
39

RecurTutor: An Interactive Tutorial for Learning Recursion

SALLY HAMOUDA, Road Island College
STEPHEN H. EDWARDS, Virginia Tech
HICHAM G. ELMONGUI, Alexandria University and Umm Al-�ra University
JEREMY V. ERNST, Virginia Tech
CLIFFORD A. SHAFFER, Virginia Tech

Recursion is one of the most important and hardest topics in lower division computer science courses. As it is an
advanced programming skill, the best way to learn it is through targeted practice exercises. But the best practice
problems are time consuming to manually grade by an instructor. As a consequence, students historically have
completed only a small number of recursion programming exercises as part of their coursework. We present a
new way for teaching such programming skills. Students view examples and visualizations, then practice a
wide variety of automatically assessed, small-scale programming exercises that address the sub-skills required
to learn recursion. �e basic recursion tutorial (RecurTutor) teaches material typically encountered in CS2
courses. Students who used RecurTutor had signi�cantly be�er grades on recursion exam questions than did
students who used typical instruction. Students who experienced RecurTutor spent signi�cantly more time on
solving recursive programming exercises than students who experienced typical instruction, and came out
with a signi�cantly higher con�dence level.

CCS Concepts: •Applied computing→ E-learning;

Additional Key Words and Phrases: Recursion, Misconceptions, Interactive Online Tutorial, eTextbook

ACM Reference format:
SALLY HAMOUDA, STEPHEN H. EDWARDS, HICHAM G. ELMONGUI, JEREMY V. ERNST, and CLIFFORD
A. SHAFFER. 2018. RecurTutor: An Interactive Tutorial for Learning Recursion. ACM Trans. Comput. Educ. 9,
4, Article 39 (March 2018), 25 pages.
DOI: 0000001.0000001

1 INTRODUCTION
Recursion is both one the most important and one of the hardest topics taught in lower division
Computer Science courses [7, 22, 26, 48]. While recursion can be viewed as a concept, in practice it is
expressed in the form of writing or understanding programs. In this work, we present a new tutorial
system for recursion. �e proposed approach is based on allowing students to practice a wide
variety of automatically assessed, small-scale programming, debugging, and non-programming
exercises that address the sub-skills required to learn recursion. Students practice those exercises
within the context of a complete tutorial. What makes our approach novel is that we combine the
necessary technologies to deliver su�cient and relevant practice to be�er learn recursion.

Our recursion tutorial is presented on the form of two collections of modules within the OpenDSA
eTextbook framework [15, 17], and publicly available through the OpenDSA website at h�p:
//opendsa.org. OpenDSA is an open source, community-based project to create a body of materials

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and the
full citation on the �rst page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permi�ed. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior speci�c permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM. 1946-6226/2018/3-ART39 $15.00
DOI: 0000001.0000001

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39. Publication date: March 2018.

http://opendsa.org
http://opendsa.org

39:2 S. Hamouda et al.

and infrastructure to generate interactive, eTextbooks for Data Structures and Algorithms courses
(DSA) at the undergraduate level. OpenDSA’s web-accessible eTextbooks integrate textbook quality
text with algorithm visualizations (AVs) and a rich collection of interactive exercises, implemented
using HTML5 technology. All exercises are assessed automatically with immediate feedback to the
student on whether the exercise was answered correctly. OpenDSA has proved to be successful for
learning procedural content such as how a speci�c algorithm or data structure works [16]. Teaching
procedural content in OpenDSA is done through the use of AVs and practice exercises, where
students demonstrate their understanding of an algorithm by showing pro�ciency with the behavior
of the given algorithm. In particular, OpenDSA makes heavy use of the concept of a pro�ciency
exercise as pioneered by the TRAKLA2 system [31]. OpenDSA has also proved successful for
learning more abstract, analytical material such as basic algorithm analysis topics [13].

Recursion is one of the most di�cult of conceptual programming skills, which is why students
traditionally have so much trouble with it [38]. Students need to learn conceptual programming
skills through techniques that are di�erent from those used to learn procedural content such as
the behavior of an algorithm [29]. We want students to move beyond understanding recursive
examples that they see, to being able to create their own recursive programs. �e best way to
learn such skills is through targeted practice exercises [5, 9]. Unfortunately, practice exercises for
learning programming skills are time consuming to grade manually. As a consequence, students
historically have experienced only a small number of homework and test problems where they
actually write recursive functions, and feedback typically comes only long a�er the student gives
an answer. We address these issues by allowing students to work through a collection of small-scale
programming exercises, designed to address potential misconceptions, and that are automatically
assessed and so provide immediate feedback.

�e key contributions of our research are:

(1) A new teaching approach for recursion based on greater student interaction with material
that directly addresses student misconceptions than has previously been possible.

(2) An analysis to �nd the most common misconceptions related to basic recursion.
(3) Exercises that address these misconceptions.
(4) A study to determine how more practice with recursive algorithms addresses student

misconceptions on recursion.

2 PRIORWORK
Most previous research on teaching recursion has focused on abstract discussions of the recursion
concept and its control �ow [10, 21, 32, 35, 41, 43, 53], comparing recursion to other disciplines [14,
28, 39, 51], new ways to view the concept of recursion [10, 19, 53, 54], and the use of visualization,
animation, and games to help students to understand recursion [3, 8, 12, 20, 23, 24, 27, 44–47, 50,
52, 55].

While some of the previous research includes in-class experiments [3, 21, 41, 47, 52], we found
only two papers that describe experiments resulting in statistically signi�cant evidence that the
proposed teaching methods improve student learning of recursion [47, 49].

Tessler et. al [47] had students play Cargo-Bot to situate learning before they were formally
taught recursion. Cargo-Bot is a video game for the Apple iPad in which users direct a robot
to move crates to a speci�ed goal con�guration. �ey do this by writing recursive programs in
a lightweight visual programming language. �e experimental group played Cargo-Bot before
receiving a lecture on recursion. �e control group received the lecture on recursion and then
played Cargo-Bot. Pre-, mid-, and post-tests assessed the students’ understanding of recursion
in two ways: (1) Students traced a recursive function and determined its return value, and (2)

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39. Publication date: March 2018.

RecurTutor: An Interactive Recursion Tutorial 39:3

Students wrote their own recursive functions to solve a given problem. A t-test showed that the
learning gains from the pre- to mid-tests for the experimental group are greater than those of the
control group for the writing question. However, the Cargo-Bot treatment produced no signi�cant
di�erence in improving students’ abilities to trace the execution of recursive functions. �e authors
did not show the total gain of the pre- to post-test on the two groups, nor compared Cargo-Bot
against typical instruction.

Tung et. al [49] presented a new approach to teaching recursion, using Visualcode. Visualcode is a
visual notation that uses colored expressions and a graphical environment to describe the execution
of Scheme programs. Students taking an introductory programming course were divided into two
groups of 21 students each. Student’s entrance exam scores and prior exam grades were used as
control variables. �e two students with the highest prior exam grades were assigned to block one,
where the two students with the next highest prior exam grades to block two, an so on. �e two
members of each block were randomly assigned to the experimental units. �e experimental group
received instructions using Visualcode, while the control group received instructions without using
Visualcode. A t-test showed that students in the visual group signi�cantly outperformed those who
were in the control group in both evaluation questions and programming questions.

Cha�n et. el [3] presented a game that provides computer science students the opportunity
to write code and perform interactive visualizations to learn about recursion through depth-�rst
search of a binary tree. �ey compared the scores on a pre-test and a post-test given to the students
before and a�er using the game. �eir analysis showed statistically signi�cant evidence that their
proposed teaching methods improve student knowledge of recursion by comparing the pre-test
grades to the post-test grades, but did not compare against typical instruction.

