,(f,) = (P,./2B.,)*’rect(f,) [61]. Further-
more, the discrete summation in (20) can be converted into continuous
integral by setting S'” (f) =limg g :ﬁ,, (fy)- Thus, the PSD expression

can be expressed as follows

) pq

Z f,,q N g 10 A1

Here D is the spectral integral area, shown as the dark-gray area in
Fig. 2(a) and ”me(fl’fZ) = limf0_>0 n’l;;\’]’;(fo) is the FWM efficiency.
Nyt (f1- f2) can be expanded using the phase-matching condition in
(5) and under the condition, (4B, < 2a), at the center channel as:

(f) 21

933

2
L eff

>
L(Zeff,a [Z”fl(Aﬁlpq bpg + Z”fzﬁzq)]

’IFWM(fhfz) ~ (22)

where Ly = (1 — e72*Ls)/2a and Leg, = 1/2a are the effective
and asymptotic-effective lengths of a fiber with a span length L,,
respectively [38]. We use the approximation of the spectral bands into
a square integration area, shown as light-gray area in Fig. 2(a). This
spectral approximation is verified to give a closer result to the exact
integral evaluation [67]. Furthermore, this approximation reduces the
over-estimation of the nonlinear interference power in the GN-model.
An analytical expression of the PSD, S¢-, formulated by integrating
the FWM efficiency in (22) over the llght -gray area in Fig. 2(a) using
the integration identities in [68]. Then, by integrating the obtained
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V3B,/4 f, 7% LP 1, LP, .
< L
" DC
LPllb LPZlb
- s
. L 1
(a) (b)

Fig. 2. (a) Spectral integration areas; D (dark-gray): the original integration area with
limits [-B, /2, B, /2] for all (f,, f>, f, +f,) and S (light-gray): the approximated square
limits with a side length of = \/§Bw /2, and B, is the total bandwidth, () Spatial field
distribution for the six LP spatial modes.

analytical expression of the PSD over the noise bandwidth B,, a closed-

form expression for the per-span nonlinear interference power, P/, can
»

be obtained as:

2
puw. ~iy2 L By s
"[P 24 Leff,a th 1x

M 2
X zq: Wp;z' [aresinh(w™) + aresinh(y™)] (23)
q

where y* = %gnLeff’an(\/Tgnlﬂzq IBwiAﬂ]p ). Here B, = B., N, is the
total WDM bandwidth, and N, is the number of the WDM channels.

3.3. Nonlinear interference in strong coupling regime

By starting from the MM-NLSE for strong coupling regime (10) and
the phase-matching condition, we apply the same procedure as has
been explored above in Section 3.2. The estimated value of Egg« equals
“3”. A closed-form expression for the per-span nonlinear interference
power, P'fl'p, is thus obtained as:

2.2 [2. B N
ps o SM KT et D ps arcsinh(%ﬂzLefﬁawleZ)), (24)

0~ A t
"r 87 |By| Letta B},

the superscript s. denotes the strong coupling regime.
3.4. Accumulation of nonlinear interference over multiple spans

The accumulation scenarios of the nonlinear interference power
through propagating over multiple-spans fiber can be viewed as ei-
ther (a) coherent approach (accumulating nonlinear interference fields)
[61], or (b) non-coherent approach (accumulating nonlinear interfer-
ence powers). The second approach can be modified from a pure-linear
variation with the number of spans N, to a super-linear with an
exponent (e < 1), given by [69]:

3 12 Leff,a .
10 In (1 + Ly arcsinh(y™)+arcsinh(y~) ) ’ weak’
ERY 4 6 Leffa @
|1+ ——"—— | strong.
10 Ly arcSinh(§ﬂ|ﬁ|LefﬂaB(i)

Thus, the total accumulated nonlinear interference power and total

amplifier noise in (12) can be written as PY = N s”ePn,p and P/ ~
P

N %€ Py, respectively.

