StreamProbe: A Novel GPU-based Selection Technique for
Interactive Flow Field Exploration

Mai El-Shehaly, Denis Gra¢anin, Mohamed Gad, Hicham G. Elmongui, and KreSimir Matkovi¢

Fig. 1. Circular probe (left) and box probe (right) used to filter subsets of The Chemical Lagrangian Model of the Stratosphere (CLaMS).

Abstract—Flow visualization aims primarily at the occlusion-free and controllable visual exploration of dense flow fields. Flow fields
are usually visualized using streamlines (steady-state fields) or pathline (time-dependent flows). The challenge is how to highlight
crucial features while reducing clutter to convey relevant trends to the expert user in a timely manner. We present a novel querying
and selection technique for the ad-hoc exploration of dense flow fields. Our goal is to allow the user to create a geometric shape that
acts as a “probe” for the field, displaying only the information that flows through a region covered by the probe. The main contribution
of our technique is that it does not require the construction of expensive hierarchical data structures for pathlines representing the flow.
Unlike other techniques, ours operates directly on pathlines’ vertices and requires no knowledge of line features. We implemented
our technique using GPU-parallelism and new features in OpenGL 4.4 shaders to achieve interactive frame rates.

Index Terms— Scientific visualization, feature selection, parallel algorithms.

1 INTRODUCTION

Dense flow field visualization has been an important research question
in scientific visualization for several decades. Effective visual repre-
sentation is crucial, due to the massive amounts of vector field data
available through scientific simulation and measurement modalities in
many application domains. Examples include velocities of wind and
ocean currents, results of fluid dynamics simulations, magnetic fields,
blood flow, cell migration during embryo development, and compo-
nents of stress and strain in materials. However, existing visualization
techniques have fallen short in addressing the full complexity of the
flow field visualization problem, particularly the issue of clutter re-
duction both in 2- and 3-dimensional fields.

Traditionally, vector fields have been visualized using texture-based
methods (spot noise [7], LIC (Line Integral Convolution) [1]) or
streamlines, i.e. integral curves that are everywhere tangent to the vec-
tor field. The user places seed points to cover the domain densely with
streamlines. However, using denser streamlines to show greater field
strength introduced clutter. More sophisticated 2D seeding strategies
were introduced to reduce this clutter [4] and extended to 3D [6].

A recent technique [2] proposed intelligent opacity optimization
based on CPU-computed importance values on a per line segment ba-
sis. Despite the high quality of images in their results, the optimization

® Mai El-Shehaly is with Virginia Tech, Department of Computer Science.
E-mail: maya70@vt.edu

Manuscript received 31 Mar. 2014; accepted 1 Aug. 2014, date of
publication xx xxx 2014; date of current version xx xxx 2014.

For information on obtaining reprints of this article, please send
e-mail to: tveg@computer.org.

process serializes heavily and the question of whether it is possible to
achieve interactive rates with importance-driven opacity optimization
remains an open one. The calculation of importance values constitutes
an extra preprocessing step that hinders the ability to run the algorithm
in real-time.

Ma et al. [5] proposed the use of information visualization tools to
aid the visualization of scientific 3D flow fields. Their graph-based
approach provides the user with a high level view of relationships
among pathline clusters and spatio-temporal regions, both represented
as graph nodes. The main disadvantage is the poor scalability of their
approach both in terms of computation and storage space due to the
fact that their selection process relies on the construction of two hier-
archical data structures in which field data is organized.

Our work is inspired by the work proposed by Ma et al. [5] which
led us to realize that interactive navigation and filtering through a path-
line set can be of great benefit to the exploration and ROI identifica-
tion process. The main challenge was to do so interactively without
much preprocessing of the data, while keeping memory usage man-
ageable for a GPU to operate on. We describe “StreamProbe”, our
proposed GPU-parallel algorithm that makes use of advances in re-
cent GPU hardware and Graphics libraries to avoid the need for data
preprocessing and expensive data structure construction.

2 PROPOSED APPROACH

We propose a novel streamline/pathline visualization and interaction
technique that makes use of the geometry shader stage of OpenGL’s
shading language, in order to address the problem of filtering and clut-
ter reduction as one of collision detection. The user can select from
a variety of geometric shapes (e.g. a circle, a cylinder, or a bounding
box) to define a probe for the flow field. As the user drags the probe

Vertex Shader

Jareg Alowa iy

<r,alt1, alt2, t1, t2>

Change Probe
Parameters

19594

Si

@

t

Geometry Shader

Discard
Geometry

Fragment Shader

Fig. 2. Workflow of StreamProbe algorithm.

around, every trajectory the probe intersects is visible while all others
are culled out.

Figure 1 shows sample pathline selections given two different
probes centered at the location of the 2011 Puyehue-Cordén Caulle
volcanic eruption [3]. The circular probe on the left has a radius of
three degrees in geographic coordinates. The box probe on the right
allows the user to specify an altitude range for the polylines of interest,
ultimately providing a 3D selection tool.