We note that none of these studies adopted the pedagogical model of providing an interactive tuto-
rial combined with practice on programming exercises that address basic recursion misconceptions
with automated assessment and feedback to the students.

3 REQUIREMENTS GATHERING
�is section presents the requirements gathering process for designing the recursion tutorial. First,
we present our �ndings from surveys given to CS instructors regarding their views on how well
students are learning recursion using typical instruction methods. �en, we show the results
of surveys on the time students actually spend on recursion, and their con�dence level when
using typical instruction (those students did not use RecurTutor). We study con�dence because
research shows [11, 33, 42] that con�dence is an essential ingredient to valuable engagement and
participation in adult learning. It has been observed that students with more con�dence were
less stressed, more motivated, and acclimatize be�er to di�erent situations. We also enumerated
the di�erent skills required to write and trace a recursive function as determined by previous
research [2, 4]. We used the list of required skills when building our basic recursion tutorial.

During our requirements gathering process, we analyzed more than 8000 student responses
to basic recursion programming questions and non-programming (tracing) questions that were
wri�en for CS2 exams. From that analysis we found many frequently repeating misconceptions.

3.1 Instructor Surveys
Our goals from conducting instructor surveys were (1) to determine if instructors feel that there is
a need for be�er recursion instruction (universally they agree that there is), and (2) to determine
the operational parameters that any future educational intervention must operate under in terms
of time available for students to study recursion (summary: students ought to be spending more
time on recursion out-of-class than historically they have spent).

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39. Publication date: March 2018.

39:4 S. Hamouda et al.

Table 1. Instructors survey responses on time for recursion

�estion Count Median

Course Level
CS2: 11

CS3 : 3
N/A

Background Required
None: 12

Basic: 2
N/A

Time on Recursion in Class
5 to 10 hrs: 12

Unknown: 2
7 hrs

Time required out-of-class
4 to 7 hrs: 2

8 to 27: 12
10 hrs

Students need more time out-of-class
Yes: 14

No: 0
N/A

Participants were instructors who have at least one year of experience teaching recursion. We
received survey responses from 14 respondents (of 25 contacted) regarding their views on recursion
instruction. �e instructors belong to 6 di�erent institutions in 3 di�erent countries.

�e instructor survey questions were as follows:
(1) Brie�y describe the course that you are answering this survey for. For example, is it a

typical CS1 or CS2 course, or something else?
(2) How much background in recursion do you expect that students will have when they start

this course?
(3) Counting actual contact time in the classroom and lab sessions, how much time during the

semester to you devote to recursion?
(4) Not counting time spent in a class or lab session, how many hours do you think that

the typical student NEEDS to spend on their own to learn and understand the topic of
recursion? Include time spent reading the textbook, course notes, or online materials, and
the time spent working on homework or practice exercises.

(5) Do you think that the typical student in your course is spending the amount of time
necessary to learn and understand recursion?

�e results are shown in Table 1. �e key �ndings from the surveys are that instructors spent a
median of seven hours per semester in class covering recursion, and estimated that students need
to spend a median of ten hours learning and practicing recursion outside of class. �e median of
instructor responses for the number of hours that are needed out of class is ten, with a mean of
eleven hours.

3.2 Student Surveys
Our goals from conducting student surveys were to determine (1) the time that students actually
spend on recursion and (2) their con�dence level as a result of receiving typical instruction on
recursion. �e participants were students enrolled in CS2114 So�ware Design and Data Structures

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39. Publication date: March 2018.

RecurTutor: An Interactive Recursion Tutorial 39:5

Table 2. Spring 2014 students survey responses on time for recursion

�estion Median

Time on Recursion out-of-class 4 hrs

Time on Coding Bat 1.9 hrs

Con�dence level 2.5

during the Spring 2014 semester at Virginia Tech. �e students had not used our recursion tutorial,
but had been assigned recursion programming exercises from Coding Bat [34].

During the last lab session of CS2114, students were given a paper survey regarding their
experience with learning recursion. A total of 54 out of 157 students �lled in the survey and
returned it to the teaching assistant at the end of the lab. �e questions were as follows:

(1) Not counting time spent in class or lab, how many hours have you spent this semester on
the topic of recursion? Include time that you spent reading the textbook, course notes, or
online materials, and time spent working on homework problems involving recursion.

(2) How many hours did you spent on solving the Coding Bat exercises on recursion?
(3) On a scale of 1-5, rate your con�dence level about your mastery of recursion. (1 being least

con�dent to 5 being most con�dent)
�e results are shown in Table 2. �e key �ndings from the surveys indicate that the students

spent a median total of four hours on recursion outside of class, including about two hours on
solving recursion programming exercises in Coding Bat for homework. �is contrasts with the
instructors’ recommendation to spend ten hours outside of class.

From the survey results, we con�rm that students do not spend nearly the time that instruc-
tors estimate to be required out-of-class for practicing recursion. �is con�rms the instructors’
unanimous belief that students were not spending enough time practicing recursion.

3.3 Skills required to read and write recursive code
Previous studies split programming skills into tracing and writing [30]. Previous approaches to
teaching recursion have asked students to solve both code writing and code tracing problems
on tests [3, 21, 41, 47, 52]. However, prior research on teaching recursion has not considered the
fact that there are di�erences between the skills needed for code writing versus code tracing. We
address these di�erences in this section.

We agree with Michelene et al. [4] that a successful approach to writing a recursive function
comes from thinking in a top-down manner. Successful programmers do not worry about how
the recursive call solves the sub-problem. We teach students to simply accept that it will solve it
correctly, and to use this result to correctly solve the original problem. For example, if the student
is asked to compute n! recursively, she should think in the following way:

• Know that the mathematical function for computing the factorial is fact(n) = n ∗ fact(n − 1).
• �e crucial observation is to not worry about how recursion computes fact(n − 1), simply

multiply whatever this is by n.
• Know that the simplest case is fact(1) = 1. �e recursive calls stop when n reaches 1.

On the other hand, when it is required to read or trace a recursive function, we agree with
Bhuiyan et al. [2] that the most useful approach to think about it with a stack model. �is is
traditionally how instructors �rst present the recursive process. �at means that each call to the

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39. Publication date: March 2018.

39:6 S. Hamouda et al.

recursive function can be viewed as the opening of a new box and the prior box is stacked until a
base case is reached. �e corresponding returns from the function calls are the closures of boxes
on a last-in-�rst-out basis.

It is important to recognize that these two approaches are quite di�erent ways of thinking about
recursion. Writing a function is best done by ignoring the details of recursive processing, focusing
solely on the result of the recursive call. It is just as if a call was being made to some library function
that the programmer has no information about other than its outcome. In contrast, tracing the
behavior of an unknown recursive function in order to deduce its behavior requires the opposite
mode of thinking, where the details of the process are traced in the same way that the computer
would execute the recursive function calls.

3.4 Driving Hypothesis
We hypothesize that di�cult programming concepts like recursion are best learned by an approach
that involves a lot of practice exercises, and that students will achieve a be�er understanding of
recursion through this approach. Since writing a recursive function involves a di�erent thought
process from understanding the behavior of a recursive function, practice in both is needed.

From our initial surveys we have found that the traditional instructional process, as reported
by the instructors, failed to get students to spend as much time on recursion as the instructors
believed was necessary for proper understanding of the material. So one goal for our tutorial is to
force more constructive engagement with the material. �e result will be more time spent, but this
is a side e�ect, not the direct goal. �e instructor and student survey results set requirements for
the basic recursion tutorial’s estimates of the time that students will need to spend on recursion
out of class (a median of 10 hours) in order to achieve proper learning. To get students to engage
more productively, we have them do many practice exercises, that are designed to address their
misconceptions. �e recognition that there are di�erences in the skills required to write and to
understand a recursive function also sets a requirement on how the recursion tutorial should be
organized and ordered. Explicit practice is needed with both aspects of the process.