4. Results and discussions
In this section, we apply the modified GN-model to a generic

long-haul hybrid wavelength-division multiplexing and mode-division
multiplexing (WDM-MDM) system with the parameters similar to those
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Table 1
Dispersion coefficient; D [ps/km-nm], differential mode group delay;
DMGD [ns/km], and core effective areas A [um?] for the six LP spatial

modes.
LPOI LPlla LP02 LPZla LPllb LPZ]b
D 25 27.3 -2.3 20.8 27.3 20.8
DMGD 0 6.5 9.9 12 6.5 12
At 80 76 83 86 76 86
Table 2
Calculated values of f,,,, for the six LP spatial modes.
LPOl LPOZ Lplla’ LPllb LPZla’ LPZ]h
LPy, 1.000 0.734 0.661 0.455
LP, 0.731 0.964 0.369 0.335
LP,,, LP,, 0.660 0.369 1.053 0.608
LP,,,, LP,,, 0.455 0.335 0.608 0.930
,2,,L,,L,,L,,i,,,i,,,i,,,L,,i,,,L,,QL,,L,
| | | | | | | | [NEd | ,\
| | | | ,0 | |
| | | |
A | | |
-3 | |
| |
| |
| |
R e e A L R e i
o
=)
e
g-s N
- ¢~ GI-FMF [FMT] "
- O - SI-FMF [FMT] |
6| —0— GI-FMF[SMT] | =~ 7'~ ~ % N
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Fig. 3. Average BER versus average lunch power per mode for different transmission
cases; B2B: back-to-back transmission (dashed-dotted), SSMF: standard single mode
fiber (circles), SI-FMF: step-index few-mode fiber (squares), GI-FMF: graded-index
few-mode fiber (diamonds), SMT: single-mode transmission (solid), FMT: full-mode
transmission (dashed). The PM-QPSK/WDM-MDM system has N, = 11.

in [16]. A step-index few-mode fiber (SI-FMF) is used as an optical
channel for the weak coupling regime. This SI-FMF has a numeri-
cal aperture of 0.2, a core diameter of 12.5 um, and a normalized
frequency of V =~ 5 at a wavelength of 1.55 um. It supports six linearly-
polarized (LP) spatial modes (LPy;, LP;;,, LPgy, LPy;,, LP;jp, LPyjp).
The spatial distributions of these LP modes are shown in Fig. 2(b)
and their dispersion coefficient and DMGD are given in Table 1 [16,
70]. The fiber attenuation coefficient a of 0.22dB/km and the nonlin-
ear coefficient y of 1.4 W-'km™' are the same for all co-propagating
modes. The calculated values of the nonlinear tensors ( Foq = Fopag)
for the different LP modes are listed in Table 2. In addition, we
study a graded-index few-mode fiber (GI-FMF) as the channel for
the strong coupling regime. This GI-FMF supports different Hermitian
Gaussian (HG) modes (HGyy, HGy;, HGy,+HGog, HG ., HGqg, HGy )
corresponding to the six LP modes of the SI-FMF [16]. The GI-FMF
parameters are; fiber attenuation «a, dispersion D, and nonlinear y coef-
ficients of 0.22dB/km, 21.5ps/km -nm, and 1.4 W~'km™!, respectively.
We consider dual polarized-multiplexing quadrature phase-shift keying
modulation with R; = 28.5GBaud, that equals to a net throughput
of 25GBaud and 14% of forward error correction (FEC) overhead.
This corresponds to a WDM-channel bandwidth at the Nyquist border.
EDFAs have 6 dB noise figure and a gain that compensates for the span
loss, i.e., G = ¢2*Ls. The total fiber length is 1000 km with a span length
of 100km. These parameters are selected similar to those in [16] in
order to be able to compare their trends.
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Fig. 3 illustrates the effect of the different nonlinear penalties on
the performance of FMFs based systems. We opt the standard single-
mode fiber (SSMF) as a reference case study with the parameters: a =
0.22dB/km, D =16.7ps/km-nm, and y = 1.3 W~! km™! [61]. Here,
we discuss two transmission cases for each coupling regime in FMFs.
The first one is called single-mode transmission (SMT) corresponding
to turning on the fundamental mode (LPy;) only. The second case
is called full-mode transmission (FMT) corresponding to turning on
all the six co-propagating modes. The bit-error rate (BER) averaged
over all the turning-on modes is depicted as a function of the average
lunch power per mode. In linear region, increasing the average lunch
power enhances the system performance. However, after the average
lunch power reaches a specific level (optimal average lunch power),
the nonlinear interference power becomes significant compared to the
noise power level. Beyond this power, any increase in the lunch power
leads to a degradation of the system performance. This optimal average
lunch power per mode, that achieves the minimum BER (minimal
points on curves) [71], can be formulated in weak coupling regime as