The intersection algorithm can be implemented by a simple inter-
section test in the geometry shader, like tests used for collision detec-
tion in game development. However, the geometry shader only has
access to a single geometric primitive (a line segment in the case of
line strips) or a maximum of two primitives (in the case of line adja-
cency), so the above approach will only make visible line segments
under the probe. We use new features in OpenGL 4.x that allow us to
create a Shader Storage Buffer Object (SSBO) in GPU memory that
can be used for general read and write access in shaders, which in turn
set visibility flags for the complete line strip geometry.

Figure 2 shows how the created SSBO is accessed by both the ap-
plication and geometry shader sides. Synchronization points imple-
mented as memory barriers are inserted on both sides to ensure that
correct data is being accessed by the different shader invocations. The
flags array is sized according to the number of pathlines in a given
dataset and contains a set of boolean switches, one for every polyline.
The algorithm is designed to perform intersection tests in parallel by
every geometry shader invocation on each line segment independently
and display complete polylines for which any line segment passes the
test. Once a line segment intersects the probe, it will set the flag for
the corresponding polyline in the flags array to “ON” which means that
this pathline should be visible in the final render. A synchronization
point is executed to ensure that all threads have finished their intersec-
tion tests and the switches for the visible pathlines have been set.

Note that there is no race condition here as geometric primitives
that fail the test will not write anything to the shared flags array. Af-
ter synchronization, each primitive will go ahead and read the flag
value for its corresponding polyline, if the value is ON then geometry
for this thread’s vertices are emitted by the geometry shader, other-
wise the primitive is culled. The use of a memory barrier in our ge-
ometry shader is well justified. Due to the highly parallel nature of
OpenGL, several rendering iterations can overlap in time so some ge-
ometry shader invocations can be working on iteration i for example
while others would be processing primitives from iteration i — 1. This
resulted in a flicker effect in our final render. To overcome this prob-
lem, we let the application reset all flags whenever probe parameters
are changed by the user, after which a second synchronization point
was inserted on the application side.

2.1 Results

We tested our approach using Intel Core i7 CPU with 8GB memory
and GeForce GT 740M/PCle/SSE2 GPU with 1792MB total graphics

Table 1. Pathline array size and construction time

No. Pathlines Size in Memory (KB) Time (sec)
600 4.68 3.88
800 6.25 9.25
1800 14.06 9.29
2400 18.75 10.7
3600 28.125 39.8
4800 375 66.5
5400 42.18 36.7
5817 45.44 39.5

Average FPS

o 1000 2000 3000 000 5000 6000 7000

Fig. 3. Average frames per second for different numbers of pathlines.

memory, OpenGL version 4.4.0 and GLSL 4.40 NVIDIA via Cg com-
piler. We use a simple vertex array that contains all the vertices in a
dataset in a vertex buffer on the GPU and a CPU-side vector of struc-
tures that holds indices of the first and last vertices of each streamline.
This vector is constructed by the CPU once before the render. Ta-
ble 1 shows the time needed for the CPU to construct this vector of
structures and its size in memory for different dataset sizes. When
compared to the amount of time it takes to construct streamline hier-
archies [5], our approach is much more scalable and efficient in both
space and time. The average frame rates are invariant to the size of the
data with up to five thousand streamlines (Figure 3). For datasets with
larger size, the frame rate drops but remains interactive.

3 CONCLUSION

We proposed StreamProbe, a parallel scalable approach for stream-
line/pathline exploration and clutter reduction that makes use of recent
advances in general purpose GPU shading. Our technique is very effi-
cient in terms of memory usage and performance and does not rely on
complex data structures. Interactivity and scalability to larger datasets
make StreamProbe a promising tool for interactive exploration of vec-
tor fields. Our future work will focus on applying StreamProbe to
datasets that cannot fit in GPU memory and must be streamed between
CPU and GPU.

REFERENCES

[1] B. Cabral and L. C. Leedom. Imaging vector fields using line integral
convolution. In Proceedings of the 20th Annual Conference on Computer
Graphics and Interactive Techniques, pages 263-270. ACM, 1993.

[2] T. Gunther, C. Rossl, and H. Theisel. Opacity optimization for 3D line
fields. ACM Transactions on Graphics (TOG), 32(4):120, 2013.

[3] IEEE. http://www.viscontest.rwth-aachen.de/index.html, 2014.

[4] B. Jobard and W. Lefer. Multiresolution flow visualization. In Proceed-
ings of the 9th International Conference in Central Europe on Computer
Graphics, Visualization and Digital Interactive, pages 34-35, 2001.

[5] J. Ma, C. Wang, C. Shene, and J. Jiang. A graph-based interface for visual
analytics of 3D streamlines and pathlines. IEEE Transactions on Visual-
ization and Computer Graphics, 2013.

[6] O. Mattausch, T. TheuB3l, H. Hauser, and E. Groller. Strategies for interac-

tive exploration of 3D flow using evenly-spaced illuminated streamlines. In

Proceedings of the 19th Spring Conference on Computer Graphics, pages

213-222. ACM, 2003.

J. J. Van Wijk. Spot noise texture synthesis for data visualization. ACM

SIGGRAPH Computer Graphics Newsletter, 25(4):309-318, 1991.

[7

—

	Introduction
	Proposed Approach
	Results

	Conclusion