3.5 Identify Basic Recursion Misconceptions
Instructors need to understand subject ma�er deeply and �exibly so that they can help students
create useful mental maps, relate various ideas to each other, and address misconceptions [36]. �at
is why we took as a prerequisite for building the recursion tutorial to �rst �nd common student
misconceptions.

To generate our list of misconceptions, we began with reviewing the existing research literature [1,
20, 21, 40, 41]. We then analyzed a large corpus of student answers to exam questions to further
re�ne our list. We analyzed approximately 8000 responses to recursion questions given to students
over three semesters in pre-test, post-test, midterm, or �nal exams of a traditional CS2 course.
Table 3 shows the number of students and the number of recursion questions for each test.

We have chosen to present our �ndings from the analysis of student answers and research
literature as a list of misconceptions and di�culties, inspired by Ragonis and Ben Ari’s work on
object oriented programming [37]. A misconception is a mistaken idea or view resulting from a
misunderstanding of something. Di�culty here means the empirically observed inability to do
something. It is possible that a student exhibits a di�culty due to an underlying misconception
(possibly one already listed here or one so far unidenti�ed). A di�culty might also result because
the student lacks some skill or knowledge.

We categorize the di�culties and misconceptions by related topic. We give each an identifying
tag, to be used in our analysis presented in Section 5.3. We also indicate our source for each item,

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39. Publication date: March 2018.

RecurTutor: An Interactive Recursion Tutorial 39:7

Table 3. Number of students and number of recursion questions per exam.

Exam Term Students �estions

Pre-test Sp14 152 10

Mid-term SP14 160 5

Pre-test F14 178 8

Mid-term F14 216 4

Post-test F14 203 8

Pre-test Sp15 166 5

Mid-term SP15 43 5

Final SP15 167 4

whether from the literature or from a type of question in our body of student responses. We note
that the literature tends not to give su�ciently precise descriptions of misconceptions or di�culties
for this purpose. We originally came up with a longer list than is shown here, but some items
were pruned based on the advice of the instructor surveys or their lack of representation in actual
student responses.

Backward Flow.
(1) Misconception: No statements that appear a�er the recursive call will execute. �is

misconception was found in student answers to tracing questions that had code a�er the
recursive function. �is misconception was also found in [20, 40, 41]. [BFneverExecute]

(2) Misconception: Statements that appear a�er the recursive call will execute before the
recursive call is executed. �is misconception was found in student answers to tracing
questions that had code a�er the recursive function. [BFexecuteBefore]

In�nite recursion.
(1) Misconception: If there is a base case then it will always execute. If the recursive call

does not reduce the problem to the base case, then the base case will return and that will
terminate the recursive method. �is misconception was found in student answers to
tracing questions that had code a�er the recursive function. [In�niteExecution]

Recursive call.
(1) Di�culty: Cannot formulate a recursive call that eventually reaches the base case. �is

misconception was found in student answers to writing and code completion questions.
[RCwrite]

(2) Misconception: A value will be returned from a recursive call even if the return keyword
is omi�ed. �is misconception was found in student answers to code writing questions.
[RCnoReturnRequired]

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39. Publication date: March 2018.

39:8 S. Hamouda et al.

(3) Misconception: All recursive functions require the return keyword (even when the recur-
sive function does not return a value). �is misconception was found in student answers to
code writing questions. [RCreturnIsRequired]

Base case.
(1) Misconception: �e base case must appear before the recursive call. �e base case must be

in the if condition while the recursive call has to be in the else condition or an if else
condition. (�e student therefore has di�culty recognizing whether the recursive call or
the base case is executed when tracing code.) �is misconception was found in student
answers to code tracing questions. [BCbeforeRecursiveCase]

(2) Misconception: �e base case action must always return a constant, not a variable. �is
misconception was found in student answers to code completion questions. [BCactionRe-
turnConstant]

(3) Misconception: �e base case condition must always check a variable against a constant,
not against another variable. �is misconception was found in student answers to code
completion questions. [BCcheckAganistConstant]

(4) Di�culty: Cannot write a correct base case. �e student is given a description for what
a function should do, and an incomplete implementation for the function with a missing
or incorrect base case. �e student has di�culty coming up with a correct base case to
complete the implementation. �is misconception was found in student answers to code
writing questions. [BCwrite]

(5) Di�culty: Cannot properly evaluate the base case, such that the student believes that the
recursive method executes one more or one less time than it should. �is misconception
was found in student answers to code tracing questions. �is misconception was also found
in [20, 40]. [BCevaluation]

Updating variables.
(1) Misconception: Prior to the recursive call, we can (within the recursive function) de�ne a

“global” variable that is initialized once and updates when each recursive call is executed.
�is misconception was found in student answers to code writing questions. [GlobalVari-
able]

A�er this phase of identifying misconceptions and di�culties from the literature and from our
analysis of the corpus of student responses on exams, we then gathered feedback from a group
of 14 instructors regarding their views on the importance of the items on our list, and soliciting
other possible misconceptions and di�culties that we might have missed. �is process of gathering
instructor input was done for two reasons: both to help to help orient the tutorial material to address
the right misconceptions and di�culties, and also as a step in developing a Concept Inventory
on recursion [25]. �e recursion misconceptions as identi�ed helped us to frame the exercises,
visualizations, and prose in the tutorial so as to directly target those misconceptions.

4 RECURTUTOR
From our initial surveys we have found that most instructors acknowledge that their traditional
instructional practice did not result in students that are adequately pro�cient with recursion, and
they recognize speci�cally that students do not spend enough time or get enough practice with
recursion. We agree that “practice makes perfect”, and that the best known way to learn a skill is to
work on many practice problems [5, 9]. Our analysis of the research literature and a large corpus
of student answers to exam questions revealed a collection of speci�c misconceptions that are
more-or-less common for students. �us the key goal for our tutorial was to increase the amount

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39. Publication date: March 2018.

RecurTutor: An Interactive Recursion Tutorial 39:9

of active practice that students get, especially practice on a reasonable collection of tracing and
programming exercises, with content and exercises designed to explicitly address the identi�ed
common misconceptions and di�culties.

A speci�c issue to be addressed in the tutorial relates to our recognition that there are at least
two distinct skills required to learn recursion: writing and tracing. We observe that if a student is
asked to write a recursive function, a successful way is to not worry about how the recursive call
solves the sub-problem. On the other hand, if it is required to read or trace a recursive function,
then the student will need to think in a bo�om-up manner. �at means the student will evaluate
the base case and work backward until reaching to the required function call.

We have developed a recursion tutorial based on these principles, named RecurTutor. RecurTu-
tor is presented to users as a chapter (where a chapter is de�ned as a series of modules) within the
OpenDSA eTextbook system. Figure 1 shows RecurTutor as Chapter 6 in the eTextbook for a CS2
course (named CS2114 in the �gures). An example module from RecurTutor is shown in Figure 2.

RecurTutor provides automatic assessment for its practice exercises, giving immediate feedback
without pu�ing additional grading burden on the instructor. RecurTutor exposes students to
interactive exercises that �ll in the gap between the amount of practice required by the instructors
and the practice that students actually get. �e practice exercises address the known student mis-
conceptions and di�culties, while remaining within the time expectations expressed by instructors
when surveyed. RecurTutor initially had 21 programming exercises, which we later reduced to 20
because one was reported by students to be unreasonably di�cult. Each programming exercise
asks the student to complete a given recursive function by writing the base case, recursive call,
recursive case, or a combination of these. In some cases the student will write a complete recursive
function given only its signature and a functional speci�cation.