" 97 Legru B2, (G — 1) Fhy
P’Xopx = 272 M f,?,; ' (26)
4y Leff Zq 36‘“’“321,'

[arcsinh(y*) + arcsinh(y~)]

It is proportional to the WDM-channel bandwidth and inversely to
both the nonlinear tensors values and the number of copropagating
modes M. Moreover, the existence of the DMGD increases this optimal
average lunch power value. It does not depend on the overall link
length but on the fiber span length. Also, this power value is affected by
the nonlinearity source-limited cases (SMM and XMM). Furthermore,
in the strong coupling regime, the optimal average lunch power can be
obtained as:

. 87| | Legr o B2, (G — )Fhv

(27)

t’éopt - . 3 3 ’
3M}/2K2L§ff arcsinh (gﬂzLeff’alﬂlei)

For SMT case, the nonlinear interference results from the intramodal
interaction. In GI-FMF based system (strong coupling regime), the
intramodal nonlinear interference is higher than that in SSMF based
system. Moreover, in SI-FMF based system (weak coupling regime), this
intramodal nonlinear interference is lower than that for both GI-FMF
and SSMF based systems. This performance is due to different propaga-
tion properties, i.e., the dispersion coefficient of the fundamental mode
LPy; in SI-FMF based system is high compared to the other two fiber
schemes. This leads to reducing the impact of nonlinearity in SI-FMF
based system. In addition, the intramodal nonlinear penalty is altered
with different fiber effective areas for various fiber schemes. On the
other hand, for FMT case, the nonlinear interference results from both
intra- and inter-modal nonlinear interactions. Thus, the difference in
performance penalty between both FMT and SMT is due the intermodal
nonlinear interference. For FMT case, it is noticed that the GI-FMF
based system suffers more than the SI-FMF based system (taking the
DMGD effect into account). This result is due to the impact of DMGD on
the SI-FMF based system, which reduces the effect of nonlinearity com-
pared to that of GI-FMF based system which is theoretically considered
a fiber scheme with zero-DMGD. Although, the randomly-averaging of
the nonlinear interference in the GI-FMF based system (strong coupling
regime) is greater than that in the SI-FMF based system (weak coupling
regime), the DMGD effect in SI-FMF based system is dominant over
the effect of the randomly-averaging birefringence in the GI-FMF based
system.

Fig. 4 depicts the impact of DMGD and its management on the
performance of SI-FMF based system. The average BER is plotted
versus the average lunch power per mode for different number of co-
propagating (turning-on) modes in SI-FMF (weak coupling regime).
Two propagation systems are investigated: unmanaged-DMGD SI-FMF
(with DMGD values as given in Table 1) and managed-DMGD SI-FMF
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Fig. 4. Average BER versus average lunch power per mode in SI-FMF based system
(weak coupling regime), for different transmission cases; one [SMT] (diamonds), two
(squares), three (circles), and six [FMT] (triangles) modes, B2B: back-to-back trans-
mission (dashed-dotted), for both unmanaged- (solid) and managed-DMGD (dashed)
SI-FMF based system. The PM-QPSK/WDM-MDM system has N, = 11.