Figures 3 and 4 show examples of programming exercises. Feedback for the programming
exercises is of three types:

• Correct: When the answer is perfectly correct in that it matches the output from the model
answer on the test cases.
• Incorrect: When there are no syntax errors but the answer is not correct. �e answer may

be incorrect because it did not pass the unit tests or because it lead to in�nite recursion.
�e feedback message gives information about why the answer is incorrect.
• Syntax error: When there are syntax errors. A full listing of the errors generated by the

compiler is shown to the student.
Students can a�empt an exercise as many times as they want, and they are given credit when they
get a correct solution.

In addition to the 20 programming exercises, there are also 20 tracing exercises that ask students
to spot an error in a recursive function, �x an error, or provide the output/return for a given
recursive function. Figures 5 and 6 shows example of tracing exercises.

Along with the various exercises, RecurTutor also includes a series of ten example presentations
that are intended to help students overcome the various misconceptions and di�culties. �e two
slideshows that appear in Figure 2 are examples of such example presentations.

Descriptions of the various exercises and examples, along with details on how each exercise
relates to the items on the misconceptions and di�culty list are presented in [25]. �e example
presentations in the tutorials explicitly address six of the twelve misconceptions and di�culties
on our list. �ere are multiple exercises that explicitly relate to each of the misconceptions or
di�culties, except for the two about whether the return keyword is required to properly return a
value. �is misconception is implicitly addressed by many of the programming exercises, as this
keyword must be used correctly in order for the recursive function to work.

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39. Publication date: March 2018.

39:10 S. Hamouda et al.

Fig. 1. RecurTutor in the CS2114 eTextbook

5 RECURTUTOR’S IMPACT ON STUDENTS
In this section, we present the results from our evaluation of the use of RecurTutor in a CS2 course
at Virginia Tech. We compare the outcomes of a control group (sections of the CS2114 course
given without using RecurTutor) against an intervention group (sections of the CS2114 course that
used RecurTutor). Speci�cally, we compare the outcomes on the �nal exams for these sections,
and the results from end-of-semester surveys given to the students. Control and experimental

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39. Publication date: March 2018.

RecurTutor: An Interactive Recursion Tutorial 39:11

Fig. 2. An example of a lesson (module) in RecurTutor

groups were taught by the same instructor, and come from the same background with respect to
their prerequisite courses. �e materials taught in class and labs were the same. Students were not
required to have background knowledge on recursion or college-level math before this course.

5.1 Student Confidence and Time Spent Practicing Recursion
In this section, we compare student survey data collected during Spring 2015 (the intervention
groups) as compared to student survey data collected during Spring 2014 (the control groups).
Comparing those results to the Spring 2015 surveys shows the e�ect of using RecurTutor on

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39. Publication date: March 2018.

39:12 S. Hamouda et al.

Fig. 3. Code completion programming exercise with feedback indicating the correct answer.

Fig. 4. Code completion programming exercise with feedback on a syntax error.

students’ con�dence level and time spent on recursion. �e same survey was given to the control
and the intervention group, using the same delivery method.

�e participants of the intervention group were students enrolled in CS2114 Data Structures
and So�ware Design during Spring 2015 at Virginia Tech. CS2114 has typical CS2 content, and
is a programming-intensive course with two hours of programming labs each week. OpenDSA
exercises were used as weekly mandatory homework assignments. RecurTutor exercises made up

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39. Publication date: March 2018.

RecurTutor: An Interactive Recursion Tutorial 39:13

Fig. 5. Fill-in-the-blank style tracing exercise.

Fig. 6. Multiple choice tracing exercise.

three of those assignments. About 80% of the students voluntarily did additional recursion practice
using RecurTutor to prepare for midterms and the �nal exam.

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39. Publication date: March 2018.

39:14 S. Hamouda et al.

Table 4. Spring 2015 students survey responses on time on recursion

�estion Mean

Time on Recursion out-of-class 7.3 hrs

Time reading RecurTutor 1.65 hrs

Time on RecurTutor Exercises 3.3 hrs

Con�dence level 3.06

Table 5. A t-test comparing the time spent on recursion for Spring 2015 versus Spring 2014

Sp15 (N=83) Sp14 (N=54) p-value

mean std dev. mean std dev.
Time on Recursion (hrs) 7.3 7.4 4 4.1 0.1385
Time on Prog Ex (hrs) 3.3 3.4 1.9 1.1 0.0123∗

Con�dence level 3.06 0.97 2.5 1.09 0.0429∗

* = statistically signi�cant

During the last lab session for CS2114, students were given a paper survey regarding their
experience with learning recursion. A total of 83 students completed the survey. Students were
not aware prior to its administration that they will be surveyed at the end of the semester. �e
questions were identical to those used in the 2014 survey, shown in Section 3.2.

To see the e�ect of RecurTutor, using an unpaired t-test (α = 0.05), Spring 2015 survey responses
were compared to Spring 2014 survey responses. We veri�ed that the distributions are normal
before performing the t-test. �e key information from the Spring 2015 survey is shown in Table 4.
Table 5 shows the results of the t-test comparing the two survey groups.

�e �ndings from the t-test can be summarized as follows:
(1) �e total time spent on recursion was not signi�cantly increased when RecurTutor is used.
(2) Comparing the time spent on solving CodingBat to the time spent on solving RecurTutor

programming exercises, the time spent on RecurTutor exercises is signi�cantly more.
(3) Comparing the con�dence level of students who used typical instruction for studying

recursion to students who used RecurTutor, the student’s con�dence level a�er using
RecurTutor is signi�cantly greater.

We checked our interaction log data to verify that the self-reported times on the survey are
representative of time that the students actually spent on the tutorial. For the experimental group,
we have computed time on task from student logs. �e numbers received from the log analysis
were reasonably close to the self reported ones (median of 6.3 hours computed from the log analysis
versus 7 hours self reported). �e system used by the control group did not collect log data, so
it was hard to independently verify the self-reported times from the control group. But there is
no reason to expect that these are less reliable than the self-reported times from the intervention
group.

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39. Publication date: March 2018.

RecurTutor: An Interactive Recursion Tutorial 39:15

Table 6. Chi-Square for recursion questions comparing control vs. intervention group: Spring 2014 (N = 157)
versus Spring 2015 (N = 168)

Problem Spring 2014 Spring 2015
% correct % correct p-value

Tracing 88.64 98.36 0.0001∗

In�nite Recursion 95.45 99.40 0.0001∗

Code Completion 70.7 82.74 0.0001∗

* = statistically signi�cant

Table 7. Chi-Square for recursion questions comparing control vs. intervention group: Fall 2014 (N = 215)
versus Spring 2015 (N = 168)

Problem Fall 2014 Spring 2015
% correct % correct p-value

Writing 59.7 69.7 0.0001∗

Tracing 93.99 98.36 0.0001∗

In�nite Recursion 97.21 99.40 0.019
Code Completion 83.25 82.74 0.5944

* = statistically signi�cant

5.2 Exam Scores
We measured the relative performance of the two groups by comparing the post-test (exam)
scores for the students who did not use RecurTutor (the control group) versus who did use it (the
intervention group). �e intervention group were students enrolled in CS2114 Data Structures and
So�ware Design course during Spring 2015 (n = 168) at Virginia Tech who a�ended the �nal exam
of the course. We compared the intervention group’s �nal exam scores against students in two
sections from Fall 2014 that did not use RecurTutor (the control groups, n = 215 and n = 157).

During both Fall 2014 and Spring 2015, the participants were given the same set of four questions
on recursion on the �nal exam. Below, we have compared the students scores on each recursion
question between the following pairs: Spring 2014 versus Spring 2015, Fall 2014 versus Spring 2015,
and Spring 2014 versus Fall 2014. �e Fall 2014 and Spring 2015 students were given the same four
questions on recursion. Spring 2014 students were given only three out of those four questions.