based systems. It is shown that, for SMT case, the performance of both
unmanaged- and managed-DMGD propagating systems are identical.
For three co-propagating modes (LPgy;, LP;,, LPy,) case, the optimal
performance of unmanaged-DMGD system is degraded by about “1”
order of magnitude when compared with the managed-DMGD one.
This can be explained as follows. In the managed-DMGD system, the
effect of the low dispersion coefficient of the third mode, LP,, leads to
high nonlinear interference. While, in the unmanaged-DMGD one, the
effect of DMGD of LPy, compensates the effect of its low dispersion
that reduces the overall nonlinear interference. For FMT case, the
performance of unmanaged-DMGD system is better than that of three
co-propagating modes. This performance can be explained as follows.
By turning on the third mode (LPy,), its low dispersion coefficient
results in higher nonlinear interference than that resulting form turning
on one of the modes (LP,,, LP,,,, LPy;p). Thus, the averaging over
six modes results in an averaged BER value lower than that when
turning on only three modes (LPy;, LP,,, LPy,). On the other hand,
the performance of managed-DMGD system is severely degraded when
more than two modes are co-propagating, i.e., M € {3,4,5,6}. In ad-
dition, the average BER performance is approximately unchangeable.
This performance is due to the low dispersion-coefficient of the mode
(LPy,) when removing the DMGD effect. Specifically, for FMT case,
the optimal performance of managed-DMGD system is degraded by
about “1” order of magnitude compared with the unmanaged-DMGD
system. In addition, the optimal power is reduced by about 1 dBm. Thus,
the DMGD-management increases the overall nonlinearity effect com-
pared to the DMGD-unmanaged based system. Fig. 4 shows a potential
agreement with the conclusions in [24]. It is worth mentioning that
DMGD-management is required to reduce the receiver complexity to
achieve more realistic MDM receiver [24,25].

Fig. 5 illustrates the nonlinear penalty due to both intra- and inter-
modal nonlinear interactions on the BER performance for various LP
modes, in SI-FMF (weak coupling regime). The BER is drawn versus the
OSNR (optical signal-to-noise ratio with respect to the ASE noise power
with a reference noise bandwidth of 12.48 GHz (0.1 nm) [16]). Here, the
single-mode transmission [SMT] is related to single transmission of any
LP mode in a SI-FMF. For SMT case, the propagating spatial field suffers
from only the intramodal nonlinearity. But, for FMT case, it suffers
from both the intra- and inter-modal nonlinear interactions. Thus, the
performance penalties between the two transmission cases is related
to the intermodal nonlinear interaction. It is shown that all the modes
(except LPy,) have almost the same intramodal nonlinearity penalty.
The LP, mode has a higher intramodal nonlinear interference because
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OSNR [dB]

Fig. 5. BER versus OSNR for different LP modes in a SI-FMF based system, including
SMT: single-mode transmission (dashed), FMT: full-mode transmission (solid), and B2B:
back-to-back transmission (dashed-dotted). The PM-QPSK/MDM system has N, = 1
and P, = 4dBm.
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Fig. 6. Average BER versus OSNR for different number of co-propagating modes in
GI-FMF, for weak- (solid), strong- (dashed) coupling regimes, and B2B: back-to-back
transmission (dashed-dotted). The PM-QPSK/MDM system has N_, = 1 and P,, = 4dBm.

of its low dispersion coefficient. Moreover, the non-degenerated modes
(LPy; and LPy,) have lower intermodal nonlinear penalties compared
with the degenerated ones (LP;,, and LP,,,). This is due to their degen-
erate nature that causes a high intermodal nonlinear penalty between
LP,,, and LP, , modes. In other words, these degenerated modes are
affected by the same propagation characteristics. Specifically, at the
FEC-requirement (BER = 1073), the FMT case suffers from an OSNR
penalty of about 3 dB compared to the SMT case, for the LP, ¢,y mode.
This OSNR penalty is almost zero for the LPy; and LP, modes.

Fig. 6 illustrates the impact of linear coupling on the system per-
formance between different number of co-propagating modes in both
coupling regimes, regardless of the effect of DMGD. The average BER
is depicted versus OSNR for different number of co-propagating modes
for both weak- and strong coupling in GI-FMF based system. Here
we eliminate the DMGD effect in order to provide a fair comparison
between the two distinct coupling regimes. Clearly, the performance
of strong coupling regime is better than that of the weak coupling one
in GI-FMF based system. The stronger linear mode coupling between
the co-propagating modes, the higher variations in the propagating
optical signal through the GI-FMF. This can be explained as follows.
The nonlinear interference is reduced in the strong coupling GI-FMF
compared to that in the weak coupling case. This nonlinearity reduction
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Fig. 7. Optical average lunch power versus fiber maximum reach for two distinct prop-
agation systems: FMT (solid) and SMT (dashed) in different fibers; unmanaged-DMGD
in SI-FMF (circles), managed-DMGD in SI-FMF (squares), and GI-FMF (diamonds). The
PM-QPSK/WDM-MDM system has N, = 11.

in the strong coupling regime is due to the higher randomly-averaging
birefringence operation compared to the weak coupling case that lacks
the high linear coupling effect. Furthermore, it is shown that the more
number of co-propagating modes, the higher degradation in perfor-
mance of the weak coupling regime compared to that of strong coupling
one. Turning on more co-propagating modes increases the total linear
mode coupling on a specific mode. This leads to an increase in the
nonlinearity compensation because of the high randomly-averaging
birefringence operation of the nonlinear interference power in the
strong coupling regime compared to the weak coupling one. The ana-
lytical results of Figs. 5 and 6 follow same trends in [16]. Thus, it gives
a window of verification for the GN-model in MDM based systems by
comparing our results with those in [16].

Fig. 7 shows the nonlinear penalty on the maximum distance that
can be reached through various SI-FMF and GI-FMF for different co-
propagation systems (SMT and FMT) at a BER of 10~3. It is found that
increasing the optical lunched power increases the achieved maximum
reachable distance. But, after reaching a specific power the nonlinear
interactions among co-propagating modes, this nonlinear interference
power becomes significant compared to the amplifier noise, and then an
optimal maximum reach is achieved. The aforementioned contributions
of different fiber configurations are explored on the maximum reach.
Specifically, the optimal maximum reach that could be achieved in the
unmanaged-DMGD SI-FMF outreaches the GI-FMF case by about 777 km
and 1100km for both SMT and FMT, respectively. On the other hand,
the managed-DMGD SI-FMF case reduces the optimal maximum reach
by about 1350 km and 240 km compared to what can be achieved by the
unmanaged-DMGD SI-FMF and GI-FMF systems, respectively.

5. Conclusions

The nonlinear interference penalty in birefringent few-mode fibers
(FMFs) has been addressed by adapting the GN-model for weak- and
strong-coupling transmission through FMFs based system. After a rigor-
ous mathematical derivation, closed-form expressions for the nonlinear
interference power have been derived. The nonlinearity accumulation
and the DMGD effect through multiple-spans FMFs have been consid-
ered. The results show that the nonlinear penalty becomes significant
beyond an optimal average lunch power that is inversely proportional
to the number of co-propagating modes. The unmanaged-DMGD weak
coupling transmission outperforms the strong coupling one due to the
DMGD impact. On the other hand, regardless of the DMGD impact,
the BER performance of strong coupling transmission is better than
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that of the managed-DMGD weak coupling one. DMGD management
increases the nonlinear penalty level and hence the optimal power is
reduced, which results in a degradation of the corresponding optimal
system performance in DMGD managed based systems. Furthermore,
the birefringence effect in weak coupling-based system is lower than
that in strong coupling based one. Thus, an increase in the level of
the linear mode coupling (i.e., turning-on more modes) leads to a
higher reduction in the nonlinearity of the weak coupling-based system
compared to the strong coupling based one. The same effects of the
nonlinearity on the maximum reach are noticed.
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