Our �rst analysis counts each question as being correct or not correct. Tables 6, 7, and 8 show
the results of the Chi-square analysis comparing the fractions of students who got each question
correct for Spring 2014 (control) versus Spring 2015 (intervention), Fall 2014 (control) versus Spring
2015 (intervention), and Spring 2014 (control) vs. Fall 2014 (control), respectively. �ese results
are consistent with improved performance by students who used RecurTutor, as will be discussed
further. However, the signi�cant di�erence between the two control groups on the Code Completion
question is cause for concern. As will be discussed below, this turned out to be a poor question.

While the chi-square test results were good in terms of showing that the intervention has
a statistically signi�cant e�ect, we would like to compute the e�ect size of the intervention.

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39. Publication date: March 2018.

39:16 S. Hamouda et al.

Table 8. Chi-Square for recursion questions comparing two control groups: Spring 2014 (N = 157) versus Fall
2014 (N = 215)

Spring 2014 Fall 2014
% correct % correct p-value

Tracing 88.64 93.99 0.3997
In�nite Recursion 95.45 97.21 0.3367
Code Completion 70.70 83.25 0.005∗

* = statistically signi�cant

Table 9. Control versus Intervention Group t-test summary results

�estion p-value E�ect Size Control Mean Intervention Mean
Writing 0.0003∗ 0.386 59.70 69.70
Tracing 0.0018∗ 0.471 91.22 98.36
Inf Rec 0.0433∗ 0.253 96.30 99.40

* = statistically signi�cant

Unfortunately, this approach does not give us standard deviations to work with. So we reanalyzed
the data by assigning correct answers to have a score of 100 and an incorrect answer to have a score
of 0. Note that for certain questions, we could also apply partial credit scores (for the chi-square
analysis, we had assigned student answers to correct or incorrect based on a score above or below
50%), and this explains slight di�erences in the means versus % correct values in the tables.

A t-test was used to compare the RecurTutor group to the control groups. �e t-test results were
the same as the chi-square analysis in terms of signi�cance. �e performance results are shown
in Table 9. From the table, we �nd again that there was a statistically signi�cant improvement
in performance for the RecurTutor group on each of the three questions. We note that the code
writing question had only been given to one of the two control sections, so for that line of the table,
n = 215 instead of n = 367.

We have also computed the e�ect sizes using Cohen’s d formula. For the writing question, the
e�ect size is 0.386, for the tracing question, 0.471, and for the in�nite recursion question, 0.253.
�ese are considered moderate e�ect sizes. Note that while coercing the dichotomous data into
scores for computing t-tests gives us values for standard deviation, so that we can calculate e�ect
sizes, doing this exaggerates the standard deviation and so undervalues the actual e�ect size that
we calculate.

�e �ndings from the statistical analysis can be summarized as follows.
(1) �e students who used RecurTutor did signi�cantly be�er on the writing, tracing, and

in�nite recursion questions than the students who did not.
(2) �e students who used RecurTutor did signi�cantly be�er on the in�nite recursion question

in one semester than the students who did not. �e mean of this question is already over
95%, so it is hard to see improvements. Even on the pre-test, the question’s mean score was
91.55%.

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39. Publication date: March 2018.

RecurTutor: An Interactive Recursion Tutorial 39:17

Fig. 7. Misconceptions covered by CodingBat and RecurTutor

(3) �e code completion question that was originally used was not a useful question. First,
it gave inconsistent results between the two pre-intervention groups studied in Spring
2014 and Fall 2014. It also turned out not to be representative of the type of behavior
that students would encounter when writing actual recursive functions, and did not test
misconceptions that we had found in the actual body of student responses.

(4) For the code tracing and in�nite recursion questions, student scores did not signi�cantly
di�er between the two control sections when using the typical instruction. As these were
both control groups with similar instruction, we do not expect to see a signi�cant di�erence
in scores. We interpret this as support for the hypothesis that using RecurTutor was the
reason for the improved scores.

5.3 Treatment di�erences between the control and the experimental groups
In this section we will address the main treatment di�erences between the control group and the
experimental group. Any of these di�erences or a combination of them could be contributing to
the enhancement of student scores, and so di�erences between them represent potential threats to
validity that requires future investigation.

(1) Di�erences between the CodingBat exercises and RecurTutor exercises: Table 10 shows
the main di�erences between CodingBat recursion exercises solved by the control group
and RecurTutor exercises solved by the experimental group. Here, “level of di�culty” is
determined from student scores on previous uses of these questions in exams. An “idea”
in this table means a requirement. For example, a question that asks the student to write
a recursive function that counts the number of a’s in a word, has the same idea as an
exercise that asks the student to write a recursive function to count the number of c’s in a

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39. Publication date: March 2018.

39:18 S. Hamouda et al.

Table 10. Di�erences between CodingBat recursion exercises and RecurTutor exercises

Factor CodingBat RecurTutor

Variety of Writing Exercises Ideas 10 ideas 19 ideas

Types of Exercises Writing Writing and Tracing

Level of Di�culty Easy to Medium Easy to Hard

Train students on sub-skills and misconceptions? No Yes

Table 11. Di�iculty and discrimination indices computed by ltm package

�estion Di�culty Index Discrimination Index

Writing -0.30 1.05

Tracing -1.63 4.52

In�nite Recursion -1.24 0.96

word. Figure 7 shows the misconceptions covered by both CodingBat and RecurTutor. We
see from the �gure that CodingBat only covers 30% of the misconceptions that we have
identi�ed as being encountered by typical students.

(2) �e time spent on solving the exercises: �e time spent on solving the RecurTutor Exercises
was signi�cantly more than the time spent on solving the CodingBat exercises. However,
we do not expect that simply spending more time with the CodingBat questions will
improve performance, given that CodingBat only covers a subset of the skills necessary for
pro�ciency with recursion.

(3) �e style of the questions used on the exams to measure student understanding of recursion:
For the writing question used in the exam, we consider it a medium di�culty level question.
We believe it does not have a speci�c style that is more similar to RecurTutor exercises
than to CodingBat, or vice versa. For the other two questions, both are considered to be
tracing questions, while CodingBat exercises are all writing exercises. So the enhancement
in the performance in those questions, although it was not of a big e�ect size, could be
because students were trained on tracing exercises in RecurTutor.

5.4 Exam�estions Item analysis
We have conducted an item analysis for the exam questions that we used to measure student
performance on recursion (on code writing, code tracing, and in�nite recursion) [6]. �e purpose
of doing item analysis is to know if the exam questions that we used can correctly predict student
ability on recursion.

We have used the ltm∗ R package to perform the item analysis. We used the two-parameter
logistic model, which takes into consideration the discrimination and the di�culty. Table 11 shows
the di�culty and discrimination indices computed by ltm.

We mapped the discrimination index computed by ltm to percentages (as computed by Moodle)
to be more understandable. �e questions all have a discrimination index above 50 (55, 57, and
∗h�ps://cran.r-project.org/web/packages/ltm/

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39. Publication date: March 2018.

RecurTutor: An Interactive Recursion Tutorial 39:19

52, respectively), which is considered as having good ability to discriminate the skill level of the
students. �e fourth question, on code completion, had a discrimination index below 40, which is
considered only fair. It also turns out not to match any of the widely held misconceptions that we
have identi�ed on basic recursion. It is also the question that was problematic in the sense that the
two control groups had signi�cantly di�erent scores. For these reasons we exclude it from further
consideration. �e student ability measures are the scores of these three questions, which appeared
on the �nal exam.

We then performed a reliability measure on the remaining three questions together as a test,
with a resulting Cronbach α > .9, which indicates a highly reliable test for the level of knowledge.

As a validity check, we wanted to see if be�er performance on the recursion questions in the
exam correlated with be�er performance on the individual recursion questions. We evaluated
question (item) quality by constructing item response curves (IRCs) using the ltm package. �e IRCs
for the three exam questions (tracing, writing, and in�nite recursion) are shown in Figure 8. �e
IRC demonstrates the desired correlation between conceptual knowledge and item performance for
the three items. So as the student ability increases, the probability of solving the question correctly
increases as well. As shown in the IRC, the tracing question is considered to be easier than the
other two questions, since students with less ability have a higher probability to get it right than
the other two questions.

Fig. 8. Item response curves for the questions used to measure student performance on recursion

6 PERFORMANCE ON TUTORIAL EXERCISES VS. PERFORMANCE ON EXAMS
In this section we present �ndings regarding relationships between student performance on tutorial
exercises and later success on recursive writing and tracing questions on the �nal exam, within
each quartile. In particular, we examine the relationships among students of approximately equal
performance levels (as de�ned by being in the same quartile). Within each quartile, we want to see
if the number of writing or tracing exercises, or both, solved by the student can predict his or her
score on the recursive writing or tracing questions on the �nal exam, or overall exam scores.

We grouped students into quartiles by sum of scores over all semester exams (and so are believed
to be of roughly equal pro�ciency with the course material, aside from the independent variable).
�artile A represents students with scores above the 75th percentile; �artile B represents students
with scores between the 50th and the 75th percentile; �artile C represents students with scores
between the 25th and the 50th percentile; and �artile D represents students who performed below
the 25th percentile.

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39. Publication date: March 2018.

39:20 S. Hamouda et al.

Table 12. MANOVA within quartiles to see if the number of tracing exercises or writing exercises completed
predict performance on final exam writing question.

�artile Prob > F for # of Writing Exs Prob > F for # of Tracing Exs

A 0.0379* 0.0029*

B 0.0052* 0.0004*

C 0.0058* <0.0001*

D 0.0049* <0.0001*

* = statistically signi�cant

We have done a multiple multivariate analysis of variance (MANOVA), where we used the student
quartile, the number of writing exercises completed, and the number of tracing exercises completed
as the independent variables. �e dependent variable is one of the following: the recursion writing
question score in the �nal exam, the recursion tracing question score in the �nal exam, or the
sum of all exam scores over the semester. We are looking to determine if there is a relationship
between writing and/or tracing performance on RecurTutor on the one hand, and later success on
performance on the other.

Table 12 shows within each quartile how well the number of writing or tracing exercises com-
pleted by a student (as a performance measure) can predict their performance in the writing
question in the �nal exam. Table 12 shows that, for each quartile group, the number of writing
exercises solved by the student signi�cantly predict his or her performance on the writing question.
It also shows that, for all quartiles, the number of tracing exercises signi�cantly predict student
performance on the writing question. Low performing students had more statistically signi�cant
correlation between the number of tracing exercises solved and the writing question score.

We have repeated the MANOVA, but this time to answer the following question: For students of
similar ability level, does performance on tracing exercises or writing exercises predict performance
on the �nal exam tracing question? Table 13 shows that the number of writing exercises solved by
the student did not predict student performance on the tracing question in any of the quartiles.
Table 13 shows that the number of tracing exercises signi�cantly predicts student performance
on the tracing question in all quartiles except for the top quartile. Low performing students who
solved more tracing exercises had a be�er tracing question score in the �nal exam. �e lowest
performing student quartile had the smallest p-value.

We then performed MANOVA to answer the question: For students of similar ability level, does
performance on tracing exercises or writing exercises predict performance on overall exam score?
Table 13 shows that the number of writing exercises solved by the student did not predict student
performance on the overall exam scores in any of the quartiles. Also the number of tracing exercises
did not predict student performance on the overall exam scores in any of the quartiles.

�e MANOVA analysis shows that the number of writing and tracing exercises completed by a
student can predict his or her score on the recursive writing question on the �nal exam, and the
number of the tracing exercises solved by a student can predict student tracing score in the �nal
exam for students belonging to quartiles B, C, and D but not for quartile A, which has students
with the highest performance. �at supports our driving hypothesis presented in Section 3.4. We
hypothesize that student performance in recursion, measured by the scores on recursion questions,
can be enhanced by doing more practice. We can see that the number of tracing exercises completed

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39. Publication date: March 2018.

RecurTutor: An Interactive Recursion Tutorial 39:21

Table 13. MANOVA within quartiles to see if the number of tracing exercises or writing exercises predict
performance on final exam tracing question

�artile Prob > F for # of Writing Exs Prob > F for # of Tracing Exs

A 0.341 0.07

B 0.125 0.009*

C 0.048 0.001*

D 0.054 0.0001*

* = statistically signi�cant

Table 14. MANOVA within quartiles to see if the number of tracing exercises or writing exercises predict
performance on overall exam scores

�artile Prob > F for # of Writing Exs Prob > F for # of Tracing Exs

A 0.759 0.285

B 0.110 0.668

C 0.552 0.229

D 0.526 0.162

* = statistically signi�cant

had the greatest impact on the writing and tracing question scores. �e performance on the writing
and tracing exercises of the tutorial did not predict the overall exam scores. �is result gives support
to the claim that enhancement of the scores on the writing and tracing questions in the �nal exam
was actually caused by practicing more on the tutorial, rather than related to some other systematic
di�erence among the students in that quartile.

We performed a linear regression analysis to see if the number of tracing and writing exercises
solved by the student can predict the overall exam score, or the writing and tracing questions scores,
and which quartile has the strongest prediction. We have checked the p-values that tests whether
the null hypothesis that the coe�cients are equal to 0 for the linear regression between the number
of writing exercises solved by student and overall exam scores, the number of writing exercises
solved and the writing score, and the number of writing exercises and the tracing question scores.
All p-values were signi�cantly low, which means that changes in the predictor are associated with
changes in the response variable. In our case, it emphasizes that the number of writing and tracing
exercises solved by a student can predict student total of exam scores, �nal exam recursive writing
question score, and �nal exam recursive tracing question score.

Table 15 shows that the highest R-squared value (determination coe�cient) was between the
number of tracing exercises solved and the writing question score, which was greater than that
between the the number of writing exercises solved and the writing question. We believe this result
suggests that the misconceptions covered by the tracing exercises support student writing skills.
�is still does not explain why practicing writing exercises does not have a greater impact on the

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39. Publication date: March 2018.

39:22 S. Hamouda et al.

Table 15. R-square for the linear regression results between the number of writing exercises and tracing
exercises solved by student and overall exam scores, writing and tracing question scores

Score Type # of Writing Exs # of Tracing Exs

Overall exam 0.459 0.26

Writing question 0.38 0.64

Tracing question 0.17 0.52

Table 16. Coe�icient for the linear regression model results between the number of writing exercises and
tracing exercises solved by student and overall exam scores, writing and tracing question scores

Score Type # of Writing Exs # of Tracing Exs

Overall exam 15.23 18.12

Writing question 15.18 17.93

Tracing question 15.25 18.02

writing score than that of the tracing exercises on the writing score. We believe that needs further
study.

Table 15 showed that we have low to medium R-squared values. Adding more variables to our
model may enhance the R-square values but the data may then contain an inherently higher amount
of unexplained variability. For example, many psychology studies have R-squared values less that
50% because people are fairly unpredictable [18]. In our case, we may add additional predictors
like number of a�empts, the time spent on the exercise, or the time spent on the whole recursion
tutorial to our model and see if that will increase the true explanatory power of the model. Our
ultimate goal is to know if solving more practice exercises is the cause of be�er scores. Table 16
shows the linear regression coe�cients. In this case, both the number of writing exercises solved
and the number of tracing exercises solved appear to relate to outcomes, with the number of tracing
exercises having a slightly greater e�ect.

7 CONCLUSIONS AND FUTUREWORK
Our results support the driving hypothesis presented in Section 3.4, that student performance in
recursion can be enhanced by doing more practice that addresses common recursion misconceptions.
We have shown that students who used RecurTutor did be�er than the students who did not use
it. �e MANOVA analysis showed that the number of tracing and writing exercises solved by a
student can predict their scores on the �nal exam recursive writing and tracing questions, but
cannot predict student performance on overall exam scores. �e ability to predict performance
on recursion-related questions supports the hypothesis that the cause for be�er enhancement in
student scores comes from doing more practice that addresses common recursion misconceptions.
Meanwhile, among otherwise similar-performing students, the fact that the amount of practice
done on recursion exercises does not predict overall performance (as is expected) serves as an
appropriate negative control that the positive correlations between intervention and performance
really are related to RecurTutor.

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39. Publication date: March 2018.

RecurTutor: An Interactive Recursion Tutorial 39:23

We conclude that the best way to use RecurTutor to enhance student performance on recursion is
to allow students to practice recursion by solving the tutorial exercises. However, further analysis is
needed to understand what aspects of the practice exercises on RecurTutor leads to the enhancement
in student performance. �ere are two distinct aspects of RecurTutor that might be a�ecting the
learning of recursion. One is that RecurTutor explicitly delivers instruction aimed at teaching
recursion and overcoming misconceptions. �e other is that RecurTutor involves extensive practice
of recursive skills, both with tracing and with writing recursive functions. Our design is unable to
distinguish the relationships between these e�ects, and this will need to be part of future study.

As a side e�ect of its design and delivery, students did spend more time with RecurTutor than
previous students reported spending with traditional instruction formats. Instructors perceived
that adequate learning required more time than students were spending with traditional methods.
�is is important in that instructional interventions might o�en be rejected by instructors if they
view them as improving one aspect of instruction at the expense of other topics due to a limited
time budget for the students. In this case, the instructors indicated that they felt it appropriate for
students to spend additional time. So, it is a positive result in this case that students were willing
to actually spend that additional necessary time with RecurTutor.

We have seen that students who solved more tracing exercises did be�er on the writing question
on the exam, while students who solved more writing exercises did not do be�er on the writing
question on the exam. We did not see an e�ect from doing more writing exercises on tracing exam
questions, but that could be because almost all the students already did well on the tracing exercises.
We need to further study the relationship between tracing practice and writing practice on the
various sub-skill of writing and tracing recursive functions.

We believe that learning hard programming skills is an important area of research that has not
been addressed well yet. �ere are many research ideas that can lead to a be�er understanding of
student misconceptions, where those misconceptions come from, what are the best ways to address
those misconceptions, and what are the best ways to measure student understanding of those hard
programming skills.

ACKNOWLEDGMENTS
We gratefully acknowledge the support of the National Science Foundation under Grants DUE-
1139861, IIS-1258571, and DUE-1432008.

REFERENCES
[1] A. C. Benander and B. A. Benander. 2008. Student monks–teaching recursion in an IS or CS programming course

using the Towers of Hanoi. Journal of Information Systems Education 19, 4 (2008), 455–467.
[2] S. Bhuiyan, J. Greer, and G. McCalla. 1990. Mental models of recursion and their use in the SCENT programming

advisor. In Knowledge Based Computer Systems. Springer, 133–144.
[3] Amanda Cha�n, Katelyn Doran, Drew Hicks, and Ti�any Barnes. 2009. Experimental evaluation of teaching recursion

in a video game. In Proceedings of the 2009 ACM SIGGRAPH Symposium on Video Games (Sandbox ’09). 79–86.
[4] TH. Chi, R. Glaser, and M. Farr. 2014. �e nature of expertise. Psychology Press.
[5] Ruth C Clark and Richard E Mayer. 2011. E-learning and the science of instruction: Proven guidelines for consumers and

designers of multimedia learning. Wiley. com.
[6] Linda Crocker and James Algina. 1986. Introduction to classical and modern test theory. ERIC.
[7] Nell B. Dale. 2006. Most di�cult topics in CS1: results of an online survey of educators. SIGCSE Bulletin 38, 2 (June

2006), 49–53.
[8] Wanda Dann, Stephen Cooper, and Randy Pausch. 2001. Using visualization to teach novices recursion. SIGCSE

Bulletin 33, 3 (June 2001), 109–112.
[9] Edward Dillon, Monica Anderson, and Marcus Brown. 2012. Comparing feature assistance between programming

environments and their e�ect on novice programmers. Journal of Computing Sciences in Colleges 27, 5 (2012), 69–77.

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39. Publication date: March 2018.

39:24 S. Hamouda et al.

[10] Je�rey Edgington. 2007. Teaching and viewing recursion as delegation. Journal of Computing Sciences in the Colleges
23, 1 (Oct. 2007), 241–246.

[11] J. Eldred, J. Ward, K. Snowden, and Y. Du�on. 2006. �e nature and role of con�dence-ways of developing and
recording changes in the learning context. Adults Learning Journal (2006).

[12] J. Eskola and Jorma Tarhio. 2002. On visualization of recursion with Excel. In Proceedings of the Second Program
Visualization Workshop, Mordechai Ben-Ari (Ed.). HorstrupCentret, Denmark, 45–51.

[13] Mohammed F. Farghally, Kyu Han Koh, Hossameldin Shahin, and Cli�ord A. Sha�er. 2017. Evaluating the E�ectiveness
of Algorithm Analysis Visualizations. In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education (SIGCSE ’17). 201–206.

[14] Gary Ford. 1982. A framework for teaching recursion. SIGCSE Bulletin 14, 2 (June 1982), 32–39.
[15] E. Fouh, D.A. Breakiron, S. Hamouda, M.F. Farghally, and C.A. Sha�er. 2014. Exploring students learning behavior

with an interactive eTextbook in computer science courses. Computers in Human Behavior (December 2014), 478–485.
[16] E. Fouh, S. Hamouda, M.F. Farghally, and C.A. Sha�er. 2016. Automating Learner Feedback in an eTextbook for Data

Structures and Algorithms Courses. In Challenges in ICT Education: Formative Assessment, Learning Data Analytics
and Gami�cation, S. Caballe and R. Clariso (Eds.). Elsevier Science.

[17] Eric Fouh, Ville Karavirta, Daniel A Breakiron, Sally Hamouda, Simin Hall, �omas L Naps, and Cli�ord A Sha�er.
2014. Design and architecture of an interactive eTextbook–�e OpenDSA system. Science of Computer Programming
88 (2014), 22–40.

[18] Jim Frost. 2014. How to Interpret a Regression Model with Low R-squared and Low P values. (2014). h�p://blog.minitab.
com/blog/adventures-in-statistics/how-to-interpret-a-regression-model-with-low-r-squared-and-low-p-values

[19] Timothy S Gegg-Harrison. 1999. Exploiting program schemata to teach recursive programming. P. Brna, B. duBoulay,
and H. Pain (eds.), Learning to Build and Comprehend Complex Information Structures: Prolog as a Case Study, Ablex
(1999), 347–379.

[20] Carlisle E. George. 2000. EROSI-visualising recursion and discovering new errors. In Proceedings of the thirty-�rst
SIGCSE technical symposium on Computer science education (SIGCSE ’00). 305–309.

[21] David Ginat and Eyal Shifroni. 1999. Teaching recursion in a procedural environment-how much should we emphasize
the computing model?. In �e proceedings of the thirtieth SIGCSE technical symposium on Computer science education
(SIGCSE’99). 127–131.

[22] Ken Goldman, Paul Gross, Cinda Heeren, Geo�rey L. Herman, Lisa Kaczmarczyk, Michael C. Loui, and Craig Zilles.
2010. Se�ing the Scope of Concept Inventories for Introductory Computing Subjects. Transactions on Computing
Education 10, 2, Article 5 (June 2010), 29 pages.

[23] Aaron Gordon. 2006. Teaching recursion using recursively-generated geometric designs. Journal of Computing Sciences
in Colleges 22, 1 (Oct. 2006), 124–130.

[24] Katherine Gunion, Todd Milford, and Ulrike Stege. 2009. Curing recursion aversion. SIGCSE Bulletin 41, 3 (July 2009),
124–128.

[25] Sally Hamouda. 2015. Learning Hard Programming Skills. Ph.D. Dissertation. Virginia Polytechnic Institute and State
University, Blacksburg, Virginia.

[26] Ma�hew Hertz and Sarah Michele Ford. 2013. Investigating factors of student learning in introductory courses. In
Proceeding of the 44th ACM technical symposium on Computer science education (SIGCSE ’13). 195–200.

[27] Wen-Jung Hsin. 2008. Teaching recursion using recursion graphs. Journal of Computing Sciences in Colleges 23, 4
(April 2008), 217–222.

[28] Robert L. Kruse. 1982. On teaching recursion. In Proceedings of the thirteenth SIGCSE technical symposium on Computer
science education (SIGCSE ’82). 92–96.

[29] D Midian Kurland, Roy D Pea, Catherine Clement, and Ronald Mawby. 1986. A study of the development of
programming ability and thinking skills in high school students. Journal of Educational Computing Research 2, 4 (1986),
429–458.

[30] Raymond Lister, Elizabeth S. Adams, Sue Fitzgerald, William Fone, John Hamer, Morten Lindholm, Robert McCartney,
Jan Erik Moström, Kate Sanders, O�o Seppälä, Beth Simon, and Lynda �omas. 2004. A Multi-national Study of
Reading and Tracing Skills in Novice Programmers. SIGCSE Bulletin 36, 4 (June 2004), 119–150.

[31] L. Malmi, V. Karavirta, A. Korhonen, J. Nikander, O. Seppälä, and P. Silvasti. 2004. Visual Algorithm Simulation
Exercise System with Automatic Assessment: TRAKLA2. Informatics in Education 3, 2 (September 2004), 267–288.

[32] Claudio Mirolo. 2010. Learning (through) recursion: a multidimensional analysis of the competences achieved by CS1
students. In Proceedings of the ��eenth annual conference on Innovation and technology in computer science education
(ITiCSE ’10). 160–164.

[33] M. Norman and T. Hyland. 2003. �e role of con�dence in lifelong learning. Educational studies 29, 2-3 (2003), 261–272.
[34] N. Parlante. 2011. Codingbat: code practice. (2011). h�p://codingbat.com

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39. Publication date: March 2018.

http://blog.minitab.com/blog/adventures-in-statistics/how-to-interpret-a-regression-model-with-low-r-squared-and-low-p-values
http://blog.minitab.com/blog/adventures-in-statistics/how-to-interpret-a-regression-model-with-low-r-squared-and-low-p-values
http://codingbat.com

RecurTutor: An Interactive Recursion Tutorial 39:25

[35] Irene Polycarpou, Ana Pasztor, and Malek Adjouadi. 2008. A conceptual approach to teaching induction for computer
science. SIGCSE Bulletin 40, 1 (3 2008), 9–13.

[36] Barbara Z Presseisen. 2008. Teaching for intelligence. Corwin Press.
[37] Noa Ragonis and Mordechai Ben-Ari. 2005. A long-term investigation of the comprehension of OOP concepts by

novices. Computer Science Education 15, 3 (2005), 203–221.
[38] Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and teaching programming: A review and

discussion. Computer science education 13, 2 (2003), 137–172.
[39] Manuel Rubio-Sánchez and Isidoro Hernán-Losada. 2007. Exploring recursion with �bonacci numbers. SIGCSE Bulletin

39, 3 (June 2007), 359–359.
[40] Ian Sanders and Tamarisk Scholtz. 2012. First year students’ understanding of the �ow of control in recursive

algorithms. African Journal of Research in Mathematics, Science and Technology Education 16, 3 (2012), 348–362.
[41] Tamarisk Lurlyn Scholtz and Ian Sanders. 2010. Mental models of recursion: investigating students’ understanding of

recursion. In Proceedings of the ��eenth annual conference on Innovation and technology in computer science education
(ITiCSE ’10). 103–107.

[42] T. Schuller, A. Brasse�-Grundy, A. Green, C. Hammond, and J. Preston. 2002. Learning, Continuity and Change in
Adult Life. Wider Bene�ts of Learning Research Report. ERIC.

[43] Raja Sooriamurthi. 2001. Problems in comprehending recursion and suggested solutions. In Proceedings of the 6th
annual conference on Innovation and technology in computer science education (ITiCSE ’01). 25–28.

[44] John Stasko, Albert Badre, and Clayton Lewis. 1993. Do algorithm animations assist learning: an empirical study and
analysis. In Proceedings of the INTERCHI’93 conference on Human factors in computing systems (INTERCHI ’93). 61–66.

[45] Ben Stephenson. 2009. Using graphical examples to motivate the study of recursion. Journal of Computing Sciences in
Colleges 25, 1 (Oct. 2009), 42–50.

[46] Linda Stern and Lee Naish. 2002. Visual representations for recursive algorithms. In Proceedings of the 33rd SIGCSE
technical symposium on Computer science education (SIGCSE ’02). 196–200.

[47] Joe Tessler, Bradley Beth, and Calvin Lin. 2013. Using cargo-bot to provide contextualized learning of recursion. In
Proceedings of the ninth annual international ACM conference on International computing education research (ICER ’13).
161–168.

[48] Allison Ellio� Tew and Mark Guzdial. 2011. �e FCS1: a language independent assessment of CS1 knowledge. In
Proceedings of the 42nd ACM technical symposium on Computer science education (SIGCSE ’11). 111–116.

[49] Sho-Huan Tung, Ching-Tao Chang, Wing-Kwong Wong, and Jihn-Chang Jehng. 2001. Visual representations for
recursion. International Journal of Human-Computer Studies 54, 3 (March 2001), 285–300.

[50] J. Angel Velazquez-Iturbide, Antonio Perez-Carrasco, and Jaime Urquiza-Fuentes. 2008. SRec: an animation system of
recursion for algorithm courses. SIGCSE Bulletin 40, 3 (June 2008), 225–229.

[51] Susan Wiedenbeck. 1988. Learning recursion as a concept and as a programming technique. SIGCSE Bulletin 20, 1
(Feb. 1988), 275–278.

[52] Derek Wilcocks and Ian Sanders. 1994. Animating recursion as an aid to instruction. Computers and Education 23, 3
(1994), 221 – 226.

[53] Michael Wirth. 2008. Introducing recursion by parking cars. SIGCSE Bulletin 40, 4 (Nov. 2008), 52–55.
[54] Cheng-Chih Wu, Nell B. Dale, and Lowell J. Bethel. 1998. Conceptual models and cognitive learning styles in teaching

recursion. SIGCSE Bulletin 30, 1 (March 1998), 292–296.
[55] Chen-Chih Wu, Greg C. Lee, and Janet Mei-Chuen Lin. 1998. Visualizing programming in recursion and linked lists.

In Proceedings of the 3rd Australasian conference on Computer science education (ACSE ’98). 180–186.

Received June 2017; revised December 2017; accepted March 2018

ACM Transactions on Computing Education, Vol. 9, No. 4, Article 39. Publication date: March 2018.

